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Abstract-In this paper, we present the analog circuit design odour sensing system. This not only emulates the plasticity
and implementation of an adaptive neuromorphic olfaction chip. function found in biological neural systems but also provides a
An analog VLSI device with on-chip chemosensor array, on-chip means to compensate for analog imperfections in the physical
sensor interface circuitry and on-chip learning neuromorphic
olfactory model has been fabricated in a single chip using Austria ipematio andchanen tenvironmenteiwi the
Microsystems 0.6 ,um CMOS technology. Drawing inspiration operate. All the component subsystems implemented on the
from biological olfactory systems, the neuromorphic analog neuromorphic olfaction chip have been successfully tested in
circuits used to process signals from the on-chip odour sensors silicon.
make use of temporal "spiking" signals to act as carriers of odour
information. An on-chip spike time dependent learning circuit is II. DESCRIPTION OF ADAPTIVE NEUROMORPHIC MODEL
integrated to dynamically adapt weights for odour detection and
classification. All the component subsystems implemented on chip A. Model Dynamics
have been successfully tested in silicon. A neuromorphic architecture with spike-time-dependent

I. INTRODUCTION learning (Fig. 1(a)) is used to model the olfactory pathway. The
neuromorphic network receives sensory signals from an array

A neuromorphic olfactory chip attempts to mimic the of chemosensors which transform the molecular chemical
powerful odour recognition features demonstrated by a bio- information of an odorant into electrical signals suitable for
logical olfactory system [1]. Previous works reported on processing in analog circuitry. The chemosensor array consists
implementing olfactory systems addressed: sensing [2], signal of different sensor types tuned to respond to different chemical
processing [3] and neuromorphic models [4], separately. Fur- compounds [2]. Such a heterogeneous array has the potential
thermore, implementations in digital hardware are inherently to increase the selectivity in the olfactory pattern recognition
power hungry. An analog implementation of neuromorphic task while mimicking the function of the mammalian olfactory
olfactory circuits benefits from low power, low cost and area system. Because the signals from sensors of the same type
efficient hardware realisations. are fed forward through neural elements to one and only

The neural circuits at the input stage of a mammalian ol- one principal neuron, the network forms a distinct modular
factory system produce all-or-none action potentials or spikes structure, reminiscent of the glomerular organisation of the
occurring as temporal patterns [5]. In addition to the mounting mammalian olfactory bulb model [5].
biological evidence [6], it has been shown theoretically that The soma of each neuron element is modelled as a leaky
temporal coding using individual spike times can produce integrate and fire (IF) unit. Below a threshold Vth the dynamics
powerful information processing systems [7]. Furthermore, of the membrane potential Vm(t) of the IF neuron is defined
recent experiment studies have shown that precise timing of by
spikes generated by neurons can be critical for the direction
and magnitude of synaptic weight changes; a phenomenon dVm (t) IVm - Vrest 1(t)
now termed as spike-time-dependent plasticity (STDP) [6]. dt R?nCm

+ (t)
Spike time dependent learning rules can be used to learn dt RmCm Cm
temporal delays with high precision and have been used to where t is time, Rm and Cm are respectively, the membrane
model auditory processing in the barn-owl [8] and to model resistance and capacitance, and I(t) is the total input current
vision systems [9]. to the neuron. Vrest is the membrane resting potential. If

In this paper, we present the analog VLSI design and the potential Vm (t) reaches the threshold value Vth it is
implementation of an adaptive neuromorphic olfaction chip. immediately reset to the after hyperpolarization value Vahp
The neuromorphic analog circuits implemented on chip make and a spike is produced as output of the neuron.
use of temporal spiking signals to act as carriers of odour When a spike reaches a synapse, it induces a dendritic
information. An on-chip spike-time-dependent learning circuit current that is fed into the post-synaptic neuron which decays
is integrated for dynamic weight adaptation. Implementation exponentially with a characteristic time-constant, starting from
of on-chip learning is crucial for the design of an integrated a peak value determined by the synaptic weight. The sign
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Fig. 2. Synapse Circuit

Fig. 1. (a) Neuromorphic architecture of olfactory pathway with
STDP learning. (b) STDP learning window function. synaptic potentiation for negative At and a negative phase

of synaptic depression for positive At. The dynamics of the
positive phase are generated by the arrival of an input spike

of the current is formally included into the synaptic weight, at the synapse. The positive phase exhibits an exponential
positive or negative according to whether the interaction is response with an initial amplitude of A+ and decays to its
respectively, excitatory or inhibitory. If t = 0 is the instant resting level Arest+. However, the dynamics of the negative
in which the spike from a presynaptic neuron A reaches the phase are generated by the arrival of the postsynaptic neuron
synapse of A onto postsynaptic neuron B, the current evoked spike. This negative phase exhibits an exponential response
onto B by this single event is given by with an initial amplitude of negative A_ decaying to its resting

level Arest-

iBA(t) = 8(t)WBAeXp d (2) III. NEUROMORPHIC CIRCUIT IMPLEMENTATION

where 9(t) is the Heaviside function and Td is a synaptic A. Synapse Circuit
time constant. The total current induced by several presynaptic The synaptic circuit is shown in Fig. 2. The circuit consists
spikes by neuron A onto postsynaptic neuron B is given by of a weight dynamics block and a synapse dynamics block.

The input to the synapse is a presynaptic spike which triggers
the injection of an incremental charging/discharging weight

IBA(t)Z= w1'iBA(t - tn) (3) current into the synaptic capacitor Csyn. The incremental
n charging/discharging current is proportional to the capacitor

where n indexes the spikes that are emitted by neuron A weight voltage Vwt. The transistors Ml 6-M24 form a balanced
and reach the synapse at times tn. If a neuron receives the Operational Transconductance Amplifier (OTA). As the output
outputs of several synapses, the respective contributions to the of the OTA is fed back to the inverting input, output current is
total post-synaptic current sum linearly. The total post-synaptic proportional to the voltage difference between the output and
current constitutes the term 1(t) in Eq. 1, from which the the input thereby acting as a resistor. The synaptic response
membrane potential of the respective neuron is derived. is an exponentially decaying current and the output currents

B. Weight Adaptation from various synapses are summed at the neuronal input.
The design of analog circuits with large time constants is

In the neuromorphic model implemented, the network learns critical for the implementation of a neuromorphic olfaction
odorant features by modifying weights of the synapses accord- chip. This is because the chemical sensors have large time
ing to a temporally asymmetric STDP rule [6]. The STDP, constants, typically in the order of 100 ms or more [2], which
observed in biology, exhibits two characteristic properties. trnslats in tie onstant ms fore neuron
Fisthe retmprll symerc.Scod patiiy e

translates into large time constant requirements for the neuron
First, they are temporally asymmetric. Second, plasticity de- and synapse models. In the design implemented on chip, large
pends on timing of the spike within a learning time window, time constants are achieved by reducing the transconductance
A biologically observed learning window function for spike- of the OTA stage thereby alleviating the need for implementing
time-dependent plasticity is shown in Fig. (b). The learning large area capacitors [10]. The transconductance reduction in
window function for weight adaptation is defined as follows, the OTA stage is achieved by using large current mirror ratios.

Noting the transconductance of an OTA is proportional to the
T A+exp( ( t) ) + Arest+ if At > 0 ratio of the size of the output current mirrors (M22/M24) a

W(/\t) = l A ex((Af)) -Art if At <0O (4) multiplication of time constant by this ratio can be obtained.
I '~~~t1n- The advantage of this approach is that subthreshold currents

where A\t = -pS-tpre, is the time delay between exist in the output stage transistors (M21, M22) while all
postsynaptic neuron firing tpoct and presynaptic firing tpre. other transistors of the synapse dynamics circuit operate in
The learning window has two phases: a positive phase of the strong inversion region. The offset voltage of this OTA
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Fig. 3. Simplified schematic of the STDP learning circuit Fig. 4. Neuron Circuit

resistor is thus primarily determined by the leakage currents is implemented using an OTA-C circuit. Transistors M1-M7
in the output node. The larger biasing currents in the OTA form an OTA and Cit is the integrating capacitor. A two
input transistors result in a larger linear range with reduced stage comparator circuit compares the output of the leaky
offset mismatching in layout. A programmable time constant integrator against a threshold Vth. The control signals Vreset
can be achieved by using different dimension ratios at the and Vrefrt are the outputs of the reset timer and refractory
output current mirror branch. period timer circuits respectively which are both implemented

using comparators and OTA-C delay circuits (not shown).
B. On-chip STDP Learning Circuit Initially the Vreset and Vrefrt signals are at a low state. The

In STDP learning, the relative time interval between the comparator output Vspike goes high when the leaky integrator
postsynaptic neuron firing and the presynaptic spike occur- response is above a threshold Vth. The leading edge of the
rence determines the weight change at the capacitor Cwt. Each neuron spike activates the reset and refractory period timers
synapse has an STDP based on-chip learning circuit associated circuits. The reset timer output Vreset goes high after a finite
with the weight storage capacitor. The component Cwt in Fig. time interval which in turn resets the integrating capacitor Cit
2 is the same as the component Cwt in Fig. 3. causing the neuron output to go low. The trailing edge of
The circuit uses two identical circuit blocks to define the Vspike triggers the refractory timer Vrefrt to a high state. The

negative phase and the positive phase of the learning window control signal Vrefrt switches the comparator threshold Vth
function. The weight adaption during the negative phase of to a large voltage Vbrefrt thereby inhibiting the neuron from
the learning window function operates as follows. A presyn- firing. However, the leaky integrator continues to integrate
aptic spike occurrence turns transistor M3 ON charging the during the refractory period. The time delay of the reset timer
capacitor C1 to V+. The trailing edge of the presynaptic spike and refractory period circuit timer determines the pulse width
switches the transistor M3 OFF and the voltage at the capacitor of the neuron spike and the refractory period, respectively.
Ci decays exponentially to a resting potential defined by IV CHIP RESULTS
Vbias. On the arrival of a postsynaptic spike, the transistor
M1 is switched ON and the weight voltage at the capacitor The architecture of the fabricated chip implements a slice
Cwt is incremented by an amount proportional to the voltage of the network in Fig. 1(a) such that a scalable olfactory
at capacitor Ci at that instant. Similarly, during the positive system can be constructed by interconnecting multiple chips.
phase, a postsynaptic spike triggers an exponential response at The chemosensors in the chip are separated by a distance of
capacitor Cwt and a following presynaptic spike decrements 1.2 mm. Each sensor cell has an associated sensor interface
the weight at Cwt. The weight voltage at Cwt is strengthened, circuit for DC cancellation, amplification and filtering. The
if the presynaptic spike precedes the postsynaptic arrival and outputs of sensor interface circuits feed to the inputs of the
weakened if the presynaptic spike follows the postsynaptic neuromorphic circuits. The die area of the chip is 50 mm2 with
occurrence. a core circuit area of 6.5 mm2, i.e. the chip is pad limited.
The STDP learning we have implemented is a dynamic The working of the chemosensor array and its interface

learning mechanism and weight voltages stored on Cwt will circuitry had been previously implemented and tested on
decay if not refreshed. Long term weight storage can be a separate chip prior to integrating in this chip [12]. The
performed by storing the weight voltage stored on Cwt in chemosensors are coated with five different carbon black
a non-volatile memory. The on-chip neuromorphic circuits polymers [2]. Fig. 5(a) shows the response characteristics of
are implemented in full analog unlike the previously reported the chemosensors to ethanol vapour in air when tested at a flow
implementations [11] that included digital circuits. rate of 25 mI/min and pulse width of 5 s at room temperature

C. NeuronCircuit ~~~~~~(25 °C i 2 °C, 40 % ±5 % R.H.). The response magnitudes
* ~~~~~~~~~~~~~~~~andprofiles are distinct to different sensor types in the array.

A circuit schematic of the integrate and fire neuron is Transient sensor information is extracted at the neuromorphic
shown in Fig. 4. The leaky integrator dynamics (Eq. (1)) circuit stage to aid the discrimination and classification of the
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Fig. 5. Measured Chip Results: (a) Sensor response characteristics to ethanol vapour in air. (b) Weight strengthening during on-chip STDP
learning. (c) Weight weakening during on-chip STDP learning. (d) Network response showing the dynamics of the receptor neuron, synapse
and principal neuron.
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