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Uncertainty Quantification
of Time-Dependent Quantities
in a System With Adjustable
Level of Smoothness
We summarize the results of a computational study involved with uncertainty quantifica-
tion (UQ) in a benchmark turbulent burner flame simulation. UQ analysis of this simula-
tion enables one to analyze the convergence performance of one of the most widely used
uncertainty propagation techniques, polynomial chaos expansion (PCE) at varying levels
of system smoothness. This is possible because in the burner flame simulations, the
smoothness of the time-dependent temperature, which is the study’s quantity of interest
(QoI), is found to evolve with the flame development state. This analysis is deemed impor-
tant as it is known that PCE cannot construct an accurate data-fitted surrogate model for
nonsmooth QoIs, and thus, estimate statistically convergent QoIs of a model subject to
uncertainties. While this restriction is known and gets accounted for, there is no under-
standing whether there is a quantifiable scaling relationship between the PCE’s conver-
gence metrics and the level of QoI’s smoothness. It is found that the level of QoI’s
smoothness can be quantified by its standard deviation allowing to observe its effect on
the PCE’s convergence performance. It is found that for our flow scenario, there exists a
power–law relationship between a comparative parameter, defined to measure the PCE’s
convergence performance relative to Monte Carlo sampling, and the QoI’s standard devia-
tion, which allows us to make a more weighted decision on the choice of the uncertainty
propagation technique. [DOI: 10.1115/1.4053161]

1 Introduction

Fluctuating operating conditions are ubiquitous in applied envi-
ronments and need to be considered when performing computa-
tional estimates of the relevant system characteristics [1]. This
can be achieved by utilizing a technique termed uncertainty quan-
tification (UQ). This is a methodology aiming to understand how
predictions of a numerical model are affected by sources of uncer-
tainty. One of the types of UQ problems is the forward propaga-
tion of uncertainty, which estimates the resultant uncertainty in
model outputs propagated from uncertain inputs, in the form of
low-order moments of the outputs, i.e., mean and variance. Within
UQ, a given model output is referred to as the quantity of interest
(QoI).

In this work, we consider computational fluid dynamics (CFD)
models subject to uncertain inputs in which the input–output rela-
tion is governed by the Navier–Stokes equations, which are non-
linear partial differential equations (PDEs). For a review of the
available UQ methods with a particular focus on CFD applica-
tions, the reader is referred to Refs. [2] and [3].

In UQ, the moments of the output distribution of QoI(s) may be
computed via random sampling methods and nonrandom methods
that are strategic in their sample selection. Random sampling
methods include Monte Carlo (MC) [4], Quasi-Monte Carlo [5],
and importance sampling [6]. Nonrandom methods include
response surface [7,8] and polynomial chaos expansion (PCE)-
based methods [9]. The choice of the UQ method depends on the
system dynamics through which the uncertainty is to be propa-
gated. The system dynamics under consideration refers to the
smoothness of the underlying mathematical model responsible for
calculating a QoI. For the purpose of our work, we understand
smooth in the context of practical uncertainty quantification. A
time-dependent QoI is considered to be smooth if its frequency is

low enough to be surrogated with low-order nonsampling methods
such as PCE [10].

If QoI exhibits smooth behavior, as is often demonstrated by a
range of mathematical models, polynomial chaos expansion tech-
niques are best suited to address such problems. This is because
PCE is capable of accurately approximating smooth models using
spectral representation of the uncertain quantities by expansion in
an orthogonal polynomial basis. Evaluating a polynomial repre-
sentation requires much less computational resources compared to
the evaluation of an actual model, which makes the sampling of
the parameter space far less computationally expensive [11].
When PCE is used to quantify uncertainty in a smooth system
with finite variance, it provides exponential convergence at rela-
tively low computational costs [12], and therefore PCE is the
most commonly used UQ propagation technique when dealing
with smooth processes [13].

The term convergence is used if an uncertainty propagation
technique manages to determine the relevant statistical moments
of a QoI that have converged and would no longer benefit from
further increase in the sample size, providing an insight into the
realistic system response when subjected to uncertainty. A syn-
thetic example demonstrating converged and nonconverged UQ
scenarios is given in Fig. 1.

Despite the clear advantages of the PCE method when used to
quantify uncertainty in smooth processes, it fails to build an accu-
rate surrogate model when applied to a system where time-
dependent QoI(s) exhibit nonsmoothness and as a result, PCE cal-
culates moments of a QoI that are not converged [14,15]. This
occurs because as the nonsmooth QoI evolves, the degree of
PCE’s expansion polynomials must rapidly increase to capture the
evolution of a QoI and maintain the accuracy of the expansion
[16–20]. For this to occur, the system does not even have to be
chaotic—it can be nonchaotic but of nonlinear nature [16]. As
these types of systems evolve, their solutions start to develop their
own random characteristics. Thus, the probability density function
of a QoI evolves with time, and the PCE’s orthogonal polyno-
mials, which are optimal initially, lose their optimality at later
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instants. The increase in polynomial order only postpones the
problem to a later instant in time. For a specified polynomial
order, the error adds up and becomes unacceptable after some
time. In short, PCE cannot build accurate surrogate models,
including CFD-based models [21] that are nonsmooth. Clearly, if
the surrogate fit is not representative of the underlying model, the
PCE-based forward propagation of uncertainty will result in non-
convered moments of a QoI.

This is restrictive because in the area of fluid mechanics, for
example, flows and corresponding QoIs, such as velocity magni-
tude or pressure, develop nonsmoothness beyond a certain Reyn-
olds number rendering PCE as ineffective. However, the ability to
quantify uncertainty in nonsmooth simulations (such as turbulent
CFD models) at manageable computational costs is recognized as
an important area for development [22]. This has resulted in
authors attempting to make PCE resistant to chaos, nonlinearity
and the resulting nonsmoothness. To this end, Kantarakias et al.
[13] coupled PCE with the multiple shooting shadowing [23]
method and applied it to two standard chaotic systems, the Lorenz
system and the Kuramoto–Sivashinsky equation. It was found that
at the quadrature integration points of PCE, the resulting regulari-
zation lead to accurate results that matched well with the Monte
Carlo simulations at significantly lower computational costs. Paul-
son et al. [24] developed a nonsmooth polynomial chaos expan-
sion (nsPCE) method as an extension of traditional PCE that can
handle the nonsmooth nature of computationally expensive
dynamic models. The main idea behind nsPCE is to systematically
partition the parameter space into two nonoverlapping elements
on which the model response behaves smoothly. Separate PCE
models are then fitted in both elements using a basis-adaptive
sparse regression approach. The effectiveness of the method was
demonstrated on a nonsmooth dynamic flux balance analysis
model of an E. coli monoculture.

PCE’s inability to build accurate surrogate models has been
documented for unsteady flows, where each realization is slightly
different in phase [16,19,21,25] and also in turbulent flows
[26–29], which puts a severe limitation on applying the propaga-
tion technique in nearly any realistic fluid flow simulation. The
only way to bypass this and apply PCE to a turbulent or unsteady
fluid flow simulation is to build a surrogate based on specific QoIs
that are smooth and steady despite the flow itself being turbulent
or unsteady. Examples of smooth QoIs in non-smooth CFD simu-
lations include statistical moments of decaying homogeneous iso-
tropic turbulence [30] and root-mean-square values of velocity,
temperature, and mixture fraction at specific domain locations
[31]. Usually, an applied user would like to assess more typical
QoIs such as temperature or pressure, which usually represent the
general fluid-flow characteristics that are often turbulent. In sum-
mary, PCE cannot be applied to nonsmooth QoIs; thus, the follow-
ing choice is presented when quantifying uncertainty in
nonsmooth systems: use sampling methods such as Monte Carlo
sampling or use PCE coupled with a mechanism that can

somehow deal with nonsmooth system dynamics. However, the
former method is computationally restrictive as it relies on the
law of large numbers needing many model evaluations for statisti-
cal convergence and the latter is still in the area of novel research
that is most likely to be unavailable to an applied user.

Thus, the aim of this work is to take a step back and try to quan-
tify the relationship between the PCE’s convergence behavior and
the dynamics of the underlying system. Specifically, we want to
understand whether there is a quantifiable relationship between
the PCE’s convergence metrics and the level of smoothness of
quantatites of interest.

To this end, we perform an uncertainty quantification study of
CFD-based combustion simulations with contrasting system
dynamics: a real turbulent burner flame and a theoretical laminar
flame front. This aims to showcase the effect of flow state and the
underlying system dynamics on the convergence performance of
the PCE technique. In both cases, the forward propagation of
uncertainty in the injection speed of the fuel stream will be per-
formed with respect to temperature, T, in the area of flame stabili-
zation; thus, T is the QoI of this study. Setting the flame
temperature as the QoI is a common direction of UQ analyses of
combustion models [32].

The above-mentioned approach allowed to empirically show
the existence of a power law scaling linking the convergence per-
formance of PCE in relation to MC to the degree of smoothness of
a QoI as measured by its standard deviation. We believe that the
established metric will allow those requiring UQ to make a more
informed decision about the uncertainty propagation technique to
be used depending on the degree of smoothness exhibited by the
problem.

The reason for using combustion models, specifically the burner
model as the basis of this study, is due to the fact that such models
present the opportunity to analyze the temperature response at dif-
ferent simulation time steps, each representing a unique model
solution, thus representing a unique QoI response. In such a
model, different simulation time steps correspond to different lev-
els of temperature smoothness enabling one to analyze the effect
of QoI dynamics on the PCE’s convergence performance within
the same system by performing UQ analysis at different simula-
tion times. Furthermore, because the burner flame is a continually
and naturally developing structure, there are no issues arising
from the fact of capturing identical model solutions at different
simulation time steps such as in a CFD model of a flow past a
cylinder.

2 Uncertainty Quantification Methods

The focus of the study is to assess the convergence performance
of PCE at varying levels of system smoothness. To analyze the
change in the PCE’s performance, its convergence metrics are
compared against corresponding results obtained by means of MC
sampling.

For the MC method, a number of independent samples, M is
drawn randomly from probability-approximated uncertainty, x
and these are then propagated through the underlying model, f.
Having obtained M model evaluations at the time of interest, t, the
moments (i.e., mean or variance) of f ðt;xÞ are computed, making
it a very straightforward yet robust, assumption-free and easy to
parallelize UQ technique. The higher M, the better the moments
of a QoI will have converged. Mathematically, x is a probability
distribution of a given type that best describes the relevant uncer-
tainty. An example of a probability-approximated x would be a
normal distribution with mean, l and standard deviation, r:
x � Nðl;r2Þ. Other distributions can be employed if necessary.

Unlike the MC procedure, the PCE methodology is a
nonsampling-based technique capable of approximating the model
response at t and x, f ðt;xÞ as a spectral expansion in terms of
orthogonal polynomials, /nðxÞ and expansion coefficients,
f̂ nðtÞ—a procedure in some ways analogous to Fourier decompo-
sition. However, rather than employing sines and cosines as an

Fig. 1 Synthetic example demonstrating converged and non-
converged UQ scenarios
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orthogonal base for the decomposition, other functions are used.
For example, if the underlying distribution of the uncertain param-
eters, x is Gaussian, then the associated orthogonal polynomials
are Hermite polynomials and if x is uniform, they are Legendre
polynomials [33]. In general, one can construct orthogonal poly-
nomials for arbitrary distributions [34]. For practical computa-
tions, the spectral expansion, mathematically formulated as an
infinite series is truncated to Nth order and rearranged for f̂ nðtÞ
exploiting the orthogonality of the underlying basis. The rear-
ranged expression takes the form of an integral that is numerically
approximated using Gaussian quadrature [35], which generates a
number of nodes, xp needing model propagation and weights, wp

used in the integral approximation according to the quadrature
degree, P. In theory, the higher the P, the higher the integral
approximation accuracy will be and subsequently more converged
moments are attained via the PCE method. Having obtained the
expansion coefficients at the time of interest, f̂ nðtÞ, the moments
of f ðt;xÞ are computed solely based on the obtained coefficients.
The steps involved in applying the algorithms of the two methods
are summarized in Table 1, which demonstrates the difference in
the implementation complexity of the two techniques.

3 Computational Platforms

The two nonintrusive UQ techniques considered, PCE and MC,
are applied to two benchmark combustion cases. These are Sandia
flame D and counter flow flame, which were modeled with CFD.
Their nature and features are briefly summarized below.

3.1 Sandia Flame D. Sandia flame D is the well-known air-
piloted coaxial methane jet burner experiment conducted by the
Sandia National Laboratories [36]. The turbulent flame operates at
a high Reynolds number of 22,400 with little or no local

extinction even at modest pilot. The mixing rates are sufficiently
high such that the flame speed is limited by the diffusion rate with
a well-defined reaction zone. Despite those good operating char-
acteristics, the burner flame is not a demanding simulation with a
simple geometry and is very well documented providing high
quality experimental data. This made the case one of the most
widely used benchmark problems in the validation of new numeri-
cal combustion models [37–40]. Briefly, the fuel stream is injected
at 49.6 m/s from a round nozzle with a diameter, d of 7.2 mm and
comprises 15% methane, and 85% air by mass. The burner is situ-
ated in a coflow with a bulk velocity of 0.9 m/s.

3.2 Counter Flow Flame. Counter flow flame is a combus-
tion system in which pure methane gas and air move toward each
other at equal low speeds of 0.1 m/s and upon sufficient mixing
react around the center of the symmetrical domain, forming a lami-
nar flame front. From the start, the computational domain is heated
to 2000 K providing the necessary activation energy. OPENFOAM’s
counter flow flame case is based on the work around validated axy-
symmetric counterflow flame simulations by Johnson et al. [41].

3.3 OPENFOAM Implementation. The numerical simulation of
both cases was carried out using the open-source CFD tool—OPEN-

FOAM v7. In fact, both Sandia flame D and counter flow flame
cases were simulated as part of the OPENFOAM in-built combustion
tutorial family and did not require any modifications except for a
mesh refinement in the Sandia flame D case. For reference, the
OPENFOAM-specific names of these cases are “SandiaD_LTS” and
“counterFlowFlame2DLTS_GRI_TDAC”. Both cases were simu-
lated using the transient, compressible solver for nonpremixed
combustion of gaseous fuels named reactingFoam. The reacting-
Foam solver works through the Favre-filtered Navier–Stokes and
continuity equations to solve for momentum, species mass

Table 1 Implementation algorithms of Monte Carlo (MC) and polynomial chaos expansion (PCE) methods

Monte Carlo (MC) Polynomial chaos expansion (PCE)

1. Generate M samples of x : fxigM
i¼1 1. Equate model as : f ðt;xÞ ¼

P1
n¼0

f̂ nðtÞ/nðxÞ 4. Solve using Gaussian quadrature :
PP�1

p¼0

f ðt; xpÞ/nðxpÞwp

2. Evaluate model at each xi : yi ¼ f ðt;xiÞ 2. Truncate to N : f ðt;xÞ �
PN�1

n¼0

f̂ nðtÞ/nðxÞ 5. Generate orthogonal polynomials, /nðxÞ

3. Calculate moments of f ðt;xÞ : 3. Rearrange for f̂ nðtÞ :

ð
X

f ðt;xÞ/nðxÞdx 6. Specify values of P, N : N � 1

2
P (sufficient)

E½f ðt;xÞ� ¼ 1

M

XM

i¼1

yi 7. Algorithm for calculating f̂ nðtÞ :

Var½f ðt;xÞ� ¼ 1

M � 1

XM

i¼1

ðyi �E½f ðt;xÞ�Þ2 Input: P, N, and x

Select/generate orthogonal polynomials, /nðxÞ

M¼ number of MC samples for n¼ 0 to N–1 do:

x¼ probability-approximated uncertainty for p¼ 0 to P–1 do:

t¼ time at which model output is assessed Generate nodes and weights : fxp;wpgP�1
p¼0 (per Gaussian quadrature)

f ðt;xÞ¼model output at t and x Evaluate the underlying model at xp : f ðt; xpÞ

E¼ expectation value Obtain coefficients: f̂ nðtÞ �
PP�1

p¼0

f ðt; xpÞ/nðxpÞwp

Var¼ variance 8. Calculate moments of f ðt;xÞ :

f̂ nð Þ¼PCE expansion coefficients of order n E½f ðt;xÞ� ¼ f̂ 0ðtÞ

/nð Þ¼ orthogonal polynomial of order n Var½f ðt;xÞ� ¼
PN�1

n¼1

f̂
2

nðtÞ

N¼ truncation order

P¼ quadrature degree

x, w¼ quadrature nodes and weights
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fraction and energy to simulate compressible, reacting flow. For a
detailed description of the reactingFoam solver refer to Andersen
et al. [42]. Briefly, the solver is based on the PIMPLE (pressure
implicit split operator-semi-implicit method for pressure-linked
equations) algorithm for pressure–velocity coupling and is stabi-
lized by the local time stepping (LTS) scheme [43], which maxi-
mizes the individual time-step for each individual cell size. In
practice, a single LTS iteration corresponds to a unique Dt value;
thus, the physical time of the simulation is equal to the sum of all
individually calculated Dt values for each LTS iteration.

When simulating Sandia flame D case, it was first ran for
1500 LTS iterations with chemistry deactivated to achieve a cold
profile and then with chemistry activated until 8000 LTS
iterations—the time of flame stabilization. The flame stabilization
in the counter flow flame case is achieved after 1500 LTS itera-
tions. In this study, the number of LTS iterations will be used as a
measure of the simulation progress in time. For further reference,
the simulation state at the LTS-time correspondent to flame stabi-
lization is referred to as stabilized flow.

The submodels used in conjunction with the LTS-stabilized
reactingFoam solver for both cases are shown in Table 2. The
employed submodels used in the OPENFOAM Sandia flame D simu-
lation are those submodels that have been found to produce the
best results in terms of their similarity to the experimental data
[49].

3.4 Results at Deterministic Setting. The computational
domain housing the resulting temperature field at the specified
boundary conditions of the unmodified counter flow flame case at
the time of flame stabilization (1500 LTS) is shown in Fig. 2. For
this case, the forward propagation of uncertainty is performed
with respect to the rectangular sampling zones 1 and 2, which
cover most of the perpendicular area of the formed flame stabili-
zation front.

The diameter (d)-normalized computational domain of Sandia
flame D housing the temperature field, simulated using the
described implementation approach, at the time of flame stabiliza-
tion (8000 LTS) and at the specified boundary conditions is shown
in Fig. 3(a). The computational domain and mesh were obtained
from the original OPENFOAM Sandia flame D tutorial. The domain
is reduced to an axisymmetric 20 deg wedge, exploiting the
flame’s rotational symmetry to save on computational cost. The
only modification made to the original mesh was that it was
refined from 5170 cells to 25,850 cells. This is in line with work
by Kadar [50] who found that for the reactingFoam-based simula-
tion of Sandia flame D the results with 23,340 cells are optimal
both in terms of estimation accuracy and computational cost. As
shown in Fig. 3(b), the results obtained from the simulated Sandia
flame D case are in good agreement with the experimental temper-
ature, which was measured along the diameter(d)-normalized
axis, x/d as well as in the normalized radial direction, r/d.

For Sandia flame D, the forward propagation of uncertainty is
performed with respect to the 103 sampling zones. These are
equally sized rectangles covering the entire flame stabilization
area, as illustrated in Fig. 3(a). This number of 103 sample areas
arises when trying to balance two factors: avoiding the excessive

averaging of the QoI and computer storage limitations. In princi-
ple, it would be desirable to sample QoI results from every com-
putational point of the domain (23,340 points) in order to avoid
any QoI-averaging. However, this is prohibitive in terms of stor-
age requirements. This is because for each sampling zone, the QoI
results are recorded for every computational time-step (8000 time
steps in total). This is needed as part of the upcoming analysis
aimed at finding the time when the QoI has the highest standard
deviation and with many model evaluations needing to be done as
part of the MC and PCE analysis, it makes it prohibitive to sample
QoI from each computational point.

The use of sampling zones, in the form of rectangles, lines, and
circles, is a normal practice as it is more often that an applied user
would like to estimate the resultant uncertainty in model outputs
in a sizeable part of the computational domain rather than at a sin-
gular computational point.

4 Characterization of Uncertain Input Space

Having obtained a validated CFD model of the Sandia flame D
case and a CFD model of the unmodified counter flow flame case,
the uncertainty quantification and subsequent convergence study
may now be performed. First, an uncertainty needs to be intro-
duced into the simulations. For both simulations, it was decided to
propagate the uncertainty, approximated as normal probability
distribution, in the injection velocity of the fuel stream: for Sandia
flame D the fuel stream is termed as “inletCH4” and for counter
flow flame “fuel inlet” as shown in Figs. 3(a) and 2. The

Table 2 Submodels employed in conjunction with reactingFoam solver when simulating Sandia flame D and counter flow flame
cases

Submodels/simulation Sandia flame D Counter flow flame

Turbulence RANS k � e turbulence model [44] n/a (laminar combustion)

Chemistry GRI-MECH 3.0 [45] GRI-MECH 3.0

Flow—chemistry interaction Eddy dissipation concept [46] Tabulation of dynamic adaptive chemistry [47]

Radiation P1-approxiamtion [48] n/a

Solver LTS-stabilized reactingFoam LTS-stabilized reactingFoam

Fig. 2 Counter flow flame’s resulting T field at 1500 LTS simu-
lated using OPENFOAM with corresponding boundary conditions
all given in SI units and zones where the quantity of interest is
sampled from. Note, zG stands for the Neumann boundary con-
dition zeroGradient.
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uncertainty in the injection speed of the fuel stream in the Sandia flame
D experiment [36] was reported to be 49:662 m=s and is propagated
in this study. For the counter flow flame, a similar uncertainty of 5%
of the mean value is propagated. In both cases, forward propagation of
uncertainty in the injection speed of the fuel stream is performed at the
respective times of the flame stabilization for the QoI of T. Mathemati-
cally, these uncertainty frameworks can be expressed as:

Sandia flame D

f ðt;x � Nðl; r2ÞÞ ! Tð8000 LTS;Nð49:6; 2ÞÞ

Counter flow flame

f ðt;x � Nðl; r2ÞÞ ! Tð1500 LTS;Nð0:1; 0:005ÞÞ

5 Convergence Study Framework

The convergence study will be based on the comparison of the
MC and PCE obtained temperature means, T-means at the
selected sampling zones. Both techniques are allocated the same
computational allowance for effective technique comparison,
which is measured in the number of model evaluations the technique

requires to obtain a given T-mean value in a given sampling zone.
The number of model evaluations ranges from 2 to 16. Since the UQ
problems in question are 1D, the increasing quadrature order of the
PCE method does not result in the exponential growth of the number
of nodes needing model propagation; thus, for a given number of
model evaluations in 1D setting, the number of MC runs, M is equal
to the PCE’s quadrature order, P (see Table 1).

The outlined convergence study, with respect to the defined
Sandia flame D uncertainty framework, is performed for three
sampling zones 27, 35, and 60 as shown in Fig. 4(a). Note, for
these three sampling zones, the upcoming analyses will be done
explicitly for demonstrative proposes and there is no specific reason
for the choice of these zones apart from the fact they are from differ-
ent parts of the computational domain. However, the overall analysis
will be conducted for all 103 sampling zones. The convergence study,
with respect to the defined counter flow flame uncertainty framework,
is performed for sampling zones, 1 and 2, as shown in Fig. 4(b).

In this study, the convergence of a propagation technique is
quantified as a variance of all the obtained T-mean values (15 in
total). An uncertainty propagation technique with lower variance
of the obtained T-means can be deemed as the better, more per-
formant technique with higher convergence. To demonstrate the
use of the introduced terms, consider the convergence plot for
Sandia flame D’s sampling zone 27 shown in Fig. 4(a): the

Fig. 3 (a) Sandia flame D’s resulting T field at 8000 LTS simulated using OPENFOAM with corresponding boundary conditions all
given in SI units and zones (103 in total) where the Quantity of Interest is sampled from, (b) plots of simulated and experimen-
tal temperature, T data in radial and axial direction of Sandia flame D case
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variance of the PCE-obtained means was 5.8 and 1.6 for MC-
obtained means, making PCE the less performant propagation
technique in this particular case.

6 Differences in the Underlying System Dynamics

As evident from Fig. 4(a), the T-means calculated using both
propagation techniques for all three selected sampling zones (27,
35, and 60) of Sandia flame D fluctuate significantly, even with
PCE at higher orders of quadrature. Both MC and PCE demon-
strate poor convergence properties. Moreover, the PCE-obtained
T-means show no better convergence than the MC-obtained T-
means at the same number of model evaluations.

With the counter flow flame simulation, the convergence
behavior is opposite to that in Sandia flame D, with PCE being
significantly more performant than MC, converging to a T-mean
value in an instantaneous manner, requiring only two model eval-
uations (second order of quadrature) with PCE, for sampling
zones 1 and 2 as can be seen in Fig. 4(b). As we can see for sam-
pling zone 2, the variance of the PCE-obtained T-means is 2.1 and
427.8 with MC, which suggests that PCE calculates significantly
more convergent statistics than MC given the same computational
resources. The PCE’s superior to MC convergence behavior is
also observed for sampling zone 1.

This result prompts the question regarding the origin of the dif-
ference for the two cases in respect of their PCE convergence
behavior. To establish this, a sensitivity study is carried out in
which both models are subject to 16 fuel injection velocities cor-
respondent to the nodes generated at the 16th order of Gauss
quadrature according to the respective x definitions and propa-
gated as part of the PCE algorithm (see Fig. 5).

Analyzing Fig. 5, it is evident that in the Sandia flame D’s case
at 8000 LTS, a high degree of QoI nonsmoothness is observed.
Although, the curves demonstrate predictable, related one-to-
another behavior at first, past the point of reaching approximately
2000 K they diverge and eventually appear to be unrelated, fluctuat-
ing around the flame temperature, which can be described as cha-
otic behavior. As established, systems exhibiting chaos and, as a
result, high level of QoI nonsmoothness cannot be approximated by
the PCE’s spectral expansion; thus, the PCE-UQ analysis shows
poor results that are no better than that of small-sample MC.

In the counter flow flame case, the system does not exhibit non-
smooth QoI behavior at any point during the simulation. At the

time of flame stabilization (1500 LTS), each quadrature node cor-
responds to a clearly defined, predictable temperature trajectory,
which in turn results in each quadrature node contributing its
clearly weighted role in the construction of an accurate PCE sur-
rogate model and subsequent highly convergent PCE-UQ analysis
as was seen in Fig. 4(b).

Within the CFD framework, the above differences in the system
dynamics can be illustrated by plotting the standard deviation map
of the QoI. To this end, the local standard deviation in tempera-
ture, rT is calculated based on 100 MC samples drawn from the
respective x definitions. The result of this procedure is illustrated
in Fig. 6. The figure reveals that the counter flow flame case fea-
tures a well-defined and relatively high rT front at and near the
position of flame stabilization. On the contrary, the Sandia flame
D case features a dispersed and relatively low rT front at and near
the position of flame stabilization.

Based on the obtained maps of standard deviation, a conclusion
can be drawn that the PCE UQ analysis of sampling zones housing
higher standard deviation of the QoI significantly outperforms
MC-based forward propagation of uncertainty. This is clearly evi-
dent from the analysis of the counter flow flame case, where PCE
exhibits much better convergence in relation to MC than in the
case of Sandia flame D (see Fig. 4) and features higher standard
deviation of the QoI of temperature as can be seen in Fig. 6.
Therefore, the analysis around the PCE’s convergence and the
standard deviation of QoI will be explored further. Note, this fur-
ther analysis will only be performed for the case of Sandia flame
D as its simulation suffers from the poor PCE convergence prop-
erties. There is no need to do any further analysis on the counter
flow flame case as PCE demonstrated excellent convergence,
which was expected as it is a laminar, smooth system. However,
the counter flow flame case played an important role in setting the
direction of the upcoming analysis by indicating that the PCE’s
convergence may improve with an increase in standard deviation
of a QoI—in our case, temperature.

7 Analyzing the Effect of Standard Deviation on

Polynomial Chaos Expansion’s Convergence

Performance

To conduct the analysis on the effect of the standard deviation
of the QoI on the PCE’s convergence, a method that increases rT

found in sampling zones needs to be devised. If the increase in

Fig. 4 (a) UQ convergence plots for Sandia flame D’s sampling zones 35, 27, and 60 (b) UQ convergence plots for counter
flow flame’s sampling zones 1 and 2
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Sandia flame D’s rT is achieved, it will allow to test the following
hypotheses: the higher the standard deviation of the QoI in a sam-
pling zone, the more performant PCE becomes relative to MC, in
terms of the QoI’s statistical convergence properties, when there
is an uncertainty affecting that QoI.

A means to achieve the standard deviation increase in the San-
dia flame D’s sampling zones, without altering the model itself,
nor the defined UQ framework, is to perform analyses at a differ-
ent simulation time. A way to find the time, t at which a sampling
zone experiences the highest standard deviation of the QoI, in our
case maxrT , is to find the time at which the temperature (QoI) in
that sampling zone has the highest standard deviation. To this end,
the local standard deviation in temperature, rT is calculated for all
simulation time steps (and not just at the time of the flame stabili-
zation) based on the same 100 MC x-based samples used in the
construction of the standard deviation maps shown earlier. The
result of this procedure is shown in Fig. 7. Note that for each indi-
vidual sampling zone, the time at which it experiences maxrT is
different as the flame development is dependent on the simulation
time and will interact with each sampling zone on an individual
basis. Therefore, the zone that has not been reached by the flame
front at a given simulation time cannot physically experience

maxrT . For further reference, the flow state at the LTS-time corre-
spondent to maxrT is referred to as developing flow.

Applying the aforementioned strategy for finding the time (LTS
time-step) at which a sampling zone experiences maxrT to the
previously analyzed sampling zones 27, 35, and 60 of Sandia
flame D resulted in the data displayed in Fig. 8. For each analyzed
zone, the data includes:

� Convergence plot at the time of flame stabilization,
8000 LTS, which was already shown in Fig. 4(a) (it is
included for comparison)

� Convergence plot at a newly calculated LTS-time corre-
sponding to maxrT , which is termed as developing flow

� Standard deviation map of temperature at stabilized and
developing flow states

� Temperature profile at stabilized and developing flow states

Referring to Fig. 8: for sampling zone 60 at the time of flame
stabilization (8000 LTS), the variance of the PCE-obtained T-
means was 53.5 and the variance of the MC-obtained T-means
was 34.0 rendering PCE as ineffective in this case. However, at
the time corresponding to the developing flow state (5432 LTS),
the variance of the PCE-obtained T-means was 1236.4 and the

Fig. 6 Standard deviation maps of temperature for counter flow flame (left) and Sandia flame D (right) simulations based on
100 MC samples drawn based on their respective x definitions (both maps share the measurement bar ranging from 0 to 60
units of standard deviation in temperature, rT) and analyzed sampling zones

Fig. 5 Left panel shows the temperature, T evolution in Sandia flame D’s sampling zones 27, 35, 60
when the model is subject to fuel injection velocities generated based on the defined uncertainty
framework at 16th order of Gaussian quadrature. Right panel shows the same information but for
counter flow flame’s sampling zones 1 and 2.
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variance of the MC-obtained T-means was 22037.4, making PCE
the more performant propagation technique calculating signifi-
cantly more convergent QoI statistics than MC. Therefore, at
developing flow state, the situation for sampling zone 60 changes
with PCE having significantly better convergence than MC, turn-
ing the PCE into a far more performant uncertainty propagation
technique. Although, the variances of the T-means obtained via
the two techniques are much higher at developing flow state than
at fully stabilized flow; it is the relative difference in convergence
between the techniques that is of interest. The same trend of sig-
nificant improvement in the PCE’s convergence in relation to MC
when utilized during the developing flow states, applies to sam-
pling zones 27 and 35.

Another trend that can be observed is that a sampling zone
experiences maxrT when the outer shear layer area of the devel-
oping flame interacts with that sampling zone. This consistent
interaction indicates that the MC-based strategy of finding the
flow state at which the sampling zone experiences maxrT is
devised correctly. Physically, what is happening is that a sampling
zone (at time corresponding to the developing flow state) interacts

with the outer shear layer area of the developing flame, which is
the least turbulent part of a flame [51]. In other words, we are cre-
ating a time window during which the forward propagation of
uncertainty is performed for a sampling zone when it interacts
with the least turbulent (i.e., least nonsmooth/least chaotic) part of
the flame. This results in an improved PCE convergence due to
the smoother temperature-QoI response, which is quantified by
the increase in its standard deviation.

Having reinforced the hypothesis that the PCE convergence
improves in relation to MC when it is used to quantify the uncer-
tainty in sampling zones featuring higher standard deviation of the
QoI, it prompts further exploration. The further exploration is done
by investigating the effect of each sampling zone’s rT at stabilized
and developing flow states on the relative convergence performance
of PCE. The PCE’s performance relative to MC is defined as the
absolute difference between the variance of the MC and PCE-
obtained T-means. Mathematically, this is given as follows:

DMC�PCE ¼ jVarðT�meansMCÞ � VarðT�meansPCEÞ j (1)

Fig. 8 Mean and standard deviation maps of temperature of Sandia flame D simulated in OPENFOAM along with MC and PCE
based convergence plots at flame stabilization (8000 LTS) and developing flame flows for sampling zones 27, 35 and 60

Fig. 7 Plots of 100 Monte Carlo temperature curves (top row) along with their standard deviation (bottom row) versus LTS of
Sandia flame D’s sampling zones 35, 27, and 60
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To demonstrate the use of Eq. (1), let us calculate DMC�PCE

parameter for sampling zone 61 of Sandia flame D at stabilized
and developing flow states (see Fig. 8):

Stabilized flow (8000 LTS)

DMC�PCE ¼ j 34:0� 53:5 j ¼ 19:5

Developing flow (5432 LTS)

DMC�PCE ¼ j 22037:4� 1236:4 j ¼ 20801

The absolute difference is taken since the DMC�PCE values for
the stabilized flow data can be negative because at lower standard
deviation of QoI, PCE often demonstrated slightly worse conver-
gence than MC for the same number of model evaluations, as was
demonstrated in Fig. 8. Since rT and DMC�PCE values for the
developing flow data are significantly larger than those for the sta-
bilized flow, logarithmic representation is needed to show the
DMC�PCE versus rT data points for both flow scenarios together,
which requires only positive data. Therefore, if DMC�PCE is � 0,
MC-obtained T-means have higher variance than the PCE-
obtained T-means, suggesting that the PCE is the more performant
technique with better convergence and vice versa. Thus, the
higher the DMC�PCE parameter the more performant PCE is in
relation to MC.

8 Results

Having developed a metric quantifying the PCE’s convergence
performance in relation to MC, it can be used to observe the
changes in the PCE’s convergence performance with increasing
standard deviation of the QoI found in a sampling zone. To this
end, the DMC�PCE parameter is plotted against every sampling
zone’s standard deviation of the QoI, rT, in double-logarithmic
representation, at both stabilized and developing flow states (see
Fig. 9). Figure 9 reveals that the relative convergence perform-
ance of PCE exhibits different behavior at the two analyzed flow
states:

� Stabilized flow: rT is low as was seen in Fig. 6 and the PCE’s
convergence was similar (or even worse) to that of MC
resulting in low DMC�PCE values as was seen in Fig. 4(a).
Thus, the data is clustered in the region of low rT and low
DMC�PCE. However, the data does demonstrate a weak trend
where the performance of PCE in relation to MC improves
with higher standard deviation of the QoI, which at the

stabilized flow conditions is low and uniform but with some
rT variability across the domain

� Developing flow: the performance of PCE also improves
with increasing rT but with a much clearer dependency and
reaching much higher values of rT (as was seen in Fig. 8—
developing flow plots), which results in significantly better
performance of PCE in relation to MC as defined by the
DMC�PCE parameter

As hypothesized, the performance of PCE in relation to MC, as
quantified by the DMC�PCE parameter, increases with the zone’s
standard deviation of the QoI, rT. However, this relationship is
much better defined exclusively at the developing flow state as it
features a much higher range of sampling zones’ standard devia-
tion allowing to visualize its effect on the PCE’s convergence
behavior for a much larger range of QoI’s standard deviation.
Therefore, the respective data will be used in the fitting efforts to
quantify the relationship between DMC�PCE and rT. The interpola-
tion of the data points for the developing flow yields

DMC�PCE ¼ 0:251r1:965
T (2)

9 Discussion

Referring to Fig. 9, we see that the stabilized flow data shows
no trend and is clustered in the region of relatively low rT and low
DMC�PCE values. This is observed because at the time of full flame
stabilization, the temperature response is chaotic, which translates
to the PCE’s inability to construct an accurate surrogate of the
QoI reducing the PCE’s convergence properties, which is quanti-
fied by a high value of VarðT�meansPCEÞ , a component of the
DMC�PCE parameter (refer to Eq. (1)). On the other hand, low-
sample MC will always be naturally associated with high values
of VarðT�meanMCÞ . Thus, in the scenarios, where QoI response
is chaotic as quantified by its low standard deviation, DMC�PCE

values will be relatively low as there is no substantial difference
between the convergence performances of the MC and PCE meth-
ods. However, this situation changes and PCE exhibits signifi-
cantly better convergence behavior than MC if we are giving an
opportunity for the defined sampling zones to interact with the
QoI when it is nonchaotic and thereby smooth, which is the
method used in obtaining the developing flow data. This occurs
because PCE is capable of building high accuracy surrogates of
systems with a nonchaotic response with a relatively few model
evaluations resulting in much better convergence properties than
those for low-sample MC. In these scenarios where QoI-response
is smooth, the following is observed: VarðT�meansMCÞ �
VarðT�meansPCEÞ , which means that the majority of the variance
in the DMC�PCE parameter is caused by the MC component. Thus,
the plot of DMC�PCE, where the PCE component is negligible,
against rT should result in the square dependency as the standard
deviation is the square root of the variance, which is observed in
Fig. 9. What this tells us is that the best convergence performance
PCE can possibly exhibit is proportional to the square of the QoI’s
standard deviation. Thus, technically, any deviation from the
square dependency suggests that the QoI response is not com-
pletely smooth as there is some difficulty for it to be effectively
surrogated with the PCE method. Clearly, in the case of Sandia
flame D that deviation from the quare dependency is very small
because each sampling zone was able to interact with the flame at
a time when temperature (QoI) demonstrated smoother behavior,
allowing for it to be effectively PCE-surrogated and compute
QoI’s moments of much higher convergence that those computed
with MC. Thus, at developing flow, the plot of the MC-dominated
DMC�PCE values vs. standard deviation would naturally be a
squared dependency.

The generality of the observed findings and specifically the
value of the exponent in the derived power law scaling, for other
fluid flows, still remains to be confirmed mathematically. Since
this is not attempted, we cannot make any statements on the

Fig. 9 Convergence performance of polynomial chaos expan-
sion (PCE) in relation to Monte Carlo (MC) as quantified by the
DMC2PCE parameter versus zone’s standard deviation of QoI, rT

for all sampling zones at the times of full flame stabilization
(8000 LTS) and sampling zone-specific times of flame develop-
ment stage (i.e., developing flow) on log–log scale
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generality of the proposed power law scaling relationship. How-
ever, we present further empirical evidence to demonstrate that
the power law scaling is not exclusive to the case of Sandia flame
D. The steps involved in determining the power law scaling are
repeated for two additional fluid flow cases referred to as DLR
Flame A [52,53], a well-characterized turbulent jet flame and the
turbulent pitzDaily flow scenario [54], which is a compressible,
transient simulation with a preheated inlet stream based on a large
eddy simulation (LES) turbulence model [55]. Their nature and
features are briefly summarized below.

DLR Flame A. DLR Flame A is a well-documented burner test
case with Re¼ 15,200 [52,53]. This test case is available in the
OPENFOAM tutorial family with the name of DLR_A_LTS. The case
is simulated by means of the reactingFoam solver in conjunction
with the Reynolds-averaged simulation (RAS) turbulence model.
This burner test case is different to Sandia flame D in terms of
burner geometry, fuel composition, fuel injection speed, the noz-
zle inner diameter (d¼ 8.0 mm) and the method of flame ignition.
Analogous to Sandia flame D, UQ analysis of the DLR test case
involved forward propagation of uncertainty in the injection speed
of the fuel stream as a normal probability distribution in line with
the experimentally reported data: Nð42:2; 0:5Þ. The sampling
mesh consisted of 102 zones. The domain showing the QoI of
temperature, T at the time of flame stabilization (10,000 LTS), the
sampling mesh and the final data structure along with the develop-
ing flow fit are shown in Fig. 10(a).

pitzDaily. The turbulent pitzDaily case is a two-dimensional
domain consisting of a short inlet, a backward facing step, and a

converging nozzle as the outlet [54]. The case employs an LES
turbulence model. The case is also part of the OPENFOAM tutorial
family and is a compressible fluid flow simulation solved by
means of the rhoPimpleFoam solver. The QoI here was also tem-
perature, which can be simulated as part of the rhoPimpleFoam
solver. The temperature difference is induced by the hot inlet
stream heated to 800 K, whereas the domain is at 292 K. The for-
ward propagation of uncertainty was performed with respect to
the injection speed of the hot stream, which is considered to be
normally distributed: Nð10; 0:4Þ. The mean of 10 m/s is the origi-
nal inlet speed supplied with the tutorial and the standard devia-
tion of 0.4 m/s represents 4% of the mean value, which is in line
with the standard deviation of the uncertainty propagated through
the Sandia flame D case. The sampling mesh consisted of 109
zones. The domain showing the QoI of temperature at the time
when the hot temperature stream passes the backward facing step
(this specific simulation time is shown for demonstrative purposes
as at the time of quasi-steady-state, the domain is completely
filled with hot temperature, which ineffectively communicates the
nature of the fluid flow), the sampling mesh and the final data
structure along with the “developing flow” fit are shown in
Fig. 10(b).

It is evident that the DMC�PCE / r�2
T power law scaling holds

for the two additional test cases presented. However, there is inev-
itable variability in the exponent values and the R2 metrics
between the cases. That variability arises from the processes asso-
ciated with CFD and the nature of the fluid flows being simulated.
In principle, the most important aspect which influences the expo-
nent values and the R2 metrics is the level of smoothness of a
CFD-modeled QoI, which is measured by the standard deviation
of that QoI. If a sampling zone features a smooth QoI that can be

Fig. 10 The produced DMC2PCE / r
c
T scaling relationships for the case of (a) DLR flame A, (b) pitzDaily, and (c) Sandia flame D

with 53 sampling zones
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effectively PCE-surrogated, the fit should be close to that of a
power law with the exponent of 2 and a high coefficient of deter-
mination. However, as per the premises of the study that is not a
binary classification in terms of whether a QoI is capable of being
surrogated or not. We state that there is a quantifiable scaling rela-
tionship between the PCE’s ability to surrogate a QoI and the
level of smoothness of that QoI, as quantified by its standard devi-
ation. Thus, the exponent and R2 values of DMC�PCE / rc

T will
always vary for different fluid flows as the level of QoI smooth-
ness will always be unique to any particular simulation case.

Furthermore, to demonstrate that the scaling is independent of
the sampling mesh, we also build the DMC�PCE versus rT data
structure for the case of Sandia flame D but with 53 sampling
zones, instead of the original 103. The results obtained for the
reduced number of sampling zones are included in Fig. 10(c). The
comparison of Fig. 10(c) with Fig. 9 reveals that the power-law
scaling has not been affected by a reduction in the number of sam-
pling zones. In principle, the number of sampling zones should
not affect the nature of the final data structure and the analysis
could be performed for very few sampling zones as long as the
sampling zones in question are able to demonstrate smooth QoI
response of different levels with respect to the propagated
uncertainty.

Another, important aspect that needs to be considered as it may
heavily influence both the exponent value and lower the R2 metric
is the effects associated with the CFD modeling tools such as
boundary conditions (BCs). These can sever the link between the
propagated uncertainty samples and a QoI. For example, in the
pitzDaily case (see Fig. 10(b)), the sampling zones were defined
as such not to directly interact with a QoI at the walls of the
domain because there, the BCs simply prescribe a value to a QoI
as part of the CFD workings (referred to as Dirichlet boundary
condition). In the DLR case, the sampling zones were defined as
such not to interact with the part of the domain between x=D ¼ 0
to x=D � 30 as this is the area where a high temperature value is
prescribed as a type of an initial condition to facilitate the ignition
of the flame. The scenarios where QoI is prescribed, disregarding
the input, weaken or even sever the link between the propagated
values associated with the uncertain input and a QoI. Evidently,
performing UQ analysis with respect to sampling zones that are
facing interference in terms of input-QoI relation hinders the abil-
ity to calculate accurate moments by any UQ propagation tech-
nique including PCE, which, for the study’s algorithms translates
in significantly lower DMC�PCE values increasing the variability of
the power-law fit and affecting its exponent value. Note, these
issues are not applicable to the case of Sandia flame D because
there, the ignition occurs via a preheated pilot stream entering the
domain via a separate inlet (see Fig. 3(a)) that does not impose its
prescribed high temperatures onto any of the defined sampling
zones (in both cases with 53 and 103 sampling zones) and there
are no other conditions prescribing a value to a QoI anywhere in
the domain.

10 Conclusions

This study has demonstrated that there exists a relationship
between the convergence performance of polynomial chaos
expansion (PCE) in relation to Monte Carlo (MC) sampling, as
quantified by the comparative DMC�PCE parameter, and the degree
of smoothness of a quantity of interest (QoI), which is quantified
by its standard deviation. The data analysis revealed a power-law
scaling DMC�PCE / rc

T , with the exponent being very close to
c¼ 2 for the QoI of temperature and the flow scenarios investi-
gated here.

The observed scaling relationship was derived by propagating
the uncertainty in the injection speed of the fuel stream in the
model of the benchmark turbulent combustion case, Sandia flame
D by means of PCE and MC. At the time of flame stabilization,
temperature, the study’s QoI was exhibiting nonsmoothness
resulting in poor PCE convergence. This was an expected result

as PCE is known to have convergence problems when used to
quantify uncertainty in nonsmooth systems. In fact, at the time of
flame stabilization, per the defined DMC�PCE parameter, it was
deemed that the PCE’s performance is no better than that of small
sample MC.

Having performed an analogous uncertainty quantification
(UQ) analysis in a laminar combustion model—counter flow
flame with a smooth temperature response and as a result highly
convergent PCE-UQ analysis—it was concluded that a quantifi-
able difference between the simulations that could be responsible
for such contrasting convergence behavior of the PCE method
was the standard deviation of QoI, temperature. It was observed
that the higher the standard deviation of QoI, the more convergent
model output statistics are produced by the PCE method in rela-
tion to MC. Following that observation, a method of increasing
the temperature’s standard deviation, without altering the Sandia
flame D simulation itself, nor the defined UQ framework, was
devised. This involved finding the simulation time at which a
given sampling zone experienced the maximum standard devia-
tion of temperature.This translated to an instancewhen a given
sampling zone interacted with temperature in the outer shear layer
area of the developing flame. This has worked and the obtained
increase in the standard deviation of QoI-temperature significantly
improved the PCE’s convergence properties in relation to MC as
quantified by the DMC�PCE parameter. The rate of improvement in
PCE’s convergence as quantified by the increasing DMC�PCE val-
ues scaled with the standard deviation of the study’s QoI, temper-
ature. These steps were repeated on further two test cases of DLR
Flame A, another well-characterized turbulent jet flame and the
LES-turbulent pitzDaily flow scenario demonstrating that the
attained power law scaling of DMC�PCE / r�2

T is not exclusive to
the case of Sandia flame D.

Based on the investigated flow scenarios, it is deemed impor-
tant to perform a preliminary analysis aimed at identifying the
underlying system dynamics, specifically the level of smoothness,
which, as part of this study, was found to be quantifiable by the
standard deviation of the system responses. Such an analysis
allows to make a more weighted decision when choosing the
uncertainty propagation technique because a quantified level of
smoothness can tell us whether a system is capable or not of being
approximated by surrogate techniques such as PCE. As part of
this study, we have demonstrated on three different fluid flow
cases that the PCE’s ability to surrogate a system in relation to
MC sampling, scales with the standard deviation of that system as
a second-order power law, deviation from which suggests that a
QoI is not entirely smooth. The devised relationship, whose
applicability to other fluid flow systems still remains to be con-
firmed, may have the potential to help to make a more weighted
decision when choosing the uncertainty propagation technique in
fluid flow problems where the system dynamics are not so easily
identifiable.
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