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Abstract: As our understanding of the human olfactory system increases, so does our ability to design 
novel architectures in order to mimic the biological system.  The concept of an artificial olfactory mucosa 
represents a new development in the field of biomimetics.  Here we analyse the signals produced by such 
a biomimetic system that contain a spatio-temporal element not previously encountered within the field of 
machine olfaction or so-called electronic noses.  This paper explores the use of convolution-based signal 
processing methodologies to exploit this richer data-set and ameliorate the well-known problems of 
sensor noise and drift. We show that, under certain conditions, an artificial mucosa combined with a 
convolution based classifier performs better than a conventional electronic nose.
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1. INTRODUCTION

 Over the last decade, there has been significant 
increase in our understanding of the human 
olfactory system. This advance in knowledge has 
led to the design of artificial instruments to 
identify odours, more commonly referred to as an 
electronic nose (e-nose) [1]. 

 The limitations of classical sensor based 
electronic noses have been identified, such as poor 
specificity, and this has lead to the development of 
enhanced instruments, such as combining an e-
nose with either a gas chromatograph [2] or mass 
spectrometer.  However, this approach makes the 
system much less portable, more complex, more 
expensive and harder to use (e.g. needs gas 
supply). 

 However, these analytical instruments do 
recognise the value of chromatography and such a 
phenomenon has recently been proposed as a 
possible mechanism in biological olfaction and is 
known as nasal chromatography [3, 4].  It has 
been suggested that the aqueous layer coating the 
olfactory receptors in the olfactory epithelium (see 
Figure 1) act as a retentive channel like a 

conventional chromatographic system, causing 
differential partitioning of odorous molecules 
within the mucosa. 

 Recently, a novel approach was reported [5] 
that involves the development of what we call an 
artificial olfactory mucosa - based upon an array 
of sensors distributed along a channel coated with 
a retentive material (Figure 2). 

Figure 1: Diagram of the human olfactory 
epithelium, showing (a) the aqueous mucous layer 
covering (b) the olfactory receptors [4]. 
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 The number and type of sensors selected for 
this distributed system then determines the 
performance of the proposed e-mucosa. Figure 3 
shows the concept of an e-mucosa (employs all 
sensors), a traditional e-nose (first column only) 
and a z-nose (retentive row and last column). The 
signals generated by the sensors are now more 
complicated and information rich, with features 
extracted/selected not only from the spatially-

separated outputs from different sensors, but also 
from the temporal differences from the outputs of 
identical sensors at different locations.  Common 
processing techniques currently in use within the 
field of e-noses are not designed to exploit the 
new level of information contained within these 
spatio-temporal signals.  

 Here we have been exploring the performance 
of a sub-system employing only the first and last 
sensor columns that could be thought of as a 
simple e-mucosa or a tandem electronic nose 
system (e-nose/column/e-nose).  This reduces 
considerably the dimensionality of the problem to 
solve.  The aim is to use a new convolution based 
signal processing algorithm to classify odours 
better than conventional sensor-based e-noses. 

2. PROCESSING METHODS

 There are different methods by which the two 
signal arrays in Figure 2, SA and SB, could be 
analyzed. Different combinatorial functions will 
produce different characteristic signals.  
Convolution is commonly used in signal 
processing for determining the similarity between 
two signals, such as matched filtering [6]. Figure 
4 illustrates an example of such a characteristic 
signal. 

−= τττ dtSSty AB )()()( .   (1) 

 A second method, the simple product of the two 
signals, will also produce a characteristic signal. 
To preserve the dimensionality of the signal, the 
root of the magnitude of this product is taken. As 
the sign may include important information, this is 
preserved after the root. 

( ) )()()()()( tStStStSsignty BABA= . (2) 

 Thirdly, the two signals could be subtracted 
from each other, producing a difference signal 
which will reduce common interference effects. 

)()()( tStSty BA −= .    (3) 

Figure 2: Photograph of the artificial olfactory 
mucosa with 40 sensors along a meandering 
coated channel [5].

SA SB

(1) (3)

(2)

Odour Flow

Figure 3: Cartoon of an artificial olfactory 
mucosa with 20 sensors. Other configurations: (1) 
Basic e-nose system; (2) A GC column; (3) A GC-
coupled e-nose system; (1) and (3) Simple mucosa 
or tandem electronic nose.
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 These characteristic time-dependent signals can 
be used to represent the spatio-temporal data 
contained within the data-set provided by both 
sensor arrays used, and are suitable for feature 
extraction and use in further processing and 
classification methods. 

3. SIMULATION

 To compare these differing methods, existing 
computational simulations of the artificial 
olfactory mucosa [5] were subjected to three types 
of noise: sample variance (SV), a noise effect 
altering the global magnitude of a signal; a 
random additive noise source with a defined 
signal-to-noise ratio (SNR); and baseline drift 
(BD), a common noise effect to each signal, 
which translates the response baseline value.  All 

noise was Gaussian distributed and applied at a 
level of 5% of the peak magnitude.  The 
combinations of two different noise sources were 
also investigated. 

These noisy signals were normalized using 
auto-scaling, and used to generate characteristic 
signals by the above methods.  The area (time 
integration of response to odour pulse) was 
extracted as a feature for use in processing. For 
comparison, the same simulation method was 
used to simulate a traditional e-nose (SA) and a 
GC-coupled e-nose (SB). The feature extracted 
during pre-processing in these cases was the peak 
magnitude of the sensor response. Also 
investigated were ‘cross-convolutions’, 
convolutions between pairs of sensors selected 
from the same sensor array. 

4. CONCLUSION 

A qualitative assessment of the results obtained 
for different signal processing methods is 
summarised in Table 1; based on the linear 
separability of the clusters that resulted from a 
basic principle component analysis (PCA) of the 
feature sets.  Two examples of the PCA plots are 
shown in Figures 5 and 6. 

 In the cases where significant levels of sample 
variance and signal-to-noise were present, the 
basic e-mucosa coupled with a convolution based 
or product based signal processing showed a 
significant improvement over the tradition e-nose 
system.  However, significant baseline drift 
impacted on the performance of these two 
methods. The difference method performed 

Table 1: Qualitative comparison of the linear separability of analyte groups when using differing signal 
combination methods and processed using principle component analysis.  ‘oooo’ – very good 
separability, ‘ooo’ – good separability, ‘oo’ – average separability, ‘o’ – separable, ‘x’ – inseparable 

 Noise Type Conv. 
(1)*(3)

Diff. 
(1)-(3)

Prod. 
(1)×(3) 

E-Nose 
(1)

GC + 
E-Nose (3) 

Cross-convolution 
(1)

GC + Cross-
convolution (3) 

 SV ooo o oooo oo oo ooo ooo 
 SNR oooo oo oooo oo oo oooo oooo 
 BD o oo o oo oo o x
 SV + SNR oooo oo oooo oo oo oooo oooo 
 SV + BD x oo o oo oo o o 
 SNR + BD x oo o oo oo o o 

Figure 4: (Top) Normalised response from two
sensors in the artificial olfactory mucosa [5] to a 
25 second pulse of toluene vapour in air. (Bottom) 
Characteristic signal generated by the 
convolution of the two sensor responses. 
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comparably to the e-nose in all of the test cases. 

 These simulation results show that using 
characteristic signals, such as those generated by 
combinatorial functions (such as convolution, 
product and difference), are suitable for use in 
data processing and classification systems.  The 
performance of the classification system was 
comparable, if not better, that a traditional 
processing methodology using a classical e-nose 
system. 

 However, the results obtained here indicate a 
particular weakness to a baseline drift in the value 
of the sensor outputs.  The common mode effect 
and high value of the baseline drift analysed here 
may have overestimated the problem experienced 
in general, because the actual drift between the 
response of the first set and last set of sensors in a 
few seconds should be considerably less than 5%. 

 In conclusion, we believe that an artificial 
mucosa coupled with a convolution-based signal 
processing methodology offers significant 
advantage over a conventional electronic nose.  
Further work on more complex odorants than 
ethanol and toluene mixtures has been carried out 
and suggests that the system is also capable of 
discriminating between essential oils and other 
complex odours.   
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 Figure 5: PCA Plot of 5 second pulses of ethanol, 
toluene and a 50/50 mixture of the two, processed 
using normalized sensor responses and the 
convolution of two sensors as the feature for 
analysis.  Simulation noise: 5% sample variance. 
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Figure 6: PCA Plot of 5 second pulses of ethanol, 
toluene and a 50/50 mixture of the two, processed 
using normalized sensor responses and peak 
response as the feature for analysis.  Simulation 
noise: 5% sample variance. 
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