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bstract

This paper describes the design and characterisation of a new generation of fully CMOS compatible novel micro-hotplates for high temperature
as sensors. The micro-hotplates employ advanced MOSFET heaters embedded in an SOI membrane. The heaters can operate at a ground-breaking

◦
igh temperature of 550 C for an ultra-low power consumption of 16 mW (continuous operation) and have a thermal rise time of below 10 ms.
large number of devices have been characterised over a batch of wafers and they show excellent reproducibility and reliability. The yield of

he micro-hotplates after deep RIE back-etching was close to 90% while the residual stress was found to be minimal, resulting in flat and stable
embranes. Electronic circuits for drive and readout have also been designed and integrated with the micro-hotplates to create a smart gas sensor.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Hand-held, low cost and reliable gas monitors capable of
etecting toxic and combustible gases are highly desirable
or use in automotive, environmental and other applications.
owever, the relatively high power consumption and cost
f commercial devices make them impractical in portable,
attery-powered instruments and low-power automotive units.
resently, the most widely available resistive gas sensor (Taguchi

ype, sold by Figaro, Japan) has an operating temperature of
ypically 400 ◦C and power consumption of between 500 mW
nd 800 mW [1]. Other sensing technologies exist, for exam-
le, the catalytic pellistor. This device is used extensively for
ethane detection, but again is relatively expensive and has a

igh power consumption of 350–850 mW at 500 ◦C [2]. For
hese reasons, considerable research effort has been directed
owards silicon-based micro-hotplate designs for low-power gas

ensors. Predominantly these have been based on the integration
f a platinum micro-heater embedded into a low stress silicon
itride membrane [3,4]. Although highly successful at reducing
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ower consumption, platinum is not CMOS compatible hence
annot benefit from the low cost of CMOS fabrication and circuit
ntegration. This integration of micro-hotplates into a CMOS
rocess could well achieve the target of low cost, high reliability
nd low power consumption.

In the development of CMOS micro-hotplate designs, it
s critical to reduce significantly the power consumption and
nsure a uniform temperature distribution over the sensing area.
uch goals can be considered highly challenging as traditional
aterials available in CMOS technology have limitations. For

xample, researchers have reported micro-heaters made from
olysilicon or aluminium, but polysilicon has poor long-term
tability due to grain boundary movement and crack propagation
hilst aluminium shows electro-migration at high temperatures

s well as having a relatively low melting point [5,6]. An alter-
ative SOI CMOS heater based on a MOSFET heater structure
as proposed by Gardner and Udrea some 10 years ago. The

dvantages of a MOSFET heater are CMOS compatibility, thus
he power can be controlled via the gate terminal and that ultra-
mall heaters can be formed because the resistance of the heater
s controlled via the gate potential. Here a MOSFET, fabricated

sing a standard SOI CMOS process, was used as the heater
ith the handle silicon beneath removed to form a thin mem-
rane. Although successful in reaching operating temperatures
f 350 ◦C for a power consumption of less than 100 mW, these

mailto:pkg23@cam.ac.uk
dx.doi.org/10.1016/j.snb.2007.07.047
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arly devices were post-processed individually and thus not ideal
or mass markets [7–9]. At the same time other research group’s
uch as those of Baltes (ETH, Zurich) and de Rooij (IMT,
euchatel) were exploring non-SOI micro-heaters fabricated

nside silicon plugs [10,11].
Here we report on the design and experimental charac-

erisation of new generation of novel SOI CMOS MOSFET
icro-heaters, with batch post-processing, increased operating

emperature range and reduced power consumption. Tempera-
ure sensors in the form of on-chip n+pp+ diodes and silicon
esistors have been designed, simulated with Cadence (version
.0.0), fabricated and experimentally characterised. Electronic
ircuits have also been developed and integrated with the
icro-hotplates. This circuitry benefits from the well-known

dvantages of SOI technology, e.g. effective isolation and
educed leakage currents.

. SOI micro-hotplate design

Here we have developed micro-hotplates for use in calori-
etric and resistive gas sensors. The device contains novel

haped MOSFET micro-hotplates fabricated using a 1.0 �m
OI CMOS triple metal process by X-Fab (6 in. process, Ger-
any). A schematic of an SOI resistive gas sensor employing
MOSFET micro-hotplate is shown in Fig. 1. The MOSFET
icro-heater is embedded within the silicon layer of an SOI
embrane and therefore does not require any extra fabrica-

ion steps to the standard CMOS process beyond the membrane
ormation (back-etch). Sensing materials are added as a post-
rocessing step to form the gas sensors. The response of devices
ith sensing materials to different gases will be reported else-
here [12].
Two different heater/membrane geometries were used with

ach geometry employing both p-type or n-type MOSFET
eaters. Ring MOSFETs were used for the large membranes and
late MOSFETs for the small membranes. The (W/L) of the large
nd small MOSFETs was (471/3) and (74/2.5), respectively.

he MOSFETs have the body-source shorted and the number of
horts was increased (shorting made after each 2.5 �m) above
hat required by the standard library design (after each 4 �m),
o that they are less susceptible to the high temperatures and

i
a

t

Fig. 2. (a) Large MOSFET based micro-hotplate a
ig. 1. Cross-sectional view of designed gas sensor (drawing not in scale).

tresses. All the membranes were circular in design, to reduce
igh thermal stress points, with radii of 282 �m and 150 �m.
hese corresponded to heater radii of 75 �m and 12 �m, respec-

ively.
Besides the heater, the other key elements are the sensing

aterial, the temperature sensor, and the heat spreading plate
or temperature uniformity. Resistive micro-hotplates contain
nterdigitated electrodes made of areas from exposed top metal
ayer (made with metal 3 covered by pad opening, for measuring
he change in the resistance of the sensing material in the pres-
nce of gases). The membranes were formed by high precision
eep reactive ion etching (DRIE) of the silicon substrate. The
uried oxide layer acts as an etch stop and thermally isolates the
ensing area, hence further reducing the power loss. This type of
tching produces near vertical walls, compared to wet etching
sing KOH or TMAH and thus leads to a significant reduction
n the chip area. In addition, this process resulted in a yield of

lmost 90%; an important factor for commercialisation.

As stated above, a further important part of the design was
he integration of the temperature sensors. For the large mem-

nd (b) enlarged view of the heating element.
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Fig. 3. (a) Small MOSFET based micro-hotp

ranes, a circular n+pp+ diode of 18 �m radius was designed to
atch the shape of the ring MOSFET heater. It was located at the

entre of the membrane to enable accurate temperature sensing.
or the small membranes, p+ or n+ silicon circular ring resis-

or temperature sensors of 17 �m radius were designed around
he FET heater. An optical image of a fabricated SOI micro-
otplate showing the main features is presented in Figs. 2 and 3
top view). We have also tried heaters of different geometries
radii 50 �m and 100 �m) for the same large membrane size as
comparative study.

Lastly, some designs had integrated electronic circuits to
ondition signals from the integrated temperature sensors. A
ascode current mirror circuit was designed to drive the temper-
ture sensor. An integrated, single supply, op-amp was designed
ith a gain of 60 dB and a phase margin of over 60◦. The op-amp

s low power (around 0.3 mW, which is <2.0% of the maximum
ower consumption by the small heater) and can operate with
supply voltage of 4.5–5.5 V and fluctuations in temperature

rom −40 ◦C to 150 ◦C. An instrumentation amplifier (IA) was
esigned to measure the peak temperature in the membrane.
he principle used here is to have one temperature sensor on the
embrane and a reference sensor off the membrane; the instru-
entation amplifier will therefore amplify the difference in the
ignals coming from the two temperature sensors (as shown
n Fig. 4). The gain of the instrumentation amplifier was set
o 7 (R1 = 8 k�, R2 = 10 k�, R3 = 10 k�, R4 = 20 k�) in case of
esistive gas sensor and 39 (R1 = 4 k�, R2 = 24 k�, R3 = 24 k�,

Fig. 4. Instrumentation amplifier circuit for temperature measurement.
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nd (b) enlarged view of the heating element.

4 = 72 k�) for calorimetric gas sensor, but the amplifier can
e accessed from outside to control the voltage gain. An active
econd-order low pass filter (fc ∼ 10 kHz) was also integrated for
he microcalorimetric gas sensor to reduce the effect of noise.

Fig. 5 shows photographs of two of our chips, one of which
as electronic circuitry integrated with the micro-hotplates. The
ajor components visible are the resistive and calorimetric sen-

ors, large and small micro-heaters, driving and the temperature
ead-out circuitry. Each 4 mm × 4 mm chip contains 64 pins.

. Measurements and analysis

The I–V characteristics (in Fig. 6(a), large membrane n-type,
ig. 6(b) large membrane p-type) of the MOSFETs show that in

he saturation region the drain current decreases with Vds which
s due to the degradation of the channel mobility caused by self-
eating—this also implies that the silicon substrate was properly
ack-etched and the thermal isolation was efficient. The para-
itic bipolar transistor was triggered at over 40 mW for large
eaters and over 17 mW for small heaters, which corresponds
o around 600 ◦C. Hence the devices can be operated reliably
elow 575 ◦C. Power measurements were carried out on the
ame device at five different locations on the 6 in. wafer and
lso from three different wafers of the same batch, and it was
ound that the variation in results was less than 2%. This shows
he excellent reproducibility and reliability of our fabricated
esign. Results show that the large heaters can operate above
50 ◦C with a power consumption of around 36 mW. For small
eaters, an operating temperature of 550 ◦C can be achieved for
power consumption of 16 mW (Fig. 7). To our knowledge this

s the smallest DC power consumption reported in the literature.
he reason for this low power consumption is the small heater
ize, large thin membranes (∼6 �m thick, as specified by the
oundry) and PECVD nitride as the passivation layer (thermal
onductivity of the nitride layer measured ∼3 W/m/K, which
s far less compared to LPCVD nitride used in usual practice).
n addition, we believe the reason for this high temperature sur-

ival of the MOSFET heater is the tungsten metallization, which
emoves the possibility of electro-migration of aluminium, and
he large number of source-body contacts within the MOSFET,
hich prevents the bipolar effect.
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Fig. 5. (a) Photograph of the gas sensor chip with integrated electron

Power–temperature measurement of the different sized

icro-heaters on the same membrane area shows that the power

onsumption depends mainly on heater geometries (as shown in
ig. 8). Thus, in order to minimize the power consumption, the
eater area should be reduced to an absolute minimum. However

ig. 6. (a) I–V characteristics of large n MOSFET and (b) I–V characteristics of
arge p MOSFET.

s

p
a

d (b) photograph of the gas sensor chip with discrete micro-hotplate.

his leads to a reduced sensing area and therefore could lower

ensitivity.

Thermal calibration of the temperature sensors was also
erformed so that the membrane peak temperature could be
ccurately measured. A computer-controlled hot chuck (model:

Fig. 7. Power vs. temperature of large and small MOSFET heaters.

Fig. 8. Power vs. temperature of MOSFET heaters of different radii.
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Fig. 11. Transient temperature response of large micro-heater as measured by
diode temperature sensor.
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Fig. 9. Calibration of diode temperature sensor.

-1060R-6TG, make: SEL-TEK Ltd.) with 1 ◦C resolution was
sed for this purpose. The corresponding voltage drop was mea-
ured with a 20 ◦C temperature interval up to 260 ◦C (the upper
imit of the hot chuck is 300 ◦C). The voltage versus tempera-
ure curve of the temperature sensor is shown in Fig. 9. These
esults were compared with the simulated ones obtained from
adence SPECTRE; also shown in Fig. 9. The simulation was
arried out through direct extraction of the components (includ-
ng parasitic elements) from the layout design and therefore
hey are quite close to what we have observed experimentally.
he temperature coefficient of the diode was measured to be
−1.2 ± 0.005 mV/◦C when driven by a 65 �A current (number

f repetitions: 4).
The peak temperature in the membrane was measured with

he aid of the on-chip instrumentation amplifier. Fig. 10 shows
he variation of measured instrumentation amplifier voltage
ith temperature; the ramp was approximately 8 mV/◦C. The

imulated graph in Cadence SPECTRE is close to that of the
xperimental result obtained.

Dynamic electro-thermal measurements were carried out
o estimate the thermal rise and fall times of the MOSFET

icro-hotplates. This was determined by monitoring the volt-

ge response of the thermodiode against time. Fig. 11 shows the
iode voltage versus time characteristics of the heater. The tran-
ient rise time was calculated by considering the time needed for
he temperature to rise from 10% to 90% of the final stabilized

Fig. 10. Instrumentation amplifier output voltage vs. temperature.
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Fig. 12. Height profile of the large micro-hotplate.

oltage. The transient thermal response is very fast—maximum
ise time is below 10 ms (at 500 ◦C).

The geometrical profile of the membranes was also measured
ith the help of an optical interferometer (Fogale Nanotech
oomsurf 3D) to assess the deflection and hence the stress in

he membranes. It was found that membrane deflection is very
mall (under 2%), as shown in Fig. 12; the maximum deflection
or large membrane was 8.42 �m and for small membrane was
.51 �m.

. Conclusions

Here a new class of novel MOSFET SOI micro-heaters is
eported. The design is based on an SOI CMOS process with a
eep RIE back-etch, and hence permits the integration of con-
rol and signal conditioning circuits on the same chip. We have
hown operation at a temperature in excess of 550 ◦C with nom-
nal power consumption of 36 mW for large heaters and 16 mW
or small heaters, and thermal time constants of below 10 ms. To
he best of our knowledge this is the first report in the literature
here MOSFETs are working (in this case as a heater) beyond

50 ◦C and with such lower power consumption.

We believe that the development of such low-power CMOS
ensors will lead to the development of a new generation of low
ost, low-power gas sensors.
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