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Abstract 
In this work we present a programmable, portable and 

low cost system for sensor signal processing. A specific 
application developed to detect several gases is described 
based on a thermally-modulated SnO2 gas sensor and a 
16-bit microcontroller. A Wavelet transform method is 
applied to extract the most important features of the signal 
produced by the sensor.  Wavelet coefficients are the 
inputs to a support vector machine (SVM) that can either 
be used to classify the gas or be used to estimate the gas 
concentrations. In this work we have trained the system to 
detect CO, NO2 and a mixture of both gases in air. This 
system could be adapted to work with other gases or 
odours in industrial applications. 

1. Introduction 
Traditional methods for gas analysis involve the use 

of various techniques and technologies, that tend to 
produce relatively expensive sensors and analysers. Often 
these solid-state gas sensors lack fast response times and 
suffer from poor selectivity in the field. 

Research in the field of electronic noses during the 
last twenty years may hold a solution to the problems 
presented by classical methods. Electronic noses are 
described as an array of electronic chemical sensors and 
an appropriate pattern recognition system. Much of the 
published work is collected in [1],[2].   The outcome of 
most studies indicate that may seem to work well in a 
controlled environment but the implementation in real 
conditions is problematic. However, there are enough 
techniques described to build a system able to work in a 
practical environment.  

The design of an e-nose can follow two strategies: 
specific and flexible. Specific means that the architecture 
is only valid for one application. Flexible means that the 
system architecture is thought to serve for different 
applications, being possible to be adapted for  
applications defined by an end user. 

The principles of the designed system are to be 
flexible, portable that means that the system must work in 
different environments. The principle of portability also 
necessitates a design to be of low power consumption. 
These assumptions have an important role in the design. 

The system developed can work in two modes: 
training and testing. Figures 1.1 and 1.2 show the 
functionality block diagram of each of these modes. 

 
 

Figure 1.1 Training mode scheme. 
 

Figure 1.2 Testing mode scheme. 
 
In the training mode, the system sends the signal, 

captured in the sensor stage and digitalized by the 
microcontroller, to an external host that is responsible for 
extracting the most relevant features to classify or to 
estimate the concentration. The target of this mode is to 
produce a configuration file that will be loaded in to the 
system to be ready for the test stage.  

In the testing mode, the system has been updated with 
the necessary information to know what features of the 
signal are needed to be extracted and the coefficients of 
the support vector machines to identify the gas or the 
mixture. So, the result is sent to a display that informs the 
final user. 

2. Sensor Stage 
Keeping a low-cost strategy is necessary that every 

sensor used has to be cheap and sensitive enough to detect 
a broad spectrum of gases.  

SnO2 sensors have been widely used due to their 
advantages in the needs of low-manufacturing cost and 



    
     

high sensitivity. Their main disadvantages are drift and 
their low selectivity. Thermomodulation has been used to 
overcome these disadvantages, giving dynamic at 
responses that will follow a periodic pattern in the time 
domain, depending on the presence of a concrete gas or a 
mixture. In this sense, with just, one sensor, we can detect 
a wide area of gases and mixtures. The fact of adding a 
new sensor will only be justified if it can detect target 
gases or mixtures for our application. 

To produce the thermomodulation, a signal from the 
microcontroller is sent to a heater resistor. In our case, 
this modulation has sinusoidal form and a frequency of 50 
mHz has been selected. Higher frequencies will not result 
in variations of the heater. 

In the application described we have chosen to detect 
CO, NO2 and the mixture of both. Although this is a 
simple application and gases can be discerned  (CO has 
no odour and no colour and NO2 is brown and has very 
sharp odour) it is a good starting point to test the system 
performance.  

3. Wavelet Transform 
As has been mentioned, in the presence of a gas or 

mixture the sensor produces a dynamic signal that acts as 
a “fingerprint” of the gas (or mixture) and its 
concentration.  

The aim of this stage is to extract the information 
from the dynamic response to serve as an input to the 
pattern recognition system. A classical approach for this 
stage is the use of FFT. The Discrete Wavelet Transform 
(DWT) is an alternative technique to Fourier analysis that 
allows a non-linear multi-resolution analysis. Wavelet 
transform can be calculated as the decimated output of a 
filter bank composed by two filters.  

In our design the wavelet transform is applied as 
follows: one temperature period of the signal is taken as 
input signal to a wavelet filter bank where it is filtered 
and decimated by a low-pass filter h[n] and a high-pass 
filter g[n]. In figure 2.1 is shown the original signal and in 
Figure 2.2 is shown the lowpass filtered output of the first 
stage. The signal obtained from the low-pass filter and 
decimated is the new input for the filter bank, shown in 
Figure 2.3, and so the scheme is reiterated. Signal lengths 
are given by L+P-1 where L is the length of the input 
signal and P the length of impulse response filters. We 
can repeat this scheme several times obtaining a 
parameter called the depth of the decomposition. 

This scheme is considered as a multi-resolution 
analysis and we can describe it as obtaining an 
approximation signal, that is the output of the low-pass 
filter and a signal containing the details that will be the 
output of the high pass filter. Due to noble identities it is 
not necessary to have completed every decomposition 
begin before a new one, but all coefficients can be 
calculated from the entry signal.  

In the training mode, the external host tries different 
wavelet transforms based on different wavelets that lead 
to different coefficients of the filters. Once the host finds 
the best family of filters for the training set, then the 

coefficients are sent to the microcontroller as part of the 
information necessary to work in testing mode. 

A single vector will be formed with the union of the 
different outputs of the filter bank.   
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Figure 2.2. 1st Low Pass Filter Decomposition Signal.  
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Figure 2.3. 2nd Low Pass Filter Decomposition Signal. 

4. Support Vector Machines 
The use of SVM in the pattern recognition area is 

extensive due to the ability in the design to make a 
generalization of the problem. In the supervised training 
phase the SVM creates the optimal hyperplane for the 
linear case, or the optimal hypersurface in the non-linear 
one, with the largest margin between the hyperplane or 
hypersurface and any training data. Those training 
samples that are near of the hyperplane become the 
support vectors. 

Thus, the decision function can be written as: 
 

1
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Where Si is the ith support vector and Ns is the number 

of support vectors. The optimal hyperplane can be 
founded in the linear case and will be defined by the 
support vectors as: 
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A non-linear case can be performed by the 
transformation of ( )x x Hφ→ ∈   where the inner 
product in H is performed by a kernel function K(x,y). 
This kernel allows to find the optimal hypersurface 
without an explicitness knowledge on the transformation 

( )xφ . 
In our application the linear case appears to show 

good enough results to be applied to the classification 
problem. The using of a linear transformation allow us an 
added advantage because we know that all the 
components of the separation hyperplane low enough will 
mean that the vector component is not relevant for 
classification proposes as are orthogonal to the separation 
hyperplane.  The term “low enough” will lead us to keep 
the n higher components of the vector that describes the 
hyperplane. We can consider this technique as selected 
extracted feature, since only those wavelet coefficients 
resulting meaningful will be the entries of the support 
vector machine.  Developing this idea in our system, the 
host has to send to the microcontroller what wavelet 
coefficients have to be extracted to be the input of the 
SVM.  

If the problem under study cannot be solved with a 
linear Kernel, better results may be achieved using non-
linear kernels. As the transformation is not necessary 
known it is not trivial to apply the same principle to this 
in the linear case. In such a case, we can also eliminate 
components of the training vectors, make a feature 
selection by means of genetic algorithms, or make another 
pre-processing transformation before training the SVM. 
This last case will be only justified when the operations 
number that can be saved in the pattern recognition is 
greater than the operations number used for the pre-
processing stage. 

SVM can also be used to estimate the concentration. 
In this case the function is quite similar to the 
classification problem 
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5. Results 
As mentioned in this work we have trained the system 

with different parameters to classify and estimate the 
concentrations of CO, NO2 and a mixture of both gases in 
air.  

In the training mode, the external host has been 
programmed to train with different wavelet transforms. 
Once that the external host obtains the necessary 
information, it is sent to the system. This information 
includes the wavelet filter coefficients and the 
information required to build the SVM.  

Table 1 shows the confusion matrices obtained in the 
test mode with different types of wavelets for our 
classification problems. Different elements of the table 
are P(Di/Hj). 

 
 
 

Wavelet 
Daubechies 
Length = 8 

CO NO2 CO+NO2 

CO 1 0 0 
NO2 0 1 0 
CO+NO2 0 0,0625 0,9375 

Table 1.1 Confusion matrixes using 8-tap 
Daubechies.  
 

Wavelet 
Coiflets 
Length=1 8 

CO NO2 CO+NO2 

CO 1 0 0 
NO2 0 1 0 
CO+NO2 0 0,0625 0,9375 

Table 1.2 Confusion matrixes using  18-tap Coiflets. 
 

Wavelet  
Biorthogonal 
Length=9/7 

CO NO2 CO+NO2 

CO 1 0 0 
NO2 0 1 0 
CO+NO2 0 0,03125 0,96875 

Table 1.3 Confusion matrix using  9/7-tap Biorthog. 
 
In order to reduce the computational cost of the 

system it is shown the results using the feature selection 
technique described. Figure 3 shows for each gas the 
probability of success, being the diagonal elements of the 
confusion matrix, with the number of features considered. 
For this example, the wavelet transformation used was the 
Daubechies 8-tap filter. This idea confirms the using of 
the hyperplane information for feature selection in the 
case of  linear kernels. 
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Figure 3. Vector dimension vs probability of success. 
 



    
     

The designed system is not only able to classify but to 
estimate the gas concentration. The normalized error is 
measured as: 
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Where yi is the target value, fi is the regression value 

calculated by the SVM and N is the number of samples to 
be tested. 

 
 Kernel = 

RBF 
Wavelet = 
Daub 
Length 8 

Kernel = 
RBF 
Wavelet = 
Biorthog. 
Length 9/7 

Kernel = 
Linear 
Wavelet = 
Daub 
Length 8 

CO  0,2867 0,3622 5,6124 
NO2 0,1659 0,2108 2,0152 

Table 2. Normalized error in concentration estimation 
 

In table 2 we can see the normalized error obtained for 
the estimation of the concentration. This shows that a 
linear kernel does not provide satisfactory results and so a 
radial basis function (RBF) kernel was employed. The 
kernel is given by: 

 
2

( , )K x y e γ− −= x y  
 
The gamma parameter manages the spread of the RBF 

and plays and important roll in results. Figure 4 shows the 
evolution of the normalized error as the gamma parameter 
is changed, in this case for the CO concentration 
estimation. 
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Figure 4. Gamma value vs normalized error 
 
 
 

6. Conclusions 
We have presented in this paper a flexible, portable 

and low cost system. The employment of efficient pattern 
recognition algorithms allow us to classify gases with low 
cost requirements. 

The system is flexible enough to be programmed by 
an external host where the heavy training processes run 
and only the necessary information is sent to the system. 
The application presented, although simple, validates the 
process and the ideas exposed. Future work will be the 
research of the most efficient preprocessing and pattern 
recognition techniques, and address the recognition of 
complex odours.   
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