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Abstract—In this paper, we present the analog circuit design and
implementation of the components of an adaptive neuromorphic
olfaction chip. A chemical sensor array employing carbon black
composite sensing materials with integrated signal processing cir-
cuitry forms the front end of the chip. The sensor signal processing
circuitry includes a dc offset cancellation circuit to ameliorate loss
of measurement range associated with chemical sensors. Drawing
inspiration from biological olfactory systems, the analog circuits
used to process signals from the on-chip odor sensors make use of
temporal “spiking” signals to act as carriers of odor information.
An on-chip spike time dependent learning circuit is integrated to
dynamically adapt weights for odor detection and classification. All
the component subsystems implemented on chip have been success-
fully tested in silicon.

Index Terms—Analog VLSI, electronic nose, machine olfaction,
neuromorphic circuits, on-chip learning, spike-timing-dependent
plasticity (STDP).

I. INTRODUCTION

THE olfactory pathway is particularly impressive in its
ability to detect and identify an extremely wide range

of both simple and complex odors with high sensitivity [1].
The sensing capabilities of a dog’s nose, for instance, are well
beyond that achievable by any existing technological chemical
sensing equivalent, both in terms of its combined specificity
and its sensitivity to individual compounds. Achieving such
detection performance requires the complex orchestration of a
whole series of events, beginning with the rapid and efficient
transport of ligands to the sensing site, simultaneous detection
of a wide diversity of ligands, through to the formation and
subsequent decoding of the neural signal representations of
odors in the nervous system.

Only recently have technological advances in chemosensors,
MEMS, silicon integration [2]–[4] and the basic understanding
of the neuroscience of olfaction [5] made it possible to consider
implementing a single, fully integrated neuromorphic olfaction
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chip. Here we describe the implementation and test results from
each of the functional subcomponents of such a system. Our
approach is in contrast to previous chemical detection systems
based upon the olfactory pathway, which have addressed:
sensing [6], signal processing [7]–[9], and neuromorphic
simulation models [10]–[12], separately. Traditional machine
olfaction or electronic nose systems typically use conventional
software based pattern recognition techniques or multirate
analysis using data from a series of discrete chemical sensors
rather than modeling biology directly [3]. While artificial neural
networks such as the multilayer perceptron have been used
for pattern recognition in electronic nose systems [13], [14],
spiking neural models are more biologically plausible [15].

Biological [16] and theoretical [17], [18] studies indi-
cate that temporal spike time based coding can be used to
implement powerful information processing systems [19].
Experimental studies have shown that the precise timing of
spikes generated by neurons can be critical for the direction and
magnitude of synaptic weight changes; a phenomenon known
as spike-timing-dependent plasticity (STDP) [18], [20]–[22].
Spike timing dependent learning rules can be used to learn
temporal delays with high precision and have been used to
model auditory processing in the barn owl [17] and vision
systems [23].

This work brings together integrated sensor technology and
systems using spike time based neuromorphic models to imple-
ment an olfactory system in analog VLSI. The use of analog
VLSI allows for low power operation, low cost and area effi-
cient hardware realizations. More importantly, a neuromorphic
implementation promises to offer a solution to the many atten-
dant signal processing issues related to complex odor detection,
in particular odor segmentation and odor object identification
in varying chemical environments which have yet to be solved
with classical approaches [10], [11]. Thus, such a system has
potential portable sensing applications where there is a require-
ment for discrimination against a wide variation in background
odor signals, for example in medical diagnostics.

In this paper, we present the analog VLSI design, imple-
mentation and test results of the component circuits for an
adaptive neuromorphic olfaction chip developed over a number
of chip implementation cycles. An analog VLSI device with
on-chip chemosensor array, on-chip sensor interface circuitry
and on-chip adaptive neuromorphic olfactory model has been
fabricated in a single chip using these functional circuit com-
ponents. The block diagram of this fabricated chip is shown in
Fig. 1. The architecture of the chip implements a slice of the
olfactory network such that a scalable olfactory system can be
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Fig. 1. Block diagram of an analog VLSI implementation of an olfactory
pathway with STDP on-chip learning.

constructed by interconnecting multiple chips. The olfactory
sensors implemented on chip comprise a resistive chemosensor
array employing carbon black (CB) composite sensing materials
with integrated signal processing circuitry. The sensor interface
circuitry includes a dc cancellation circuit to ameliorate loss
of measurement range associated with chemical sensors. A
spiking neural architecture forms the signal processing stage
of the olfactory bulb model. An on-chip spike-time-dependent
learning circuit is integrated to dynamically adapt weights for
odor detection and classification. Implementation of on-chip
learning is crucial for the design of an integrated odor sensing
system. This not only emulates the plasticity function found in
biological neural systems but also provides a means to compen-
sate for analog imperfections in the physical implementation as
well as changes in the environmental conditions in which the
device must operate. All the component circuits implemented
on the fabricated chip have been successfully tested in silicon,
as we report here.

II. DESCRIPTION OF OLFACTORY PATHWAY MODEL

A. Biological Olfactory Model

A large number of olfactory receptor neurons (ORNs) con-
stitute the front-end of the mammalian olfactory system which
are responsible for detecting airborne molecules. Cilia of ORNs
protrude into the olfactory mucosa, where they come in con-
tact with molecules that are transported by the nasal airflow. On
the surface of the cilia, odorant receptors (ORs) bind odorant
molecules with a broadly tuned affinity. When an OR binds with
an odorant molecule, it triggers in its ORN a bio-chemical cas-
cade that eventually causes the membrane potential of the ORN

to change, potentially leading to the generation of spikes. Each
ORN only expresses one type of OR, while each type of receptor
is usually expressed by a large number of ORNs; for example,
in mice around 1 000 types of ORs are expressed by millions of
ORNs [5].

ORNs project their axons to the olfactory bulb, terminating at
spherical neuropil called glomeruli where they mainly synapse
onto the dendrites of mitral and tufted (M/T) cells, which act as
a principal neurons (PNs). Experimental data indicates that each
glomerulus receives axons from only ORNs expressing the same
type of OR [24], while a single PN sends its aprical dendrite
to a single glomerulus [25]. Inhibitory neurons of the olfactory
bulb (granule cells) make reciprocal contacts with many PNs,
forming together a complex network constituting the first stage
of olfactory information processing. The output of PNs are re-
layed to higher brain area for further processing.

B. Neuromorphic Olfactory Model

Drawing inspiration from the architecture of the olfactory
pathway presented in the previous section, a neuromorphic ar-
chitecture, shown in Fig. 2, with chemosensors has been im-
plemented. The neuromorphic network receives sensory signals
from an array of chemosensors which transform the molecular
chemical information of an odorant into electrical signals suit-
able for processing in analog circuitry. The chemosensor array
consist of different sensor types tuned to respond to different
chemical compounds. Such a heterogeneous array has the po-
tential to increase the selectivity in the olfactory pattern recog-
nition task while mimicking the function of the mammalian ol-
factory system [5], [26].

Chemosensory signals are transformed into spike trains by
ORN models. These spike trains directly drive synaptic currents
which are then summed for the purposes of signal enhancement
and stability in the face of individual sensor drift. This summed
signal provides the excitatory drive to PNs, which in turn pro-
vide the main output of the system. Lateral inhibitory neurons
are used to both sharpen the output characteristics of the system
compared to the original chemosensory input pattern, but also
to implement attractor dynamics in the system which make it
capable of learning and completing particular input patterns.

Because the signals from sensors of the same type are fed
forward through neural elements to one and one only PN, the
network forms a distinct modular structure, reminiscent of the
glomerular organization of the biological olfactory bulb model
[5]. Furthermore, receptor neurons and PNs shown in Fig. 2
represent the biological model elements of ORNs and M/T cells,
respectively.

C. Model Dynamics

The soma of each neuron element is modeled as a leaky inte-
grate and fire (IF) unit. Below a threshold the dynamics of
the membrane potential of the IF neuron is defined by

(1)

where is time, and are, respectively, the membrane re-
sistance and capacitance, and is the total input current to the
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Fig. 2. Slice of the neuromorphic olfactory model. RN1 to RN3 are fed from
sensors of the same type, similarly for RN4 to RN6. Here, RNs correspond to
biological ORNs, PNs to M/T cells, and lateral synapses to granule cells. Weight
adaption at all synapses using STDP.

neuron. is the membrane resting potential. If the potential
reaches the threshold value it is immediately reset to

the after hyperpolarization value and a spike is produced
as neuron output. The emission of any spike is followed by a
refractory time period, during which the neuron cannot fire but
will continue to integrate the input currents.

When a spike reaches a synapse, it induces a dendritic current
that is fed into the postsynaptic neuron which decays exponen-
tially with a characteristic time constant, starting from a peak
value determined by the synaptic weight. The sign of the current
is formally included into the synaptic weight, positive or nega-
tive according to whether the interaction is, respectively, excita-
tory or inhibitory. If is the instant at which the spike from
a presynaptic neuron A reaches the synapse of A onto postsy-
naptic neuron B, the current evoked onto B by this single event
is given by

(2)

where is the Heaviside function, is the synaptic
weight, and is the synaptic time constant. The total current
induced by several presynaptic spikes by neuron A onto post-
synaptic neuron B is given by

(3)

where indexes the spikes that are emitted by neuron A and
reach the synapse at times . If a neuron receives the outputs of
several synapses, the respective contributions to the total postsy-
naptic current sum linearly. The total postsynaptic current con-
stitutes the term in (1), from which the membrane potential
of the respective neuron is derived.

Fig. 3. STDP learning window function implemented on chip. The change in
weight with respect to the time difference between pre- and post-synaptic neuron
firing [18].

D. Weight Adaptation

In the neuromorphic model implemented, the network
learns odorant features by modifying weights of all synapses
according to a temporally asymmetric spike-time-dependent
Hebbian learning rule [18], [22]. In STDP, if a presynaptic spike
arrives at the synaptic terminal before a postsynaptic spike is
emitted and within a critical time window, the synaptic efficacy
is increased. Conversely, if the postsynaptic spike is emitted
prior to the arrival of the presynaptic spike, the synaptic effi-
cacy is decreased. The neuromorphic olfactory model (Fig. 2)
implements an STDP based learning window function shown
in Fig. 3 for synaptic weight adaption. The learning window
function for weight adaption is defined as follows:

if

if
(4)

where , is the time delay between postsynaptic
neuron firing and presynaptic firing . In (4), de-
termines the synaptic weight change for a time delay . The
learning window has two phases: a positive phase of synaptic
potentiation for positive and a negative phase of synaptic de-
pression for negative [see (4)]. The dynamics of the positive
phase are generated by a presynaptic spike arrival and dynamics
of the negative phase are generated by a postsynaptic spike ar-
rival. The time constant parameters and determine the
range of over which synaptic weight adaption occur.

The neural signals of the proposed model encode odor infor-
mation in temporal sequences. An STDP based weight adapta-
tion introduces predictive coding to classical Hebbian learning
rule [18]. If a feature in the odor input generates presynaptic
spike pattern that can reliably predict the occurrence of a post-
synaptic spike and seldom comes after a postsynaptic spike, the
synapses related to that odor feature are strengthened giving that
feature more control over the firing of the postsynaptic neuron.
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The predictive occurrence of spike timing patterns could pos-
sibly lead to an odor detection and encoding mechanism in the
olfactory pathway.

III. ANALOG CIRCUIT DESIGN OF NEUROMORPHIC

OLFACTION CHIP

A. Chemosensor Array

The input to the olfactory bulb model is provided by a
chemosensor array fabricated using Austria Micro Systems
(AMS) 0.6- m CMOS process with post processing to deposit
odor sensitive material. In this case a chemoresistive sensor
array has been formed where the sensor responses are measured
as a change in resistance of a chemically sensitive film. The
coatings used here are CB polymer materials, whose response
depends upon the target odor used for the olfaction pattern
recognition task. These materials operate by combining an in-
sulating rubber with carbon nanospheres that endow electrical
conduction to the resultant mix. Individual chemoresistive
sensors are created by depositing CB polymer material between
two sensor electrodes.

The resistance of the sensor is directly proportional to the
aspect ratio (length over width) of the inter-electrode gap and
the carbon doping of the polymer. Exposure to an odor causes
specific chemical components to diffuse into the polymer re-
sulting in expansion (swelling) thus increasing the gap between
the carbon spheres and thereby increasing the resistance of the
polymer composite film [27]. By altering the rubber, it is pos-
sible to vary the sensitivity of the sensor to different chemical
components within the odor.

In our implementation, each sensor cell contains a pro-
grammable current source, a sensor, and a baseline cancellation
circuit. Other chemical sensing arrays [28] with higher density
employ a multiplexing mechanism to provide access to indi-
vidual sensors without any complex circuitry. However, the
challenge here is to create a sensor array with individual direct
output so that the continuous sensor responses can be interfaced
to neuronal circuits without any multiplexing. Moreover, as
each sensor has a dedicated set of circuitry, each of them may
be biased and amplified optimally.

B. Signal Conditioning Circuitry

Although a heterogeneous array of resistive chemical sensors
can improve the selectivity performance for an olfactory pattern
recognition task, the design of a suitable signal conditioning cir-
cuit for the array poses considerable challenges. An undesirable
characteristic associated with a heterogeneous chemosensor
array is the large variation in baseline dc signals among the
different sensors types in the array [29]. The large variation of
baseline signals for a chemosensor array are caused by: 1) the
poisoning effect during post-processing of the chemosensor
array; and 2) different optimal operating current specifications
for different sensor types. The large variation in baseline dc
signals among the sensors may result in saturation of the sub-
sequent signal conditioning amplifier stages thereby leading
to loss of measurement range which cannot be recovered [30],
[31].

Fig. 4. Simplified schematic of the sensor interface circuit. Each sensor is
driven a programmable current source. The baseline cancellation circuit and
the difference amplifier cancel the baseline variation of the sensor. The output
of the sensor interface is a continuous time analog signal.

A common approach to dc signal cancellation is to use a ref-
erence chemical sensor driven by the same operating conditions
to derive the common dc operating point. However, such an ap-
proach is not appropriate here because the primary cause of
baseline variation is a poisoning effect during postprocessing.
The poisoning effect causes the reference chemical sensor to
have different dc operating conditions to the sensor whose dc
signal we are trying to cancel, hence this approach is not ap-
propriate here. A schematic of the sensor interface electronics
for canceling the baseline dc signals is shown in Fig. 4. Prior
to measurement, there is a setup phase during which the base-
line signals of all sensors in the array are digitally stored using a
simple counting analog to digital converter. The output from the
internal digital to analog converter provides the initial analog
offset signal which is then canceled using a difference ampli-
fier. The output sensor interface circuit is maintained in analog
continuous time domain and feeds into the subsequent neuro-
morphic circuit stage implemented on chip.

C. Synapse Circuit

The synapse circuit shown in Fig. 5 consists of a weight dy-
namics block and a synapse dynamics block. These are formed
by two balanced OTA structures (M1-M9) and (M16-M24). The
outputs of these OTA structures are fed back to their inverting in-
puts and they behave as resistors. The weight voltage stored
on capacitor during on-chip learning forms the input to the
weight dynamics block. The input to the synapse is a presynaptic
spike whose leading edge switches the transmission gate
switch (M11-M12) ON and the capacitor starts to charge
toward . The OTA (M1-M9) is designed for small output
currents ( pA) and the neuronal spike width is narrow
( s). Therefore, the injection of a weight current

results in only a small voltage change at the synapse capac-
itor . The trailing edge of the presynaptic neuronal spike
switches the transmission gate (M11-M12) OFF and begins
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Fig. 5. Synapse circuit based on two OTA-C structures. The weight is stored on C . The presynaptic spike signal V induces charging or discharging of
C . The synapse output is the current i .

to discharge exponentially toward of OTA (M16-M24). A
subsequent spike will cause a further injection (or removal) of
current and a further incremental (or decremental) change in the
voltage on the synapse capacitor . The exponential voltage
response controls the gate of a transistor M13 biased in the linear
region to form an exponential output current . The synaptic
output currents from various synapses are summed at the neu-
ronal input.

The design of analog circuits with large time constants is
critical for the implementation of a neuromorphic olfaction
chip. This is because the chemical sensors have large time
constants, typically in the order of 100 ms or more [6], which
translates into large time constant requirements for the neuron
and synapse models. In the design implemented on chip, large
time constants are achieved by reducing the transconductance
of the OTA stage thereby alleviating the need for implementing
large area capacitors [32]. The transconductance reduction in
the OTA stage is achieved by using large current mirror ratios.
Noting the transconductance of an OTA is proportional to the
ratio of the size of the output current mirrors (M22/M24) a
multiplication of time constant by can be obtained. The
advantage of this approach is that subthreshold currents exist
in the output stage transistors (M21, M22) while all other
transistors of the synapse dynamics circuit operate in the strong
inversion region. The offset voltage of this OTA resistor is
thus primarily determined by the leakage currents in the output
node. The larger biasing currents in the OTA input transistors
result in a larger linear range with reduced offset mismatching
in layout. A programmable time constant can be achieved by
using different dimension ratios at the output current mirror
branch.

Several synaptic circuits have been reported in the literature
[33]–[38]. The synaptic circuit implemented in [34] has an ex-
ponentially decaying synaptic current which always resets to a
fixed current value during each spike event. This circuit is not
suitable for summation of multiple synaptic events as modeled
here. The synaptic circuits implemented in [35] and its varia-
tions [36]–[38] use simple and compact circuits to implement
synaptic currents. However, these circuits have limited control
on varying the synaptic parameters independently. The circuit in

Fig. 6. Simplified schematic of the STDP learning circuit formed by two sym-
metrical circuit blocks to implement the positive and negative phases of the
learning function.

[39] implements summation of exponentially decaying synaptic
currents for multiple spike events. This circuit needs separate
outputs for generating inhibitory and excitatory synapses; an
inhibitory synaptic output requires an nMOS output transistor
while a separate pMOS output transistor is required to output
an excitatory response. In the implementation presented here,
the synapse circuit can produce both excitatory and inhibitory
responses at the same output depending on the sign of the weight
voltage. In general, the synaptic circuits reported in the litera-
ture have time constants in the range of 10–50 ms, which is typ-
ically an order of magnitude lower that required in this olfactory
system implementation.

D. On-Chip STDP Learning Circuit

In STDP learning, the relative time interval between the post-
synaptic neuron firing and the presynaptic spike occurrence de-
termines the weight change at the weight storage capacitor .
Each synapse has an STDP based on-chip learning circuit asso-
ciated with the capacitor . The component in Fig. 5 is
the same as the component in Fig. 6.

The circuit uses two identical circuit blocks to define the pos-
itive phase and the negative phase of the learning window func-
tion. The four OTA circuits in Fig. 6 use the same low transcon-
ductance design as outlined in Section III-C. The weight adap-
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Fig. 7. Neuron circuit based on an OTA-C leaky integrator. The membrane potential is represented by the voltage on C . Transistors M12-M20 implement the
spike generation circuitry. The refractory period timer circuit is also based upon an OTA-C structure (not shown) and generates V .

tion during the positive phase of the learning window function
operates as follows. A presynaptic spike occurrence turns tran-
sistor M3 ON charging the capacitor to . The trailing edge
of the presynaptic spike switches the transistor M3 OFF and the
voltage at the capacitor decays exponentially to a resting
potential . The time constant of the exponential response
during this phase is given by the ratio . On the arrival
of a postsynaptic spike, the transistor M1 is switched ON and
the weight voltage at the capacitor begins to charge
toward , where is the voltage across at the instant
of postsynaptic spike arrival. Due to the small output currents
( pA) from transconductor and the narrow neu-
ronal spike width ( s), the capacitor weight voltage

charges to a fraction of the final voltage . This results in
an incremental change in the weight voltage at each post
synaptic spike occurrence.

The resulting change in weight voltage is
. Thus, the incremental weight

change, is an exponential function of the time difference
between the postsynaptic spike arrival and presynaptic spike
arrival. For a constant , the incremental weight change
at each postsynaptic spike become smaller as the capacitor
incrementally charges toward its peak voltage . The
change in weight voltage , if ; the
resting voltage is defined by the externally controllable
bias voltage .

Similarly, during the negative phase, a postsynaptic spike trig-
gers an exponential response at capacitor and a following
presynaptic spike decrements the weight at . The weight
voltage at is strengthened, if the presynaptic spike precedes
the postsynaptic arrival and weakened if the presynaptic spike
follows the postsynaptic occurrence. The STDP learning we
have implemented is a dynamic learning mechanism and weight
voltages stored on will decay if not refreshed. Long term
weight storage can be performed by storing the weight voltage
stored on in a non-volatile memory.

STDP based on-chip learning circuits have been reported in
literature [40], [41]. The STDP learning circuit in [40] imple-
ments a learning window function which is a linear function

of the time difference between the postsynaptic spike and
presynaptic spike arrival. This is in contrast to the exponential
learning window function (see Fig. 3) implemented on this chip
which has a closer resemblance to the experimental results ob-
served in biology [20]. Furthermore, the on-chip STDP circuit
is implemented in full analog unlike the circuit implementation
reported in [41] that included digital circuits.

E. Neuron Circuit

A circuit schematic of the integrate and fire neuron is shown
in Fig. 7. The leaky integrator dynamics ((1)) are implemented
using an OTA-C circuit. Transistors M1-M7 form an OTA and

is the integrating capacitor. A two stage comparator circuit
compares the output of the leaky integrator against a threshold

. The control signals and are the outputs of
the reset timer and refractory period timer circuits respectively
which are both implemented using comparators and OTA-C
delay circuits (not shown).

Initially the and signals are at a low state. The
comparator output goes high when the leaky integrator re-
sponse is above a threshold . The leading edge of the neuron
spike activates the reset and refractory period timers circuits.
The reset timer output goes high after a finite time interval
which in turn resets the integrating capacitor causing the
neuron output to go low. The trailing edge of triggers the
refractory timer to a high state. The control signal
switches the comparator threshold to a large voltage
thereby inhibiting the neuron from firing. However, the leaky in-
tegrator continues to integrate during the refractory period. The
time delay of the reset timer and refractory period circuit timer
determines the pulsewidth of the neuron spike and the refractory
period, respectively.

IV. CHIP RESULTS

A. Chip Details

An adaptive neuromorphic olfaction device consisting
of on-chip chemosensor array, on-chip sensor interface cir-
cuitry and neuromorphic olfactory circuits with on-chip STDP
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learning has been fabricated on a single chip using AMS 0.6- m
CMOS technology. The architecture of the chip implements
a slice of the network in Fig. 2 such that a scalable olfactory
system can be constructed by interconnecting multiple chips.
The sensors in the chip are separated by a distance of 1.2 mm.
Each sensor cell has an associated sensor interface circuit for
dc cancellation, amplification and filtering. The outputs of
sensor interface circuits feed to the inputs of the neuromorphic
circuits. The die area of the chip is 50 mm with a core circuit
area of 6.5 mm , i.e., the chip is pad limited.

The circuit building blocks of the adaptive neuromorphic ol-
faction chip have been developed in three stages. In the first
stage, a sensor array chip of 10 mm 5 mm size has been fabri-
cated and tested to characterize the functionality of both sensors
and sensor interface circuitry. The sensor array chip consisted of
70 resistive sensors with the associated programmable sensor in-
terface circuitry. The sensor response and performance of the in-
terface circuitry were characterized by delivering target vapors
of ethanol and toluene in air. In the second stage, a neuromor-
phic array chip was fabricated and tested. The chip contained 3
spiking neural network arrays with each array having 3 receptor
neurons, 27 synapses and 1 PN. The purpose of this chip was
to test the circuit blocks implementing neuromorphic systems.
However, the learning in this chip was performed off-chip. In the
third and final stage, an adaptive neuromorphic olfaction chip is
implemented by integrating the sensor array and neuromorphic
circuits together with added on-chip weight adaptation. All the
chips were fabricated in AMS 0.6- m CMOS technology. In
this section, we report test results of circuit building blocks de-
veloped during the course of the three developmental stages of
the adaptive neuromorphic olfaction chip.

B. Post-Processing On-Chip Chemical Sensors

The implementation of the resistive sensor provides two
metal pads (60 m 60 m) separated by a 65 m gap between
which a CB polymer film is deposited. Although a standard
CMOS process provides numerous advantages for smart sensor
array fabrication, there is an issue with the use of aluminum
as the electrode material. Due to the formation of aluminum
oxide on the electrodes of the sensor, this has to be gold plated
to ensure a stable contact between the sensing material and the
aluminum. In this instance, a heat embossing technique using
a wire bonder is employed. This technique requires each elec-
trode to be manually coated with several passes using a heated
microtip. The result of this gold deposition is less precise with
uneven surfaces. However, this does not affect the performance
of the circuit.

The five CB polymers used to create the sensing materials
are given in Table I. The polymers are either in powder form
or small crystals while the CB contains nanospheres with di-
ameter of typically 50–80 nm. The polymer is firstly dissolved
in their respective solvent overnight with the aid of a magnetic
stirrer at an elevated temperature (50 C). Next, CU is added and
the mixture is sonicated for 10 min using a flask shaker. The
mixture is then ready for deposition onto the sensors using an
airbrush controlled microspraying system. The airbrush is held
10–15 cm away from the micromask (300 m in diameter) and

TABLE I
POLYMER MATERIALS USED

Fig. 8. Experimental setup for odor analysis. The olfaction chip with the
chemosensor array has a microchamber mounted on top. Odors are fed to the
sensors via the inlet to the microchamber. Sensors on chip are coated with CB
polymers.

several passes are sprayed depending on the desired thickness
(or resistance). This gives a circular coating typically 350 m in
diameter. The electrical resistance of the deposited polymer sen-
sors can be controlled through the deposition process to a value
of about 10 to 200 k with a typical film thickness of about
20 m ( ). High resistance variations were observed due
to the sensors being deposited in banks (sensors with the same
polymer are deposited simultaneously). Finally, the sensor ar-
rays go through a temperature post-treatment at 40 C for 24 h
to stabilize the resistance prior to use.

C. Measured Sensor Response

Fig. 8 shows the experimental setup of the odor analysis
system used to characterize the chemosensor array. The odor
is delivered through a microchannel placed on top of the fabri-
cated chip. The sensor output ( in Fig. 4) can be individually
routed to the output of the sensor chip (direct mode) or con-
nected to the baseline cancellation circuit for baseline removal
and amplification (interface mode). This facility allows both the
sensor and the baseline circuit to be characterized separately. In
the direct mode of operation, the baseline cancellation circuit
is bypassed and each sensor is connected to a programmable
current drive circuit that is cascaded to a buffer op-amp.

The smart sensor cell (incorporating the baseline cancella-
tion circuit in interface mode) was initially characterized for the
stability of its constant current drive circuit. Fig. 9(a) shows the
change in output voltage across a fixed resistor (used for charac-
terizing the programmable current drive to ensure that the noise
fluctuation is due to the current drive and not that of the sensor)
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Fig. 9. Driving current and sensor response stability. (a) Constant driving current stability across a fixed resistor. (b) Polymer-composite sensor stability.

Fig. 10. Sensor response magnitude characterization. (a) Responses of PCB sensor to five different concentrations of ethanol and toluene vapor in air. (b) Static
sensor output, fitted with a linear model.

when the current setting was programmed. After a settling pe-
riod, the noise is found to be within 2 mV. Next, a polymer-com-
posite sensor is coupled to characterize the stability of the sensor
output prior to exposure to any analyte. Fig. 9(b) shows the
sensor is very stable with noise of within 5 mV.

In the following test, the effect of concentration variation is
studied. Here, a Poly Stylene-cobutadiene (PSB) coated sensor,
see Table I, has been exposed to five different concentrations of
ethanol (180, 260, 370, 520, and 1150 ppm (parts per million))
vapor and toluene (100, 160, 220, 310, and 700 ppm) vapor in air
at a constant temperature of 30 C and humidity (20% R.H.) as
shown in Fig. 10(a). The response is defined as the percentage
change ( ) in sensor resistance. From these results, the
static effect of toluene and ethanol vapor in air to a PSB sensor
are plotted as shown in Fig. 10(b). The sensitivity to ethanol
vapor is about 0.00012%/ppm and 0.00644%/ppm to toluene
vapor. Other types of sensors on chip show similar linear model
across the same range of ethanol and toluene vapor concentra-
tions tested here. The drift over time exhibited in Fig. 10(a) is
attributed to result of an increase in the environmental (labora-
tory) temperature.

To further investigate the response characteristics of the
sensor array, ethanol and toluene vapor in air are tested at a
flow rate of 25 ml/min and pulsewidth of 5 s at room tem-

perature ( C , R.H.). The responses of
five individual sensors of different sensing material are shown
in Fig. 11. Fig. 11(a) shows the responses of five sensors
responding to ethanol vapor in air while Fig. 11(b) shows the
responses of five sensors responding to toluene vapor in air. The
response magnitudes and profiles are unique to each analyte.
Transient sensor information is extracted at the neuromorphic
circuit stage to aid the discrimination and classification of the
input odour as discussed in Section V. The response of the ol-
factory network is not only sensitive to the pattern of activation
across the chemosensor arrays but also to their dynamics. Thus,
complex odors eliciting different spatiotemporal patterns may
potentially be classified independently.

D. Performance of Sensor Interface Circuitry

The sensors are driven by current sources with programmable
output currents of 1, 10, and 100 A. There are two reasons
for providing programmable driving currents over a wide range.
Firstly, to accommodate significant variation in sensor baseline
resistance as a result of manual deposition process. Secondly,
the variation in sensor response due to the selectivity of different
sensing materials with target analytes can be adjusted to limit
its voltage swing. In the former case, for a sensor resistance of
200 k , the three driving current selections (1, 10, 100 A) will



68 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 54, NO. 1, JANUARY 2007

Fig. 11. PSB, PEVA, PEG, PCL, and PVPH sensor response to ethanol and toluene vapor in air. (a) Typical sensor response to ethanol vapor in air. (b) Typical
sensor response to toluene vapor in air.

Fig. 12. Effect of varying drive current on sensor response to simple analytes. (a) PEVA sensor response to ethanol and toluene vapor at I = 1 �A (o�set =
1:35 V). (b) PEVA sensor response to ethanol and toluene vapor at I = 10 �A (o�set = 0 V).

ideally produce an output voltage of 200 mV, 2 V, or 20 V. Due
to the reduced operating range (5 V) for the CMOS process of
the buffer op-amp, the best operating current selection should
be A to allow the baseline to be in the middle of the
operating range ( V, so as to allow maximum positive and
negative voltage variations) of the op-amp.

In the latter scenario, the current drive selection is altered
to boost the signal level of the response magnitude. Fig. 12(a)
shows the response of a Poly Ethyl-co-vinyl acetate (PEVA)
coated sensor responding to various pulses of ethanol and
toluene vapor in air at A ( V) and
Fig. 12(b) at A ( V). The response
magnitude in Fig. 12(a) is only 30 mV while in Fig. 12(b),
the response magnitude is 300 mV, an increase of ten times.
Clearly in this scenario, operating the sensor at 10- A driving
current is more favorable in terms of sensor response resolution
as it produces a larger response magnitude.

The baseline dc signal variation of a PEVA coated sensor
is shown in Fig. 13(a). Prior to odor delivery, the baseline dc
variation is 800 mV. The output of the sensor interface circuit
after baseline cancellation and a fixed (inverting) amplification

is shown in Fig. 13(b). It is seen that the interface circuit is able
to compensate the baseline variations thereby facilitating full
measurement range amplification to be carried out at the subse-
quent programmable gain amplifier stage. The slight variation
in sensor response is attributed to the lower resolution when the
direct sensor responses are measured. The bit error of the
baseline compensation circuit is found to be mV. The typ-
ical setup time for baseline cancellation is 512 s based on a
2-MHz clock. The programmable gain amplifiers implemented
on chip have selectable gains of 10, 100, and 1000. The output of
the programmable amplifier is filtered using a low-pass OTA-C
filter.

E. Measured Neuromorphic Circuits Results

The chip measurements of the neuromorphic circuits are
presented in this section. A synapse circuit is tested by exciting
it with a spike input with 1 ms duration. The response for the
synapse programmed with a weight input of V and time
constant of 75 ms is shown in Fig. 14(a). Since the sign of the
weight is negative with respect to the baseline, the synapse
exhibits an inhibitory response. The chip measurements show a
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Fig. 13. Sensor responses to ethanol and toluene vapor. (a) Sensor response coated with PEVA on direct measurement. (b) Response of PEVA coated sensor with
signal conditioning circuit.

Fig. 14. Chip measurements of synapse response and neuron membrane potential compared to their respective mathematical models: (a) Inhibitory synaptic
response i (Fig. 5) measured from the chip for a negative weight and a single spike input compared to the mathematical model ((3)). The trailing edge of the
spike occurs at time 0 s. V = �0:5 V and synapse time constant is 75 ms. (b) Membrane potential measured at C (Fig. 7) compared to mathematical model
((1)). Input is a step of 0.2 V. Membrane time constant is 92 ms.

close match with the mathematical model [see Fig. 14(a)]. Chip
measurements of neuron membrane potential response mea-
sured at the integrating capacitor are shown in Fig. 14(b).
The input to the leaky integrator is a step of 0.2 V and mem-
brane time constant is 92 ms. The response shows a close match
with the mathematical model of (1) [see Fig. 14(b)].

The functionality of the on-chip learning neuromorphic cir-
cuit is independently tested. The output response of the on-chip
STDP circuit under two different presynaptic and postsynaptic
input spike conditions are shown in Fig. 15. Fig. 15(a) shows the
learning response of the synapse when excited by a presynaptic
spike preceding the occurrence of a postsynaptic spike by 5 ms.
Initially, the synaptic weight is negative causing the synapse to
generate an inhibitory response. As the presynaptic spikes ar-
rive prior to the occurrence of postsynaptic spikes, the weight is
strengthened and the synaptic response becomes excitatory as
shown in Fig. 15(a). Fig. 15(b) shows the synaptic response and
weight dynamics when presynaptic spikes follow the occurrence
of postsynaptic spikes by 5 ms. Here, the synapse response do
not contribute to the firing of the postsynaptic neuron. Hence,

the weight is weakened and the synapse response becomes in-
hibitory. The weight increment (decrement) is smaller if the
presynaptic spike precedes (follows) the postsynaptic spike by
a larger time interval.

Fig. 16 shows the chip measurements when a receptor neuron
is connected to PN through a synapse. A step input of 0.2 V
evokes receptor neuron firings at a rate of approximately 25
ms. The repeated receptor neuron firing and synapsing on to the
PN eventually causes the PN to fire (see Fig. 16). The summa-
tion of exponentially decaying synaptic currents for multiple re-
ceptor neuron spike events is also shown in Fig. 16. Importantly,
this test result demonstrates the functional signal path through
the entire neuromorphic circuit. The measured performance of
the neuromorphic olfaction chip components are summarized in
Table II.

V. SYSTEM CIRCUIT SIMULATION

In this section, analog circuit simulation results of the ol-
factory neuromorphic network for a simple odor classification
experiment are presented. Ethanol and toluene data profiles
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Fig. 15. Chip measurements of weight response V and synaptic response
i during on-chip STDP learning. The circuit is driven by a series of pre and
postsynaptic spike pairs where (a) the presynaptic spike occurs 5 ms before the
postsynaptic spike and (b) the presynaptic spike occurs 5 ms after the postsy-
naptic spike. The weight responses V show weight strengthening in (a) and
weight weakening in (b).

Fig. 16. Chip measurements showing the receptor neuron firing and synapsing
on to the PN eventually causing it to fire. This result demonstrates the functional
signal path through the entire neuromorphic circuit. Summation of exponen-
tially decaying synaptic currents i for multiple receptor neuron spike events
is also shown.

measured from our chemosensor array are used in this study
(Fig. 11). The experimental setup for sensor measurement is
discussed in Section IV-C. Here the olfactory neuromorphic
architecture shown in Fig. 2 has been used. The network re-
ceives input signals from 6 sensors and has two outputs (PN1
and PN2). PEVA, and PSB sensor types are used as the input
chemosensors for the neuromorphic network. In the network
architecture of Fig. 2 sensors 1 – 3 are PEVA type and sensors
4 – 6 are PSB type. The amplitudes of similar sensor types are

TABLE II
MEASURED PERFORMANCE SUMMARY OF THE ADAPTIVE

NEUROMORPHIC OLFACTION CHIP

normalized to account for the varying sensitivity observed at
different locations in the array, while the profiles are delayed

around the measured data to model retention effects
of analyte vapors as they travel along a microchannel. As the
measured sensor data is noisy, no additional noise is added to
the signals. However, two additional receptor neurons (RN7
and RN8) are added to the network to study noise rejection
properties. RN7 and RN8 are connected through feedforward
synapses to PN1 and PN2 respectively. All RNs have a time
constant of 200 ms. The threshold voltages of all the RN’s
are set at 70% of the peak sensor signal amplitude. To initiate
learning in the network, the threshold voltages of PNs are
chosen such that they spike on the arrival of first few correlated
RN spikes. The refractory period of the RNs and the PNs are 60
and 120 ms, respectively. The STDP window function is set at

. The circuits of the individual building blocks used in
this network simulation have been validated against measured
chip results.

A. Network Response

The firing patterns of the neuromorphic network for ethanol
input vapor are shown in Fig. 17. Here, RN1-RN3, corre-
sponding to PEVA sensors, produce spikes while the outputs
of RN4-RN6 corresponding to PSB sensors do not fire. This is
because the PSB sensor signals are too small to cause RN4-RN6
to fire. The RN1-RN3 spikes induce firing in PN1.

The response of the neuromorphic network to toluene input
vapor is shown in Fig. 18. Here RN1-RN3, corresponding to
PEVA sensors, start firing earlier than RN4-RN6. This corre-
lated response contributes to firing of PN1, thereby strength-
ening the weights of synapses connecting RN1-RN3 to PN1 as
shown in Fig. 19. PN1 firing generates an inhibitory response at
the lateral synapse connecting PN1 to PN2 thereby delaying the
firing of PN2. However, when RN4-RN6 start firing the synaptic
current to PN2 is increased causing PN2 to fire. As PN2 fires, the
weights connected to the contributing synapses of PSB receptor
neurons (RN4-RN6) get strengthened as shown in Fig. 19.

B. Interpretation of Results

In this system, odor discrimination is provided by both the
chemosensors and the neuromorphic system. In the case of
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Fig. 17. Neuromorphic network circuit simulation (Cadence Spectre) showing
the firing response of RN1-RN6 and PN1-PN2 to the ethanol input odor of
Fig. 11(a). Y axis is in volts. The circuits use�2:5 V supply voltage. The ver-
tical lines indicate neuronal spikes. RN1-RN3 are excited by PEVA type sensors,
RN4-RN6 are excited by PSB type sensors. Sensors respond to odor stimulus
at 10 s [see Fig. 11(a)]. The RN1-RN3 spikes induce firing in PN1. There is no
spiking activity in PN2.

Fig. 18. Neuromorphic network circuit simulation showing the firing response
of RN1-RN6 and PN1-PN2 to the toluene input odor of Fig. 11(b). Sensors
respond to odor stimulus at 10 s. Y axis is in volts. RN1-RN3 are excited by
PEVA type sensors, RN4-RN6 are excited by PSB-type sensors.

ethanol vapor [Fig. 11(a)], the amplitude difference between
the two sensor responses provides sufficient discrimination
information to allow the neuromorphic system to implement
a simple thresholding function at the RN stage to separate the
two classes. STDP learning strengthens the weights connecting
corresponding sensors to RN1-RN3 to further enhance odor
selectivity (weights not shown).

In the case of toluene vapor [Fig. 11(b)], both sensor types
have similar amplitude levels and hence a simple thresholding
scheme based upon this aspect of the data is not sufficient. Dis-
crimination information from the sensory stage is provided by
the transient or temporal response of the sensors to the odor

Fig. 19. Neuromorphic network circuit simulation showing the evolution of
weights during STDP learning of the toluene input odor. The Y axis is in volts.
VWT1-VWT7 are the weight voltages of synapses connected to RN1-RN7.
RN7 is excited by a noise source and its weight is weakened during learning.

Fig. 20. Network circuit simulation for the toluene input odor [see Fig. 11(b)]
showing time delay amplification at the neuromorphic stage. The delay between
RN1 and RN4 (1.5 s) first firing is amplified in the response of PN1 and PN2
(2.3 s).

signal and the neuromorphic stage has to extract this transient
sensor information to enhance the discrimination of the input
odors. The time difference between RN1-RN3 first firing and
RN4-RN6 first firing was 1.5 s. The same measurement differ-
ence between PN1 and PN2 first firings was 2.3 s (see Fig. 20).
The role of the neuromorphic system here could be interpreted
as an amplification of this time delay thereby improving the sep-
aration between these two odor signals.

Spikes from RN7 and RN8 are driven by random noise
sources. Here, STDP learning scheme weakens the weights
connected to RN7 and RN8 as they arrive out of synchrony
with the sensor signals (see Fig. 19 for adaption of weight
connected to RN7). This improves the noise performance of
the system.
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These simulations are obtained using simple odor samples
measured from test experiments conducted on our olfaction
sensor chip. These simulations are neither an exhaustive nor
a comprehensive study of the problem of identifying odors in
complex backgrounds.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the analog VLSI implemen-
tation of the circuit building blocks of an adaptive neuromorphic
olfaction chip developed over a number of chip implementation
cycles. During the course of the work several circuit design
challenges were addressed. On the sensory front, the main cir-
cuit design challenge was to compensate the large variation in
sensor baseline signals in the chemosensor array leading to loss
of measurement range which cannot be recovered. A dc cancel-
lation circuit was implemented on chip to cancel the baseline
sensor variations. In the neuromorphic implementation, the key
challenge was to design circuits with large time constants while
keeping the neuronal structure simple and occupying small
silicon area. The neuron, synapse and on-chip learning circuits
were all implemented using simple OTA-C structures. Time
constants in the range of 300 ms were achieved by reducing the
transconductance of the OTA stage thereby alleviating the need
to implement large area capacitors.

Our vision is to build a fully integrated neuromorphic ol-
factory device in analog VLSI. To attain this goal, we have
demonstrated that all the subsystem components are success-
fully working in silicon. Moreover, by fabricating and testing
two separate chips with a sensor array and a neuromorphic array,
we have attained significant understanding of the working of
these analog circuit blocks when connected together in large
arrays. A further prototype chip with an on-chip chemosensor
array, on-chip sensor interface circuitry and on-chip adaptive
neuromorphic circuitry has been fabricated using AMS 0.6- m
CMOS technology. The architecture of the chip implements a
slice of an olfactory pathway such that a scalable olfactory net-
work can be constructed by interconnecting multiple chips. Our
next step is to test and evaluate the performance of this system
when subjected to input odors.

A number of challenges are anticipated in the final integration
of a complete system. Careful deposition of the sensing mate-
rials with a broad diversity of chemical sensitivity will be re-
quired together with a screening process for each sensor to en-
sure the output chemical response is ideal for odor recognition.
Circuits and systems issues such as long term weight storage,
component mismatch, layout optimization, decoding of spike
outputs or the use of an address event representation (AER) [42]
interface for instance should be considered.
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