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Uncertainty Quantification in Molecular Signals
Using Polynomial Chaos Expansion

Mahmoud Abbaszadeh

Abstract—Molecular signals are abundant in engineering and
biological contexts, and undergo stochastic propagation in fluid
dynamic channels. The received signal is sensitive to a variety of
input and channel parameter variations. Currently we do not
understand how uncertainty or noise in a variety of param-
eters affect the received signal concentration, and nor do we
have an analytical framework to tackle this challenge. In this
paper we utilize Polynomial Chaos Expansion (PCE) to show
that uncertainty in parameters propagates to uncertainty in the
received signal. For demonstrating its applicability we consider a
Turbulent Diffusion Molecular Communication (TDMC) channel
and highlight which parameters affect the received signals. This
can pave the way for future information theoretic insights, as
well as guide experimental design.

Index Terms—Molecular signals, fluid dynamics, uncertainty
quantification.

I. INTRODUCTION

OLECULAR signals are abundant in biological sig-

naling [1]-[3], industrial engineering (e.g., chemical
catalysis [4]), nano-engineering [5], and ecosystems (e.g.,
pollution signals in rivers [6]). In many cases, the signals
represent explicit information (e.g., pheromones [1]), and in
other cases the chemical plume patterns are a proxy signal for
an opaque process (e.g., chemical mixing-reaction rate [7]).
Molecular signals exist in different scales, from nano-scale
diffusion dynamics in cells to macro-scale flow in oceans.
In all cases, identical molecular signal plumes never give
rise to the same statistical channel response due to external
disturbances and other uncertainties. Yet, simulating all pos-
sible permutations and considering all fluid dynamic forces is
expensive and there is a need to quantify uncertainty more
directly.
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A. Uncertainty in Molecular Signal Propagation

Uncertainty can arise from noise in the input and ambi-
ent parameters. This makes deterministic models unreliable
in estimating the variational behaviour of complex systems.
Many engineering systems are described by complex differ-
ential equation models, which give deterministic outputs. In
the case of mass diffusion based molecular signaling (and
molecular communication), the classic Fick’s Law yields a
deterministic inverse-Gaussian form [8]. When considering
more complex processes (e.g., turbulence, sheer stress) [2],
[9], [10], the Reynolds-Averaged-Navier-Stokes (RANS) equa-
tions still yield deterministic solutions [11]. This means that
externally triggered variations in input parameters (e.g., veloc-
ity profile of molecular signal) and the channel parameters
(e.g., dynamic viscosity, diffusivity) cannot be accounted
for. Monte-Carlo simulations are required to simulate vari-
ational behaviour, causing time intensive computation and
lacking in direct insight about sensitivity to different parameter
combinations.

B. Review of Similar Work

Monte-Carlo simulation, whilst time consuming, can offer
computation convergence guarantees in the face of multiple
uncertainties [12]. Often, as is the case for fluid dynamics,
there are divergent solutions to the model. In weather fore-
casting, extreme weather represents one of the many possible
outcomes and uncertainty propagation is essential. In [13], the
authors use sparse initial weather data to inform the likelihood
of divergent solutions forming. In probabilistic programming
and numerics [14], uncertainty is cascaded through to yield
posterior estimates of the solution, which is computationally
expensive for simulations. Nonetheless, the aforementioned
scenarios are computationally expensive and data demanding.
As such, analytical methods for uncertainty propagation in
fluid dynamics are useful.

Polynomial chaos expansion (PCE) is a method to deter-
mine the propagation of uncertainty in dynamical systems,
when there is probabilistic uncertainty in the system param-
eters. PCE has been used in fluid dynamics since solving
the Navier-Stokes equations is computationally expensive.
Hosder et al. [15] employed non-intrusive PCE to add uncer-
tainty in the input of aerodynamic parameters where the
uncertainty was associated with the channel geometry and the
dynamic viscosity of fluid in the laminar boundary-layer flow.
For evaluation, they compared their results with Monte Carlo
simulations and a good agreement existed. They show that
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the advantage of PCE over Monte Carlo methods is that one
can achieve the same results with a seven-order computational
saving [15].

In molecular signaling, when the propagation channel is
described by a stable mass diffusion equation, the uncertainty
arises from Brownian motion [16]. However, when there are
fluctuations in the diffusion channel from temperature and dif-
fusivity variations, then uncertainty in the channel propagates
to the receiver signal concentration [17]. As evidenced by the
literature, there is a lack of uncertainty research in molecular-
communication problems that are affected by complex fluid
dynamic processes. Uncertainty research will improve our
knowledge about noise sources (e.g., transposition noise [18])
and the information capacity. In this context PCE represents
a good research methodology. It is worth noting that even in
the whole area of wireless communication, there is a lack of
research in uncertainty propagation [19], [20].

C. Contribution and Organization of Paper

In Section II, polynomial chaos expansion from a gen-
eral point of view is introduced to quantify uncertainty in
dynamical systems. In Section III, we introduce the molecular
signal channel, including the RANS equation and integration
with PCE. In Section IV, we present the results and discuss
applications of PCE.

II. POLYNOMIAL CHAOS EXPANSION

PCE is a method that facilitates the spectral representation
of the uncertainty in physics-based and engineering problems.
In this surrogate method, the output can be represented as
an expansion of the input random parameters with a specific
probability density function (PDF), so the uncertainties in the
input parameters are reflected in the outputs [21].

A. Univariate Polynomial Chaos

Let = be a random variable with known PDF w, and X =
#(Z), where ¢ is a function that is square-integrable on x
(x € R) with w as a weight function (call this space L%}).
Our goal is to approximate X by a polynomial series of =.
For this purpose, we need a family of polynomials H,, such
that Hy is not 0, and for n > 0 (n € N), the polynomial H,
has the order of n and are orthogonal with respect to w. Thus,

<Hn>Hm>w = / Hm(x)Hn(m)w(-T)dx = ’Ym(smn> (1
X

where §,,,, is the Kronecker delta and would be 1 if m = n
and 0 if m # n, and -y, is the normalization constant which
is obtained by:

= 2.73'(1]27 X .
wm_/XHmu (2)d @)

We also assume that Hy is normalized so that (Hy, Hp)y = 1.
Depending on the distribution of the =, different sets of
orthogonal polynomials should be employed to satisfy (1).

1) Legendre Polynomials: If = has a uniform distribution
(2 ~ Unif[-1, 1]), Legendre polynomials should be used [22].
By having the first two Legendre polynomials (Hy(z) = 1 and
Hy(xz) = z), we can generate the others by following recursive
relation [23]:

(m+ V) Hpy1(z) = (2m + V)zHpy (z) — mHpy—1(x), (3)

where m is the order of the polynomial. The generated poly-
nomials are orthogonal if we consider w(z) = % which is
the PDF of = ~ Unif[—1, 1]. In this case, the normalization
constant for m € N is 1/2m + 1).

2) Hermite Polynomials: When = has a normal distribu-
tion (E ~ N(0,1)), then the Hermite polynomials should be
employed to build the PCE [22]. By considering Hy(z) = 1,
the recursive relation for Hermite polynomials is [23]:

d
dx
The generated golynomials are orthogonal if we consider
w(z) = 2RI which is the PDF of Z ~ N(0,1). In
this case, the normalization constant for m € N is m!.

There are also other PDFs and their corresponding poly-
nomials in the literature that can be considered based on the
type of the input variables [22]. In this study, we utilize uni-
form and normal distributions as PDF of the uncertain input
parameters in molecular signaling.

Now, the series is constructed by considering the polyno-
mials H,, as a basis for L2

G(E) = anHn(Z). ®)

n>0

Hpi1(z) = zHpy () — — Hp (2). 4)

where a, are deterministic unknown coefficients. Because
H,, is an orthogonal basis, the coefficients are calculated by
projecting on each basis vector.

o (0,

After calculating the a, coefficients, the statistics of the out-
put X are determined spatially. Due to the orthogonality of the
applied polynomials, the expectation of the X is estimated by:

(6)

w

E[X] ~ Qq, (7)

which is the coefficient of the zeroth order polynomial. Also,
the variance is estimated in the same way.

Var[X] =~ > ap (Hp, Hn)w. (8)
n>1

Since one cannot simplify a product of three or more poly-
nomials, the equations for further moments contain all possible
terms of the power of the sum.

B. Example of Usage

Let f(z) = ze~* 4z and let us assume that we need to find
the root of the equation f(z) = =, which we will denote by
R(Z). There is no simple close form for the root of equations
of this form, but if = is just a number, we can easily find the
root using the Newton method. The situation becomes more
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difficult if = is a random variable. In this case R(Z) can be
considered a random variable itself. If we wanted to calculate
the probability distribution of R(Z), we would resort to Monte
Carlo simulations, i.e., we would choose a realization of = and
we would compute R(E) of few tens of thousand times and
we would plot the histogram of the values. In more complex
problems this can be computationally expensive. Even calcu-
lating the mean and the variance of R(Z) requires numerical
integration of R(E).

Instead we will use PCE. Let us assume that = ~
Unif[—1, 1] and that R(Z) can be approximated by a third
order polynomial expansion using Legendre polynomials

(E) =)
(2) ann:.

In order to calculate the coefficients a,, we choose 10
realizations of = and the corresponding root R(Z). We will
denote by &; the realizations of =. This means that we have
10 pairs (&;, R(&;)), so we can use least squares in order to
find the optimal values for the coefficients a,. We will call
this least square polynomial chaos expansion (LSPCE). We
find ag ~ 0.042, a1 =~ 0.52, ag =~ 0.086 and a3 ~ 0.012.

From this we get that

E[R(Z)] = ap = 0.042

and
var[R(Z)] Za (Hy, Hy) = 0.091.

Furthermore, if we want to approximate the PDF of R(Z),
instead of using Monte Carlo, we can use the expansion to
get values for R(Z). In this example, instead of using the
Newton method, we evaluate a third order polynomial. In more
complicated problems, like turbulent diffusion problem, the
gain in computational can be many orders of magnitude.
Finally, we can gauge the error of our method by calculating
the fourth order approximation. In this example the first 3
coefficients were the same up to at 4 significant digits.

C. Parametric Univariate Polynomial Chaos

The case where X depends also on an independent parame-
ter, ¢, can be treated as a straightforward generalization of the
previous. In particular if X = ¢(t,Z) with ¢(t,-) € L2, for
all ¢, then we can decompose X as

¢(t,Z) = D an(t) Ha(E). ©)

n>0

This becomes particularly useful in the case of differential
equations that depend on a stochastic parameter. For example,
in the case of a linear differential equation X = L(X) +
1(Z), where L is linear and ¢(Z) = >, < bn Hn(Z), we can
substitute the sum and use the linearity of the equation to get

Z ZLan —s—anHnE.

n>0 n>0 n>0

) Hn(2) =

(10)

and by projecting on each H, we get the equations a, =
L(ap) + bp, whose solutions are the coefficients of the
expansion. Notice that all the equations are now deterministic.

In the case of non-linear differential equation, one has prod-
ucts of polynomial chaos expansions. This means that one
gets an infinite system of deterministic differentiable equa-
tions. This method of computing the coefficients is called
Intrusive Method because it requires to change drastically
the solver [22].

D. Multivariate Polynomial Chaos

Let X = ¢(E1,Z2) where Z; and Ey are random vari-
ables with PDFs w; and ws, respectively and ¢(-,Z3) € L?Ul,
o(E1,-) € L2 for all 21 and =. Let H7 ,, and HQ m be poly-
nomial famlhes that form an orthogonal basis in Lw1 and L%Uz,
respectively and ([0, H1,0)w, = (H2,0, H2,0)w, = 1. Then
we can decompose X as the deterministic part (coefficients)

and stochastic terms.

¢(51»E2) = Z Z am,n Hl,m(El)Hz,n(Eg).

m>0n>0

(11

One can project on the basis to get the coefficients, i.e.,

(¢ Hl’m>w1’H2’">w2 (12)
<Hl,ma fll,m>w1 <H2,’VL7 HQ,n>w2 .

Similarly to the univariate case the relations for the first
two moments are relatively simple. For the expectation one
has E[X]| ~ ag o and for the variance we have:

Z Z O, n Hl ;M H m>w1<H2 n, Ha ">w2

m>1n>1

am,n =

Var[X

13)

This expansion can be generalized to more than 2 random
variables in a straightforward way. The PDF of each random
variable defines an inner product in the space L2 and we have
to choose an orthogonal basis in this space. Then one just
expands X with respect to every family of basis functions.
Similarly we can generalize this scheme to treat parametric
multivariate cases. One just needs to notice that the coefficients
of the expansion depend only on deterministic parameters.

E. Approximation Using Polynomial Chaos

In order to do any computation with a PCE series, we have
to truncate it since it is not feasible to expand the PCE series
to infinity. For this purpose, we notice that if the series con-
verges, then the size of the coefficients go to 0 if we take
the limit of any index to infinity. This means that for every
convergent series, we can ignore terms of order higher than
some N. However, for a given problem it is not trivial to find
which exactly this N is. Usually this is done by trial and error,
where we calculate more terms until the size of the new terms
is smaller than the precision required.

We start by truncating the series to an arbitrary order N,

=) (E)
(2) ann:

(14)
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Transmitter

Receiver

Fig. 1. Schematic of the cross-section of the system model.

and assume that this is enough for the considered precision.
By using a truncated series, the intrusive method produces a
finite system of differential equations which should be solved
to get the coefficients.

There is also a Non-intrusive Method which was first intro-
duced by [24]. In this case, we observe that (14) is linear
with respect to ay’s, so we treat the simulator as a black
box. We generate M > N instances of the random variable =,
{&1,...,&} and we calculate the deterministic outputs by
simulator, {¢(&1),...,6(&p)}. Then for every &; we have
the equation:

N
$(&) = anHn(&). (15)
n=0

Notice that ¢(§;) and Hy,(§;) are just numbers and now we
can compute the coefficients a,, by solving a linear regression.
After that, we compute supz |ay Hy (Z)| and if it is smaller
than the precision, we stop, otherwise we increase N and repeat
the process.

III. SYSTEM MODEL AND METHOD

PCE is a surrogate approximation method for Monte Carlo
simulation which has been widely used in communication
area especially in molecular communication. In this study,
to mimic the reality, we employed PCE in a turbulent dif-
fusion molecular communication channel to add uncertainty
in a set of parameters such as inlet velocity, initial concentra-
tion, dynamic viscosity of the ejected fluid, and the turbulent
Schmidt number (or Sc which describes the ratio between the
rates of turbulent transport of momentum and the turbulent
transport of mass).

A. Channel Configuration

The system model in this study is a 3D 50 x 10 x 10 m?
water channel (see Fig. 1). The water molecules are ejected
into a quiescence aqueous environment with V. = wug¢ + vpj +
wok velocity where ug is taken as 4 m/s and the other two
components assumed to be zero if we have an ideal injection
system. The concentration of the ejected water is measured
at the receiver site which is located at 40 x r;, where 7y, is

TABLE I
SIMULATION PARAMETERS

Variable Value
Maximum Injection Velocity, uo dm/satt=0
Dynamic Viscosity of water, u 8.9 x 107* Pass
Density of water, p 1000 kg/m?
Transmit Concentration, co 4mol/m?
Pulse Width, Ty 0.7s

Radius of the injector (i) 12.5cm
Distance Between TX and RX, d7z,re 40 X 7

Simulation Dimensions 50 x 10 x 10 m?

the radius of the injector and the initial concentration of the
water molecules is 4 mol/m>. The sidewalls and the outlet are
assumed to be considered far enough from the transmitter so
that we can neglect their effects on the fluid flow. The proper-
ties of the water and the other system parameters are given in
Table L.

B. Advection-Diffusion Dynamics With RANS Equations

In order to obtain the concentration of the emitted molecules
in the environment, we need to solve the advection-diffusion
equation.

% =V (D:Ve) =V - (Ve), (16)
where ¢ is the concentration and D is the eddy diffusivity
coefficient of the water molecules. cg is the amount of the
molecules which are released into the channel at ¢t = 0, and v
is the velocity field of the environment flow. Generally, there
are two restrictions in solving (16). First of all, ¥ is a function
of the space and time which means that in any arbitrarily loca-
tion and time, the velocity components should be calculated
and substituted in (16) in order to find concentration distri-
bution. In the literature [2], this restriction has been ignored
and they considered the velocity field to be constant spatially
to find a closed-form relation for the concentration distribu-
tion. Secondly, the eddy diffusivity, D., will be changed as
the messenger molecules (MMs) go far away from the trans-
mitter and it is not isotropic. In the literature [3], the eddy
diffusivity mostly has been considered isotropic which means
that the information particles in the channel can be dispersed
in any directions equivalently whilst this assumption is not
accurate due to the essence of the turbulent flow [25]. Based
on the discussed restrictions, considering anisotropic veloc-
ity and eddy diffusivity and also, considering time-variant
velocity simultaneously makes the problem complicated and
finding a closed-form solution is almost impossible. In order to
address the foregoing problem, the velocity distribution should
be obtained and employed in (16). One of the scheme to
obtain the velocity distribution is using the numerical packages
to simulate the flow field and solve the Reynolds-Average-
Navier-Stokes (RANS) equations [25]. The key characteristic
of numerical packages like COMSOL Multiphysics is that
they solve the RANS equations with the mass transport equa-
tion (16) simultaneously and it considers the effects of eddies
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Fig. 2. Step by step procedure of building PCE.

on transporting the molecules from transmitter to receiver.

_'aﬂi = 0 —c ou; 8ﬂj ——
cuja—%—cfi—i-a—%[—pé”—l—u(a—xj—i— o, — cuug |,
a7

where ¢ represents density or concentration which depends on
a number of parameters such as pressure, velocity, and sheer
stress gradients. The dynamic viscosity of the fluid is u, and
the term cﬂj%} represents the change in mean momentum
of the fluid element due to the unsteadiness in the mean flow
and the convection by the mean flow. This is balanced by
the mean body force f;, the isotropic stress from the pressure
field pd;;, the viscous stresses, and the apparent stress —cug u!
owing to the fluctuating velocity field (Reynolds stress). Whilst
there are statistical approximate solutions in the form of eddy
diffusivity, general tractability is still a challenge for modeling
turbulent diffusion and that is why finite-element simulation
is used.

C. Non-Intrusive PCE

In practice, it is impossible to be certain about the exact
values of the initial conditions in any applied problem since
the input parameters are subject to uncertainties that origi-
nate from various sources (e.g., injection delay, concentration
of information molecules, etc). For example, in our problem,
when we say that the inlet velocity and initial concentra-
tion are V = aqi + aoj + agk and § mol/m>, respectively,
they are not precisely these values and they can be V =
(a1 +Aaq)i+(agtAag)j+(aztAaz)k and 3+AB mol/m?
where Aaq, Aag, Aas, and A are the amount of uncertainty
in each input parameters. For adding such uncertainties in our
simulation, we employed the non-intrusive PCE method mean-
ing that we did not have to make any changes in the built-in
solver code (see Section II-D). For constructing the PCE, the
expansion in (11) should be truncated (complete description
in Section II-D). Generally, there are two ways of truncating
the PCE: 1) truncating the series up to an order of interest.
For example, if the order of interest is z, then for the series
of (11), we have:

>

#(E1,E2) = am,n Hi,m(Z1)Ho,n(Z2). (18)
0<(n+m)<z
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2) We can consider all possible combinations of the order
for each univariate polynomial. This method which is called
tensor product truncation, given by:

#(E1,E2) = Z Z am,n H1,m(Z1)H2 n(Z2). (19)

0<n<z0<m<z

In this paper, we utilize the first method since it is time-
efficient and does not substantially affect the accuracy [21]. If
the number of the uncertain input parameters is n and the max-
imum order of the applied polynomial is p, then the number of
the terms in the truncated PCE (or size of experimental design)
would be (N :;H'p ) for the first truncation method, and for
the tensor product truncation it would be N = (p +1)™ [21].
After generating N random numbers for each uncertain input
parameter (Legendre polynomials are required if we choose
a uniform distribution and Hermite polynomial for a nor-
mal distribution), the COMSOL code should be evaluated for
these random numbers to obtain the left hand side of (15).
Thereafter, the polynomials on the right hand side of (15) are
also calculated at these points and finally, by solving a lin-
ear regression problem, the a, coefficients will be obtained.
It should be noted that all of the terms in (15) are matrices.
Now, we can construct the expansion and use it as an approx-
imation formula without running the solver for a new set of
random numbers for each uncertain input parameter. The block
diagram that shows each step in building the PCE is shown in
Fig. 2. What is crucial in the context of the regression is the
size of the experimental design or N. If we evaluate the PCE
exactly at N random numbers, it does not result in a stable
series and one finds oscillations in the established PCE (see
Fig. 3-al, -bl, -cl). In Fig. 3-al, -bl, and -cl, each line rep-
resents the concentration as a function of time for each set
of random numbers. For example, for the generated random
number for the velocity vector (V = 3.95i 4 0.023;j — 0.145k),
and for the initial concentration 3.987 mol/m>, we obtain one
of the blue lines in Fig. 3-al and for a different set of random
numbers for these uncertain parameters we then also obtain
a different blue line. In total there are N lines. Fig. 3-al,-bl,
and -cl should display a behaviour that is qualitatively simi-
lar to the simulation results (see inset of Fig. 3-a2, -b2, and
-c2) to give sufficient confidence in the accuracy of the PCE.
Reference to the figures does however reveal that this is not
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Fig. 3. Concentration vs. time profiles. From left to right shows the increasing of the polynomial order (p). First row is for the PCE and the second row is for
the LSPCE. In each column, the p is fixed for better illustration of the increased N. Simulation results also is inset in the LSPCE plots for better comparisons

and seeing how similar are the LSPCE and simulation results.

the case. To resolve this problem, one can choose the size of
the experimental design 2 x N as suggested by many authors
in literature [21], [26]. After evaluating the series in 2 X N
random numbers, it is required to interpolate the results by
means of the least-squares regression (LSPCE). This formal-
ism removes the oscillations and yields a stabilized series (see
Fig. 3-a2, -b2, -c2). It should be noted that the simulation
results in Fig. 3 are Monte Carlo results with very low accu-
racy. For high accuracy Monte Carlo results it requires many
more numerical simulations (e.g., 1000 simulation runs) which
is highly time-consuming. A sample of results obtained from
numerical simulations are included in Fig. 3 to illustrate the
similarity with the LSPCE data.

IV. RESULTS & DISCUSSION
A. Convergence Test of PCE

The number of the uncertain input parameters (n) of
any particular problems is fixed. Increasing the order (p)
of the polynomial improves the convergence of the values
of the coefficients (ayy,5). However, increasing the order of the
polynomial means that a substantially higher number of simu-
lations is required. Therefore a compromise between accuracy
and required computational time is necessary.

Reference to the graphs in Fig. 3-a2, -b2, -c2 reveals that it
is not possible to infer which order of p yields sufficient con-
vergence of the PCE process. Therefore the statistics of the
random outputs have to be considered. To this end the expec-
tation and the variance of the concentration in the Fig. 3-a2,
-b2, -c2 have to be calculated from (7) and (8), respectively.

These two quantities are shown in Fig. 4. It can be seen that
the expectation for p = 2 and p = 3 almost overlap while
there is a significant difference for p = 1 in comparison to
p = 2. The inset in Fig. 4-al displays the absolute difference
of the expectations for p = 2, p =3 and p =2, p = 1.
The figure reveals that the difference is one order of magni-
tude. Thus, using a polynomial of order p = 1 is certainly not
sufficient.

The change of the variance by increasing the polynomial
order is displayed in Fig. 4-a2. It can be seen that the variance
between cases p = 2 and p = 3 changes by one order of
magnitude whereas for p = 1 and p = 2 the change is two
orders. Thus, p = 2 can be considered as an appropriate choice
for the polynomial order. Choosing higher order polynomials
substantially increases the required simulation time with only
minor effects on improving the accuracy of the results.

B. Comparing Different PDFs in PCE

Depending on the input variables different types of PDFs
have to be employed to obtain the most reliable results in
PCE. For instance, for the problem defined in Section III
the dynamic viscosity of water (u) and the turbulent Schmidt
number (Sc) are the uncertain input parameters. The dynamic
viscosity varies with temperature (it is 8.9 x 10~% Pa.s at
25°C). The uncertainty of the turbulent Schmidt number
arises since it is determined experimentally. Fig. 5 displays
predictions for the concentration as a function of time using
normal and uniform PDF distributions for both the viscosity
and the Schmidt number. The figure reveals that the curves
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al) Concentration vs. time using uniform distribution as the PDF of the uncertain input parameters, dynamic viscosity of the water () and turbulent

Schmidt number(Sc), a2) The expectation and variance of the concentration corresponding to the uncertain input parameters with uniform distribution.
bl) Concentration vs. time using Gaussian distribution as the PDF of the uncertain input parameters, b2) The expectation and variance of the concentration

corresponding to the uncertain input parameters with Gaussian distribution.

for the concentration profiles when using a uniform PDF
are smoother than those based on a normal distribution (see
Fig. 5-al and -bl). This is a result of the uniform distribution
being bounded, between -1 and 1, whilst the normal distribu-
tion is not. That is, for input parameters like the dynamic
viscosity of the water which is small and only subject to
small variations considering an unbounded PDF would not
yield reliable results. This issue is further highlighted by the
results for the expectation and variance shown in Fig. 5-a2
and -b2. The variance for a uniform PDF in Fig. 5-a2 is two

orders of magnitude smaller than that for the normal PDF in

Fig. 5-b2.

C. Statistical Results

1) Multiple Uncertainties: In Fig. 6 we employed the
LSPCE approach to investigate the statistical properties of the
TDMC channel with one of the input parameters being sub-
ject to uncertainty only. In Fig. 6-al the uncertain parameter
is ¢g, in Fig. 6-a2 to -a4 the uncertain parameters are differ-
ent components of the inlet velocity (V = ugt + vpj + wok).
Six simulations per parameter (M 2 = a2t 2 =

per p nlpl 21

3 x 2 = 6 LSPCE) were performed to construct the PCE.
The expansion was then used to calculate the concentration for
10000 different cases, and the random number being generated
from a uniform distribution in each case. The ratio between
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10000 concentration profiles obtained by LSPCE for uncertain input parameters of (al) ¢y (a2) ug, (a3) vg (a4) wg. (a5) Average signal peaks to

average and (a6) Variance in signal peaks for all of 10000 concentration profiles for each uncertain input parameter.

the computational times required to arrive at the same result
by means of 10000 3D COMSOL Monte Carlo simulations
and the LSPCE simulations is of the order of 10°.

2) Communication Performance Impact: The varying color
density displayed by the plots in Fig. 6-al-a4 moreover illus-
trates that the uncertainty in the input is mostly reflected in the
peak of the channel response while the tail is not affected. This
means that only the signal strength is subjected to be affected
by the uncertainty while the inter-symbol-interference (ISI)
is not.

It can also be seen that the channel response is more sen-
sitive to the uncertainty of the inlet velocity compared to the
initial concentration. This represents a crucial result in the con-
text of experiments. It implies that geometric details of piston
and cylinder of the transmitter, which govern the inlet velocity
have a stronger effect on measured data than the amount of
the released molecules.

Finally, the received ratio of average signal peaks to average
is important from the perspective of the power amplifier lin-
earity, which needs to convert molecular count into a received
signal. The table in Fig. 6-a5 illustrates that the ratio is not
significantly affected by introducing uncertainty in the ini-
tial concentration or inlet velocity. Table in Fig. 6-a6, which
displays the variance in signal peaks, demonstrates that uncer-
tainty in the initial concentration leads to more noise in the
channel compared to uncertainty in the inlet velocity.

V. CONCLUSION & FUTURE WORK

Currently we do not understand how uncertainty or noise in
a variety of parameters affect the received signal concentra-
tion, and neither do we have an analytical framework to tackle
this challenge. In this paper, we utilized Polynomial Chaos

Expansion (PCE) to show how uncertainty in parameters prop-
agates to uncertainty in the received signal. The PCE method
has a significant time saving compared to Monte-Carlo sim-
ulations and offers theoretical insight. The analytical results
are validated using multi-physics COMSOL simulations in a
Turbulent Diffusion Molecular Communication (TDMC) chan-
nel. Our uncertain parameters are initial concentration, injec-
tion velocity, dynamic viscosity of the water, and turbulent
Schmidt number. We demonstrated that how the uncertainty in
the aforementioned parameters propagates through the channel
and can affect the received signal response.

The research conducted here in PCE and uncertainty prop-
agation can pave the way for future information theoretic
insights, as well as guide experimental design. In the future, we
will focus on understanding the channel capacity as a function
of uncertainty.

REFERENCES

[1]1 T. D. Wyatt, Pheromones and Animal Behavior: Chemical Signals and
Signatures. Cambridge, U.K.: Cambridge Univ. Press, 2014.

B. D. Unluturk and I. F. Akyildiz, “An end-to-end model of plant
pheromone channel for long range molecular communication,” /EEE
Trans. Nanobiosci., vol. 16, no. 1, pp. 11-20, Jan. 2017.

N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A
comprehensive survey of recent advancements in molecular communi-
cation,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1887-1919,
3rd Quart., 2016.

M. Icardi, G. Boccardo, D. Marchisio, T. Tosco, and R. Sethi,
“Pore-scale simulation of fluid flow and solute dispersion in three-
dimensional porous media,” Phys. Rev. E, Stat. Phys. Plasmas Fluids
Relat. Interdiscip. Top., vol. 90, no. 1, 2014, Art. no. 013032.

I. F. Akyildiz, M. Pierobon, S. Balasubramaniam, and Y. Koucheryavy,
“The Internet of bio-nano things,” IEEE Commun. Mag., vol. 53, no. 3,
pp. 3240, Mar. 2015.

F. Sonnenwald, V. Stovin, and I. Guymer, “Configuring maximum
entropy deconvolution for the identification of residence time distribu-
tions in solute transport applications,” J. Hydrol. Eng., vol. 19, no. 7,
pp- 1413-1421, 2014.

[2]

[3]

[4]

[5]

[6]



256

[71

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL, AND MULTI-SCALE COMMUNICATIONS, VOL. 4, NO. 4, DECEMBER 2018

A. Guida, A. W. Nienow, and M. Barigou, “Shannon entropy for local
and global description of mixing by Lagrangian particle tracking,” Chem.
Eng. Sci., vol. 65, no. 10, pp. 2865-2883, 2010.

W. Guo, T. Asyhari, N. Farsad, H. Yilmaz, A. Eckford, and C. Chae,
“Molecular communications: Channel model and physical layer tech-
niques,” IEEE Wireless Commun., vol. 23, no. 4, pp. 120-127,
Oct. 2016.

E. Kennedy, P. Shakya, M. Ozmen, C. Rose, and J. Rosenstein,
“Spatiotemporal information preservation in turbulent vapor plumes,”
Appl. Phys. Lett., vol. 112, Jun. 2018, Art. no. 264103.

M. Abbaszadeh, P. J. Thomas, and W. Guo, “Towards high capacity
molecular communications using sequential vortex rings,” IEEE Trans.
Mol. Biol. Multi-Scale Commun., vol. 4, no. 1, pp. 39-42, Mar. 2018.
M. Abbaszadeh, H. B. Yilmaz, P. J. Thomas, and W. Guo, “Linearity of
sequential molecular signals in turbulent diffusion channels,” in Proc.
IEEE Int. Conf. Commun. (ICC), 2019, pp. 1-6.

L. Mathelin, M. Y. Hussaini, and T. A. Zang, “Stochastic approaches
to uncertainty quantification in CFD simulations,” Numer. Algorithms,
vol. 38, nos. 1-3, pp. 209-236, 2005.

M. Farazmand and T. P. Sapsis, “A variational approach to probing
extreme events in turbulent dynamical systems,” Sci. Adv., vol. 3, no. 9,
2017, Art. no. e1701533.

P. Hennig, M. A. Osborne, and M. Girolami, “Probabilistic numerics
and uncertainty in computations,” Proc. Roy. Soc. A, vol. 471, no. 2179,
pp. 1-17, Jun. 2015.

S. Hosder, R. Walters, and R. Perez, “A non-intrusive polynomial chaos
method for uncertainty propagation in CFD simulations,” in Proc. 44th
AIAA Aerosp. Sci. Meeting Exhibit, 2006, p. 891.

K. V. Srinivas, A. W. Eckford, and R. S. Adve, “Molecular communica-
tion in fluid media: The additive inverse Gaussian noise channel,” IEEE
Trans. Inf. Theory, vol. 58, no. 7, pp. 4678-4692, Jul. 2012.

S. Qiu et al., “Molecular channel fading due to diffusivity fluctuations,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 676-679, Mar. 2017.

W. Haselmayr, S. M. H. Aejaz, A. T. Asyhari, A. Springer, and
W. Guo, “Transposition errors in diffusion-based mobile molecular
communication,” IEEE Commun. Lett., vol. 21, no. 9, pp. 1973-1976,
Sep. 2017.

H. Acikgoz and R. Mittra, “Statistical analysis of electromagnetic struc-
tures and antennas using the polynomial chaos expansion method,”
in Proc. IEEE 11th Eur. Conf. Antennas Propag. (EUCAP), 2017,
pp. 798-800.

F. Boeykens, H. Rogier, and L. Vallozzi, “An efficient technique based on
polynomial chaos to model the uncertainty in the resonance frequency of
textile antennas due to bending,” IEEE Trans. Antennas Propag., vol. 62,
no. 3, pp. 1253-1260, Mar. 2014.

N. E. Owen, “A comparison of polynomial chaos and Gaussian process
emulation for uncertainty quantification in computer experiments,” Ph.D.
dissertation, Dept. Math., Univ. Exeter, Exeter, U.K., 2017.

D. Xiu and G. E. Karniadakis, “Modeling uncertainty in flow simulations
via generalized polynomial chaos,” J. Comput. Phys., vol. 187, no. 1,
pp. 137-167, 2003.

T. S. Chihara, An Introduction to Orthogonal Polynomials. Mineola, NY,
USA: Courier Corporat., 2011.

R. Walters, “Towards stochastic fluid mechanics via polynomial chaos,”
in Proc. 41st AIAA Aerosp. Sci. Meeting Exhibit, Reno, NV, USA, 2003,
pp. 1-13.

P. J. Roberts and D. R. Webster, Turbulent Diffusion. Reston, VA, USA:
ASCE Press, 2002.

S. Hosder, R. W. Walters, and M. Balch, “Efficient sampling for non-
intrusive polynomial chaos applications with multiple uncertain input
variables,” in Proc. 48th AIAA/ASME/ASCE/AHS/ASC Struct. Struct.
Dyn. Mater. Conf., 2007, p. 1939.

Mahmoud Abbaszadeh received the B.S. degree
in mechanical engineering, heat and fluids, and the
M.Sc. degree in mechanical engineering and energy
conversion from the University of Kashan, Iran, in
2013 and 2015, respectively. He is currently pursu-
ing the Ph.D. degree in molecular communication
with the University of Warwick, U.K. His research
interests include information capacity of turbulent
diffusion channel, uncertainty quantification, and
DNA data storage and communication.

Giannis Moutsinas received the degree in physics
(with a major in mathematical physics) from
the Aristotle University of Thessaloniki in 2008,
the M.Sc. degree in mathematics from Utrecht
University in 2011, and the Ph.D. degree in math-
ematics from the University of Warwick in 2016,
studying the asymptotic behavior of dynamical
systems. Currently, he is a Research Fellow with
the School of Engineering, University of Warwick.
His research interests include dynamical systems,
complexity theory, and uncertainty quantification.

Peter J. Thomas received the Dipl.-Phys. and
Dr.rer.nat. degrees in physics from the Georg-
August-Universitit, Gottingen, Germany, in 1988
and 1991, respectively. He was with the Max-
Planck Institute of Fluid Mechanics and Applied
Mechanics, Gottingen, and then the German
Aerospace Centre (DLR), Gottingen. In 1992, he
joined the Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, U.K.
In 1995, he joined the University of Warwick, where
he was promoted to Professor in 2008 and where he
is the Director of the Fluid Dynamics Research Centre. His current research
interests include the experimental and theoretical investigations of problems
in fluid dynamics and of nonlinear mechanical processes in general. He was
a recipient of the International Union of Applied and Theoretical Mechanics
Bureau Prize in 1996. He is a member of the European Mechanics Society.

Weisi Guo (S’07-M’11-SM’17) is an Associate
Professor and a Turing Fellow. He heads the
Data-Embedded-Networks Laboratory, University of
Warwick. His research interests include molecu-
lar communications, wireless networks, complex
networks, and social physics. He has published over
110 peer-reviewed papers, won awards from the
IEEE and IET, and been a finalist for the Bell Labs
Prize. His research has been widely published on the
BBC, Nature, and The Economist.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


