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Abstract

Feature selection techniques can be used in order to find an optimal subset of sensors from an array of high dimensionality by eliminating
redundant or irrelevant ones. By optimising the array size, the overall system performance can potentially be increased by maximising the
information content and hence increasing the predictive accuracy. However, searching high dimensional space is problematic in the very
high number of permutations. A novel search method procedure,V-integer genes genetic algorithms (GA), is introduced and compared
with other search methods such as sequential forward or backward searches (SFS or SBS) andX-binary genes GAs. Results are presented
for a data-set consisting of 180 samples from some eye bacteria screening tests that were collected using an electronic nose (EN) with 32
sensing elements. For the data-set used in this work, SFS achieved over 89% correct classification by selecting just three features, whereas
SBS needed at least five features to reach the same level. With32-binary genes GAs, the dimensionality is reduced by 50–60% and the
classification rates are on average 91%. Considering eight, six or four features, the optimal subsets returned by theV-integer genes GA
selections have dimensionality reduced by over 80% and on average achieve around 90% correct classification. Two selections, of six and
three features, are considered for further pattern recognition (PARC) analysis using different classifiers. These results show that the newly
developedV-integer genes GAapproach is an accurate, and importantly, a very fast search method when compared to some other feature
selection techniques.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The human nose possesses about 100 million olfactory
receptor cells followed by a smaller, but still large num-
ber of glomeruli nodes, mitral cells and tufted cells. There
are around 300 distinct genes that encode olfactory receptor
binding proteins and hence improve the specificity of olfac-
tion [1]. Electronic noses (ENs) are instruments that have
been developed to mimic the ‘human organ for smelling’
[2]. An EN is both a chemical sensing and a data analysis
system that can to some extent discriminate between dif-
ferent odours. Recent advances in the field of ENs has led
to new developments in both sensors and feature extraction
(pre-processing) and data processing techniques. As a result,
the user of EN systems is provided with an increased amount
of information (through the use of numerous methods) for
the discrimination of odours using multi-sensor arrays. Even
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with a modest EN with an array of just 32 sensors, the min-
imum number of extracted features is 32 although it can be
much higher when using dynamical information. This wide
spectrum of sensors and features is desirable but not all of
them are relevant to the pattern recognition (PARC) classi-
fication task. This recurrent problem when processing EN
data is known as thecurse of high dimensionalityand has
to be solved in order to try to optimise the performance of
the system. The problem thus becomes essentially one of
feature selection. The feature selection process removes the
set of redundant features/sensors that are potentially adding
noise into the system rather than improving discrimination.
We believe that it is the process of inhibiting (i.e. eliminat-
ing) sensors which is one of the keys to solving a complex
olfactory problem.

In this paper, the recurrent problem with EN of process-
ing high-dimensional and redundant data-sets is first intro-
duced.Section 2introduces ideas relating to the possibility
of finding an optimal array configuration of reduced dimen-
sionality by considering a subset of features. It discusses dif-
ferent methods for feature selection and dimensionality re-
duction. The development of a new genetic algorithm (GA)
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approach using integer coding instead of binary coding as
an optimisation search method is introduced inSection 3.
In Section 4, the data-set collected using the Cyranose 320
(Cyrano Sciences Inc.1) from samples in the eye bacteria
screening tests, already presented in[3], is used to evalu-
ate the techniques. Various feature selection techniques are
used with this data-set to find an optimal subset of features.
A number of non-linear PARC techniques are used to pro-
cess this data by considering first of all 32 features and then
reduced subsets of six and three features. Conclusions and
discussions are presented inSection 5.

2. Feature selection

2.1. Problem of high dimensionality

For each type of gas sensor, tens of different sensors can
be found which produce only slightly different responses
to various volatile compounds. This wide variety of avail-
able gas sensors potentially creates a selection problem that
is even more important in view of the cost and technology
limitations. A reduction in the number of sensors is advan-
tageous in the following circumstances:

• Sensors that are not sensitive to the target volatile com-
pounds increase variance (noise) and do not assist with
the smell recognition task.

• Sensors that have very similar sensitivities to the target
volatile compounds provide redundant information (over
complexity) not useful for the discrimination process.

• Additional sensors increase the weight, size and cost of a
system (commercial issues) so that their number should
ideally be minimised; without compromising the perfor-
mance.

The process of sensor selection for a specific application is
a trade off between factors such as system performance, cost
and size[4]. When classifying multi-dimensional data, it is
difficult to determine if all features (extracted from sensor
responses) considered are necessary for the classifier. The
introduction of irrelevant features increases the dimension-
ality of the search space, which can potentially overwhelm
the accuracy of the pattern recognition (PARC) techniques.
Most PARC classifiers can provide better recognition rate us-
ing a subset of features rather than the whole set, especially
considering that irrelevant or redundant dimensions may be
used[5]. The application can be simplified using smaller
arrays with a reduced number of sensors and simpler clas-
sifiers working on fewer dimensions. Hence, a systematic
or structured method is needed for selecting the optimum
subset of sensors (optimal array configuration or key feature
composition) and thus enhance overall system performance.

1 Cyrano Sciences Inc. (USA),http://www.cyranosceinces.com.

Fig. 1. Configuration performance plot for feature selection.

In this optimisation process, a measure of the correct
classification rate can be used to maximise the performance
of the system, whilst minimising the number of features
selected[6]. Reducing the number of features in order to
maximise the performance is achieved at certain cost, and
features should be selected carefully as shown in thecon-
figuration performance plotin Fig. 1. This figure illustrates,
qualitatively, the effect of a large number of features (e.g.
sensors) on the successful classification of a PARC classi-
fier. Too few, inappropriate or poor configuration of features
can lead to an inadequate array performance. Conversely,
increasing the array size may not be effective if the fea-
tures selected are redundant and may also even reduce the
discriminatory power of the system.

Having a large number of features tends to reduce the
performance of the classification technique. Consequently,
the number of training examples must be increased sharply
with the number of features. This is in order to produce ac-
curate results and to learn precise models. For example, the
larger the number of sensors in an EN array, then the larger
number of weights to learn in, say, a multi-layer perceptron
(MLP) artificial neural network (ANN). A fully connected
array of 32 sensors with 16 neurons in the first processing
layer, and classifying just 10 different odours in the second
output layer (the human system is around 8000) would need
over 670 weights to be learnt. Ideally, there would be repli-
cated training vectors and so hundreds (if not thousands) of
samples should be taken in order to produce accurate results
and to solve the classification problem.

With EN data-sets, there are only usually a limited num-
ber of patterns (i.e. samples) available, there is an opti-
mal number of features beyond which the performance of
the PARC classifier starts to degrade. Problems with redun-
dancy in data-sets, referred to as collinearity or correlation
between features, are often due to the cross-selectivity of
gas sensors. Hence, a structured approach for selecting the
optimal sensors or features and reducing the dimensionality
of the data matrix is typically required for a given classifi-
cation problem[7]. This feature selection technique should

http://www.cyranosceinces.com
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remove variables that introduce noise and those which are
not representative. This should not only result in an increase
in system performance and simplicity, but also potentially
decrease the costs associated with data acquisition and the
time needed to solve the classification problem. Most of the
strategies reported in the literature for this task require the
specification of an objective function and a search algorithm,
as presented in the next section.

2.2. Problem of sensor selection

Various techniques have been presented in the literature
that determine an optimal array configuration of reduced
dimensionality by considering a subset of features. The
simplest approach consists of evaluating each feature indi-
vidually and selecting those with the highest scores, unfortu-
nately, this approach ignores redundancy and will rarely find
an optimal subset. Linear multivariate statistical techniques
are often used to identify optimal discriminatory features
and to help in defining the optimal array configuration; prin-
cipal component analysis (PCA) or cluster analysis can be
used to achieve this goal[8]. PCA is in practice an excellent
technique to show poor sensor stability and sensor noise. The
values (scores and loadings) derived using PCA have often
been used to ascertain which features are the most discrim-
inatory by evaluating the collinearities present in the sensor
array and identifying the sensors with duplicate responses
[9].

An exhaustive search of all combinations is often too com-
putationally expensive since the number of all possible con-
figurations for an array ofn elements grows rapidly. For the
moment, let us assume that each feature is a sensor and so
the problem is one of choosing the optimal set of sensors
from an EN array. Now let us consider that we have an ar-
ray of n different sensors and that we wish to determine the
number of different permutationsN of p possible sensors,
ignoring p = 0, 1 as real options. The number of possible
combinationsp (including using all sensors,p = n) is given
by theEq. (1).

N =
n∑

p=2

n!

(n − p)!p!
n ≥ p (1)

For an EN with 32 sensors, the number of combinationsp is
many millions. Yet 32 sensors is far fewer than the human
olfactory system which is known to have about 300 receptor
proteins within the millions of receptor cells in total. It is
also assumed here that the order in which the features are
selected is not important, i.e. that the problem is a quasi static
one. In the olfactory system, the order in which the cells are
fired up may well be significant. Thus, the problem of sensor
selection is a critical one as the number of features (e.g.
sensors) increases in an EN. Feature selection is well know to
researchers in this field and reports have been made of the use
of various methods, such as linear projecting using PCA and
sequential search algorithms, such as the sequential forward

search method (SFS) and sequential backward search (SBS)
[5].

Sequential search algorithms, such as SFS and SBS, are
greedy strategies that reduce the number of combinations
to be tested by applying a local search[10]. With SFS, the
selection algorithm starts with an empty space and a feature
is added if it provides the best improvement of performance.
With SBS, the algorithm begins from the whole feature space
and a feature is extracted if it provides the least reduction
in performance. SFS and SBS will only explore a small
fraction of the whole set of configurations and can become
trapped in local minima. Moreover, the problem with using
a linear search method on a non-linear problem is clearly an
important issue.

Randomised search algorithms, such as GAs, are inspired
by the process of natural selection and perform a global
random search on a population of solutions[11]. It is argued
by some that GAs produce selections of features that are
artefacts of the data with no physical insight, even so they
are generic and always find a solution that is the best in some
way. Pardo et al.[5] state that GAs are especially suited to
this kind of selection problem, where every features can be
easily coded in the chromosomes: a binary string where a one
means the feature is present and a zero means the feature is
absent. They follow the same procedure as the one initiated
by Corcoran et al.[6,7] for which the multi-sensor array
configuration is encoded as a chromosome, where each gene
(location) has an allele (value) representing the presence or
the absence of a sensor parameter. These and other issues
will be discussed in the following section.

3. Integer-based genetic algorithm for feature selection

GAs are stochastic algorithms used to solve optimisation
problems by working on a population of possible solutions.
Starting from an initial population, a new population is
created following a series of steps; selection, reproduction,
mutation and competition[12]. Before applying GAs to an
optimisation problem, one has to choose afitness function
(objective function) and to define asuitable coding. In most
cases, when GAs are applied to feature selection problems,
these are defined as follows:

• Fitness function. The basis for analysing an optimisation
problem is to define a suitable fitness function, which
will make it possible to compare possible solutions. The
absolute minimum or maximum of the fitness function is
the parameter being optimised by the GA. In this work,
a wrapper strategy is used in order to evaluate subset
solutions using their predictive accuracy (based on the
results for a given PARC technique).

• Suitable coding. One of the most important task in prob-
lem solving using GAs is coding the solution space, and
the best-known forms of coding are strictly binary. Any
potential solution is coded as a vector called a chromo-
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some, the elements of which are called genes and are
located in well-defined positions (alleles). The chromo-
somes representing the entire set of features can easily
be coded as a binary string where 1 means the feature is
present and 0 means the feature is absent[5,6]. For exam-
ple, given eight sensors from which an optimal configu-
ration needs to be identified, the chromosome 01010011
will represent an array configuration with sensors 2, 4, 7
and 8. A number of chromosomes are then used to form
a population of possible solutions.

The selection algorithm uses a genetic representation for
which each feature is equivalent to a gene; hence, the length
of the chromosome is equal to the total number of features.
This type of GA optimisation will be referred to asX-binary
genes GA, whereX is the number of features to choose from.
In summary, the GA search process typically comprises of
the following steps:

• Step 1. Generate initial population of chromosomes from
the global feature set.

• Step 2. Evaluate fitness (objective function) of each chro-
mosome.

• Step 3. Are the optimisation criteria met? If YES, go to
step 7. If NO, go to step 4.

• Step 4. Generate new population by selecting pairs for
mating, recombination using mask-based (or template-
based) crossover and mutation.

• Step 5. Evaluate fitness (objective function) of each new
chromosome.

• Step 6. Identify the fittest individual in the population. Go
to step 3.

• Step 7. End.

As reported in the literature[5,6], this representation is the
most suitable for many optimisation problems. For particular
selection problems of large dimensions, the chromosomes
formed might be too complex and too long to handle easily,
thus considerably slowing down the optimisation process.
Therefore, it was decided to apply a new and original coding
technique for the creation of the population of chromosomes
[13]. For the genetic representation,V-genes long chromo-
somes were used with integer values from one to the num-
ber of features, representing the selected subset of features.
This type of GA optimisation will be referred to asV-integer
genes GA, whereV is an input parameter defined by the user
representing the number of features to be selected.

Fig. 2 shows a schematic representation of the way this
technique works[14]. The initial population is generated at
random. The resulting classification rates at this stage are
used for comparison to produce the results for randomly
selected subsets. There are no rules for defining the size
of the initial population, forX-binary genes GAsa popula-
tion of 15–20 chromosomes will be considered. In order for
V-integer genes GAsto converge, they must be given a large
number of genes to work on so that the genetic operators can
apply. The smaller the chromosomes, the larger the popula-

Fig. 2. Flow diagram showing the use ofV-integer genes GAfor feature
selection.

tion. It was found experimentally that the initial population
should contain at least three times as many genes as the to-
tal number of features. In order for this GA optimisation to
be successful, one of the conditions is that there will be no
repetition of one feature in the same chromosome, referred
to as thecheck for integrityprocedure. With every gener-
ation, the recognition rate (objective function) is evaluated
using probabilistic neural network (PNN) classifiers for ev-
ery individual chromosome within the population. PNN was
selected because it converges a lot faster than the traditional
multi-layer perceptron (MLP) network and works well with
the data-sets considered here. Thanks to the objective func-
tion, the best selection subset of features achieving the best
recognition rate is found.

The survival of the fittest (elitist model) was used to en-
sure that the best chromosome will survive to the next gen-
eration and will not be affected by the genetic operators.
When the population is rearranged, chromosomes are sorted
in ascending order of recognition rate. Then, a copy of the
fittest is used to replace the worst before the genetic opera-
tors are applied.For X-binary genes GAs, the chromosomes
are long enough and it was decided to apply a mask- or
template-based crossover. Considering the relatively small
length of the chromosomes, it was decided to apply single
point crossover operations forV-integer genes GAs. In each
population, two parents are selected at random and genes
are crossed over at a random point to constitute the offspring
chromosomes of the new generations. The probability of one
chromosome being affected by a crossover operation was set
quite high to 0.9 so that the GA explores the search space
more rapidly. Based on experience, a random gene muta-
tion stage was introduced with the probability of one gene
being affected being set to 0.1 to significantly change the
information in each new chromosome. After applying the
genetic operators, thecheck for integrityis performed, and
the fitness of each new chromosome is evaluated using the
classification rate from the PNN results. Two optimisation
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criteria were selected that will terminate the GA optimisa-
tion process.

• The maximum number of generations was set to 20 and
represents the number of times the search algorithm is
repeated.

• In order to determine that a valid solution to the problem
has been found, the target recognition rate was set to over
95% in order to achieve the same level of performance as,
or better than, the full set of features.

Both SFS and SBS are considered, together withX-binary
genes GAand the newV-integer genes GAselection tech-
niques. These various selection techniques were applied
on the data-set collected using the Cyranose 320 (Cyrano
Sciences Inc.1). A total of 180 readings is included in
this data-set representing the three dilutions of six bacteria
species[3]. PNN is used as the classifier for evaluating the
fitness function for each chromosome solution. The results
of this approach are presented in the following section.

4. Data analysis results

A Cyranose 320 (Cyrano Sciences Inc.1) electronic
nose was used to sample eye bacteria, it comprises of a
32-sensor-array of carbon black polymer composite resis-
tors. As described by Boilot et al.[3], PCA was first used
to examine the data clustering in multi-sensor space and
to verify that the clusters established were genuine and
matched the six types of bacteria. Although these results
show that the data can be easily linearly separated, they
also show that the sensor responses are highly correlated as
most of the variance in the data is contained within PC#1
(99.68%). Most of the sensors are cross-selective being sen-
sitive to the same odorous constituents hence they become
redundant for the classifier. Ideally, given this database of
the responses of 32 sensors to six bacteria species, it should
be possible to identify a subset of features that provide the
same, or better, level of performance when applied to the
classification of these pathogens. The aim of this appli-
cation is to investigate how to best create an optimal, or
near-optimal, array configuration using a reduced number
of sensors from the 32 available. Selecting the most appro-
priate combination of sensors is needed in order to satisfy
the needs of the current application in terms of optimising
the solution cost and reliability of the system.

4.1. Sequential forward and backward search

Search methods were first used to guide the feature se-
lection process, the correct classification rate is determined
by PNN. SFS and SBS were implemented first because they
offer the potential advantage of a step-by-step scanning of
the whole feature space. With SFS, the selection algorithm
starts from an empty space and the feature that provides the
best improvement of the objective function is added to the

Fig. 3. Recognition rate for SBS and SFS applied to the eye bacteria data.

selection. This process is repeated until all sensors have been
selected. With SBS, the algorithm begins with the whole
feature space and the sensor that provides the least reduc-
tion of the objective function is removed from the selection.
This process is repeated until all sensors are discarded. Af-
ter implementing these two search methods, it is possible
to represent the evolution of the recognition rate against the
number of sensors, as presented inFig. 3.

When the number of sensors selected exceeds five, the
two curves flatten out reaching a maximum recognition rate
of around 91%. As more sensors are added to the selection,
the final recognition rate remains constant, these additional
sensors are not necessary to maximise the predictive accu-
racy. SFS presents a faster response to reach this optimum
state and when three sensors are selected, namely{8,11,23},
the recognition is already at 89.4%. With SBS removing one
sensor from the selected five sensors{1,8,11,14,32} causes
the recognition rate to drop below 89.4%. However, even
though the solutions returned with SFS and SBS achieved
relatively high classification rate, they only explore a small
percentage of the whole set of configurations (the order in
which sensors are added is also critical) and these solutions
might not be optimal.

4.2. Binary and integer-based genetic algorithm selection

Both X-binary genes GAandV-integer genes GAfeature
selection techniques are considered here. The initial popu-
lation for each GA approach was generated randomly. The
classification rates found at this stage were used for compar-
ison to produce the results for the randomly generated sub-
sets. The recognition rate is evaluated in every generation
using PNN for every individual solution within the popula-
tion, as follows:

• X-binary genes GA. For the genetic representation, the
chromosomes representing the entire set of features can
easily be codified as a binary string where 1 means the
feature is present and 0 means the feature is absent. This
representation was adopted with the chromosomes repre-
senting the selected features being 32-genes long. There



J.W. Gardner et al. / Sensors and Actuators B 106 (2005) 114–121 119

Table 1
GA feature selection results for an EN of 32 sensors with PNN classifier

Chromosome structure Population size Random (initial population) GA process (last population)

Average Best of all Average Best of all

32-binary 20 90.0 90.6 91.1 91.1
12-integer 12 88.9 89.4 90.4 90.6
10-integer 15 87.8 88.3 90.2 90.6
8-integer 20 87.8 88.9 89.4 90.0
6-integer 25 87.2 88.3 89.4 90.6
4-integer 40 85.5 86.7 87.8 89.4

are no rules for defining the size of the initial popula-
tion, a population of 20 chromosomes was considered for
32-binary genes GAs.

• V-integer genes GA. For the genetic representation,
V-integer geneslong chromosomes were used with inte-
ger values from 1 to 32 representing the selected sensors.
The number of chromosome in the initial population was
set so that the total number of genes in the population
(number of chromosomes× number of features) will be
at least five times the total number of sensors, around
150. Various combinations were investigated such as;
12 chromosomes for12-integer genes GAs, 15 chromo-
somes for10-ineger genes GAsand 40 chromosomes for
4-integer genes GAs.

For V-integer genes GAs, single crossover points are ap-
plied in each population andfor 32-binary genes GAs, a
mask is created at the start to define which genes should be
swapped over. The number of crossovers to apply per gen-
eration is set so that the probability that one chromosome
is affected is about 0.7. Random point gene mutations are
then carried out on the chromosomes, randomly selecting a
gene from the entire population and changing its value. The
number of mutations to apply per generation is set so that
the probability that one gene is affected is about 0.1. Two
optimisation criteria were selected; the maximum number
of generations was set to 20 and the target recognition rate
was set to over 95%.Table 1presents the results of the se-
lection process after 20 generations in terms of recognition
rate. The GA optimisation process was run five times, at the
end of the process (after 20 generations), the results for the
best solution (chromosome) is identified. InTable 1, the av-
erage of these fittest chromosomes over five runs is included
as well as the result for the best solution found. At the start
of the GA process, the first initial population is generated at
random, the results for the best solutions found in this way
is also included in this table in terms of the average over
five runs and the best solution.

In general, the results at the end of the GA process are al-
ways better than for randomly generated solutions. The GA
feature selection always finds a better solution representing
an optimal array configuration. With32-binary genes GAs,
examination of the complete set of results shows that the
GA search method consistently identified subsets contain-

ing between 12 and 16 features. These subsets have opti-
mal classification rates of around 91.1% (91.1%, at best)
when compared with randomly generated solutions, which
typically have classification rates of around 90.0% or be-
low (with one exception at 90.6%). With this GA feature
selection technique, the array dimensionality is reduced by
50–60% and some of the redundant sensors are identified. A
large number of features are considered and this technique
shows its limit for this data-set of large dimensionality.

With theX-integer genes GAs, as the number of features
to select becomes smaller, the recognition rate of the subsets
generated at random decreases from 88.9% with 12 features
down to 85.5% with only four sensors. TheV-integer genes
GA results also follow this trend but more slowly, with fewer
features, it becomes more difficult to find an optimal solu-
tion. V-integer genes GAsalways manage to find an optimal
subset of sensors so that the recognition rate of the best of
all after five runs is nearly always 90.6%. With the full set
of sensors, we achieved 91.7% correct classification with
PNN (spread constant of 0.1). With6-integer genes GAs,
the array dimensionality is reduced by 81%, the best subset
found is{8,11,15,23,31,32} achieving 90.6%. The4-integer
genes GAs(dimensionality reduced by 88%) could consis-
tently identify subsets of sensors that will achieve high lev-
els of performance: 87.8% on average and 89.4% at best
with {8,11,23,32}.

4.3. Results when using 32, 6 and 3 sensors

In order to assess if the subsets formed performed as well
or better than the full set of sensors, it was decided to run a
series of tests using different classifiers. In the GA process,
PNN was used but other classifiers might perform better and
it was decided to investigate further the recognition rate of
some of the selected subsets. The fittest six-sensor subset re-
turned by the GA selection process{8,11,15,23,31,32} was
considered because it was selected using a survival of the
fittest strategy. A statistical study carried out on the subsets
created showed that these six sensors were the most likely to
be selected. It was decided to reduce the selection even fur-
ther and to consider only three sensors based on their selec-
tion occurrence. The generated subset contains{8,11,23};
this is the same subset as the one returned using SFS that
achieved 89.4% with PNN. Two clustering techniques were
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Table 2
Classification results for different PARC techniques with sets of 32, 6 or 3 sensors

Number of
sensors

Selection CA
(%, groups)

FCM
(%, clusters)

MLP BPGDM (%) MLPBP LevMar (%) RBF
(%, spread)

PNN
(%, spread)

32 All 65.0 (14) 90.6 (14) 94.3 (32× 18 × 6) 97.3 (32× 18 × 6) 92.2 (5) 91.7 (0.1)
6 [8,11,15,23,31,32] 65.0 (14) 90.0 (16) 87.8 (6× 8 × 6) 96.7 (6× 8 × 6) 70.6 (5) 92.2 (0.05)
3 [8,11,23] 50.6 (14) 88.3 (13) 90.0 (3× 6 × 6) 93.3 (3× 6 × 6) 65.0 (5) 90.6 (0.05)

used, namely cluster analysis (CA) using nearest neighbour
and fuzzy C-mean (FCM), together with four supervised
artificial neural network (ANN) classification paradigms;
MLP trained back-propagation using the gradient descent
with momentum (BPGDM) or the Levenberg–Marquardt
(BPLevMar) algorithm, radial basis function (RBF) and
PNN. The results are presented inTable 2.

The classification rate results obtained with a subset of
three sensors are less than with a subset of six sensors, higher
predictive accuracy suggests better information content for
the selection considered. For FCM, the results with the two
subsets are similar (around 90%) and about the same levels
are achieved with MLP BPGDM. The best results were ob-
tained with MLP BPLevMar and PNN where the classifiers
achieved, respectively, 96.7% and 92.2% with six sensors,
and 93.3% and 90.6% with three sensors. These levels of
performance are very similar to those obtained with the full
set of parameters (slightly lower in general). UsingV-integer
genes GAs, a subset of six (or three) sensors is selected that
will perform as well as the full 32-sensor-array in the dis-
crimination of the bacteria of interest. This demonstrates the
potential for developing an application-specific instrument
insofar that an optimal array of sensors can be successfully
created thus potentially reducing the cost of the system.

5. Conclusions

Feature selection techniques can be used in order to de-
velop an application-specific instrument by eliminating re-
dundant or irrelevant sensors, therefore, optimising the array
configuration. The removal of most of the sensors/features
in an array can greatly reduce the level of drift/noise intro-
duced by a large number of redundant sensors. These results
show that the newly developedV-integer genes GAapproach
is an accurate and fast search method when compared to
the other feature selection techniques investigated here. The
levels of performance in terms of predictive accuracy of the
subsets selected usingV-integer genes GAsare the same as
(or better) than those achieved with the more popular and
well-establishedX-integer genes GAs. V-integer genes GAs
outperformX-integer genes GAsby finding subsets with
fewer features and reducing further the dimensionality of
the problem. This new GA-based approach will prove to
be reliable and beneficial in defining an optimal array con-
figuration for a particular application. Using this selection
approach, one can find an optimal subset of sensors for a

particular application while choosing sensing devices from
a larger database of sensors. These techniques will help to
create smaller application-specific sensor arrays and help to
reduce the potential cost associated with new sensor devel-
opments.

In most of the applications and the commercial EN sys-
tems available, the broad and overlapping specificities of the
sensors used (e.g. metal oxide semiconductors or conduct-
ing polymers) create an array for which the discrimination
capability often exceeds the needs of the application (i.e.
redundancy exists). The aim of sensor selection is to select
an optimised (smaller) array of sensors (subset) for a par-
ticular application from a larger set of available sensors (li-
brary/database). Ideally, given a reference database of odours
from n sensors, it should be possible to identify a subset of
n′ sensors that can produce the best possible discrimination
of the different samples of interest[6]. For EN based on inte-
grated arrays, such as the Cyranose 320, the cost associated
with the design of a new array for a specific application will
be significant. So in this particular case, it is best to keep
the integrated sensor chip but switch a subset (n–n) ‘off’ for
certain applications. The strategy for other commercial EN
systems, e.g. manufacturers like Alpha M.O.S.2 is to offer
smaller and more cost effective solutions for which the sen-
sors have been selected a priori for a particular application.
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