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Skeletal tracer kinetics model

1

blood

(EF: extracellular fluid)

bone EF

bone

nonbone EF

tubular urine

5

4

2 3

a21 a32

a51

a41

a05

a12 a23

a15

a14

y1

y2
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a05 0.612 0.612 0.612
a12 0.908 0.524 0.671
a14 0.567 1.518 0.012
a15 0.388 0.388 0.388
a21 0.246 1.291 1.337
a23 0.020 0.013 1.283
a32 0.602 0.042 0.131
a41 1.191 0.146 0.100
a51 0.024 0.024 0.024
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Model simulations
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SIR Model

SIR infectious disease model:

S I
y(t ,p) = kY (t ,p)�N

� �+ 

�

Proportion of prevalence measured: y(t ,p) = kY (t ,p)

Model equations:

Ẋ = �N − �X −
�

N
XY

Ẏ =
�

N
XY − (�+ )Y

y = kY
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Structural identifiability

input outputsystem

Given postulated state-space model, are the unknown
parameters uniquely determined by the output (ie, perfect,
continuous, noise-free data)?

Necessary theoretical prerequisite to:

experiment design

system identification

parameter estimation
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Formal definition

Consider following general parameterised state-space model:

ẋ(t ,p) = f (x(t ,p),u(t),p), x(0,p) = x0(p),

y(t ,p) = h(x(t ,p),p),

where p is the r -dimensional vector of unknown parameters , and is
assumed to lie in a set of feasible vectors: p ∈ Ω.

n dimensional vector x(t ,p) is state vector, such that q0(p) is the
initial state (may depend on the unknown parameters)

m dimensional vector u(t) is input/control vector (our influence on
system); what inputs are available depends on experiment to be
performed, so u(⋅) ∈ U , a set of admissible inputs (might be empty).

y(t ,p) is the l-dimensional output/observation vector (what we can
measure in the system). In the following we make explicit that output
y depends on p ∈ Ω and u ∈ U by writing y(t ,p;u).
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Parameter identifiability

For generic p ∈ Ω, the parameter pi is said to be locally
identifiable if there exists a neighbourhood of vectors around p,
N (p), such that if p ∈ N (p) ⊆ Ω and:

for every input u ∈ U and t ≥ 0, y(t ,p;u) = y(t ,p;u)

then pi = pi .

In particular, if the neighbourhood N (p) = Ω can be used in the
previous definition, then the parameter pi is globally/uniquely
identifiable.

If the parameter pi is not locally identifiable , i.e., there is no
suitable neighbourhood N (p), then it is said to be
unidentifiable.
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Structural identifiability

Structurally globally/uniquely identifiable

A compartmental model is structurally globally/uniquely
identifiable (SGI) if all of the unknown parameters pi are
globally/uniquely identifiable.

Structurally locally identifiable

A compartmental model is structurally locally identifiable (SLI) if
all of the unknown parameters pi are locally identifiable and at
least one of these parameters is not globally identifiable.

Unidentifiable

A compartmental model is unidentifiable if at least one of the
unknown parameters pi is unidentifiable.
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Remarks

Necessary condition for parameter estimation
Essential for parameters with practical significance
Prerequisite to experiment design

Identifiability does not guarantee
Good fit to experimental data
Good fit only with unique vector of parameters

Unidentifiable implies infinite number of parameter vectors will
give same fit (even for perfect data)
Many techniques for linear systems

Laplace transform or transfer function
Taylor series of output
Similarity transformation (exhaustive modelling)

Taylor series and similarity transformation approaches are
applicable for nonlinear systems
Differential algebra

Polynomial systems with differentiable inputs/outputs
Heavily dependent on symbolic computation
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General linear system

ẋ(t ,p) = A(p)x(t ,p) + B(p)u(t), x(0,p) = x0(p),

y(t ,p) = C(p)x(t ,p),

where
A(p) is an n × n matrix of rate constants

B(p) is an n × m input matrix

C(p) is an l × n output matrix

Assume that x0 = 0 (not essential) & take Laplace transforms:

sQ(s) = A(p)Q(s) + B(p)U(s)

Y (s) = C(p)Q(s)

= C(p) (sIn − A(p))−1 B(p)U(s)
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Laplace Transform Approach

This gives relationship between LTs of input & output:

Y (s) = G(s)U(s),

where the matrix

G(s) = C(p) (sIn − A(p))−1 B(p)

is the transfer (function) matrix

Measurements for G(s) assumed known

Coefficients of powers of s in numerators & denominators
uniquely determined by input-output relationship
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Example: 2 Compartments

1 2

I = bu(t)

a01

y = c1x1
a12

Model is:
[

ẋ1

ẋ2

]

=

[

−a01 a12

0 −a12

] [

x1

x2

]

+

[

0
b

]

u(t)

y =
[

c 0
]

[

x1

x2

]

Transfer function:

G(s) =
[

c 0
]

[

s + a01 −a12

0 s + a12

]

−1 [
0
b

]

=
bca12

(s + a01)(s + a12)
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A cautionary tale

Transfer function:

G(s) =
bca12

(s + a01)(s + a12)

and so the following are unique:

bca12, a01 + a12 and a01a12

Yields two possible solutions for a01 and a21

If b (or c) known then two possible solutions for c (or b) hence
locally identifiable

If neither b nor c known then unidentifiable

If both b and c known then globally identifiable
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Techniques for nonlinear models

Generally more difficult to apply, can be less systematic and do not
always yield full information concerning identifiability of given system.

One must also be careful about what inputs there are to the system.

Dealing with models of the form:

ẋ(t ,p) = f (x(t ,p),p), x(0,p) = x0(p),

y(t ,p) = h(x(t ,p),p),

where

p ∈ Ω is an r dimensional vector

x(t ,p) is an n dimensional vector

y(t ,p) is an l dimensional vector
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Taylor series approach

This approach for linear models also works for nonlinear ones:

yi(t ,p) = yi(0,p) + ẏi(0,p)t + ÿi(0,p)
t2

2!
+ ⋅ ⋅ ⋅+ y (k)

i (0,p)
tk

k !
+ . . . ,

where y (k)
i (0,p) =

dk yi

dtk

⏐

⏐

⏐

⏐

t=0
(k = 1,2, . . . ).

Taylor series coefficients y (k)
i (0,p) unique for a particular output

Notice that we have a possibly infinite list of coefficients:

y1(0,p), . . . , yl(0,p), ẏ1(0,p), . . . , ẏl(0,p), ÿ1(0,p), . . . , ÿl(0,p), . . .

and upper bound on number of coefficients needed more difficult

It is quite difficult to use the Taylor series approach to prove that a
model is unidentifiable.
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Example: 1 compartment

1

b1u(t)

y = c1x1 Vm

Km + x1

Model equations:

ẋ1 = −
Vmx1

Km + x1
, x1(0) = b1

y = c1x1

First coefficient: y(0,p) = b1c1

Second coefficient: ẏ(0,p) = −
c1Vmb1

Km + b1

Third coefficient: y (2)(t ,p) =
d
dt

(

−
c1Vmx1

Km + x1

)
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1

b1u(t)

y = c1x1 Vm

Km + x1

Model equations:

ẋ1 = −
Vmx1

Km + x1
, x1(0) = b1

y = c1x1

First coefficient: y(0,p) = b1c1

Second coefficient: ẏ(0,p) = −
c1Vmb1

Km + b1

Third coefficient: y (2)(t ,p) =
d
dt

(

−
c1Vmx1

Km + x1

)

Horrible! Use MATHEMATICA!
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More general problem

Suppose that we wish to model a single substrate, single
enzyme reaction—which scheme is appropriate?

S +E C P +E

C S +E P +E

(MM)

(H)

k2

k̃2

k1

k̃1

k
−1

k̃
−1

What do we need to measure to find out?
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Measuring product only

System equations:

ṡ = −k1(e0 − c)s + k
−1c ˙̃s = −(k̃1 + k̃2)(ẽ0 − c̃)s̃ + k̃

−1c̃

ċ = k1(e0 − c)s − (k
−1 + k2)c ˙̃c = k̃1(ẽ0 − c̃)s̃ − k̃

−1c̃

with s(0) = s0, s̃(0) = s̃0 and c(0) = c̃(0) = 0.

Measuring product: y(t) = �p(t), ỹ(t) = �̃p̃(t).

Comparing terms of Taylor series:

y(0) = 0 = ỹ(0)

ẏ(0) = �k2c(0) = 0

BUT ˙̃y(0) = �̃k̃2s̃0ẽ0

Hence we can distinguish between the two schemes when
measuring product—the outputs are not identical
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Measuring substrate only

Outputs are of the form: y(t) = �s(t), ỹ(t) = �̃s̃(t)

It can be shown that the outputs of the two reaction schemes
are identical—they are structurally indistinguishable
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Structural indistinguishability

Consider following pair of systems:

Σ(p)

{

ẋ(t ,p) = f (x(t ,p),p), x(0,p) = x0(p),

y(t ,p) = h(x(t ,p),p).

Σ̃(p̃)

{

˙̃x(t , p̃) = f̃ (x̃(t , p̃), p̃), x̃(0, p̃) = x̃0(p̃),

ỹ(t , p̃) = h̃(x̃(t , p̃), p̃),

Σ(p) and Σ̃(p̃) (p ∈ Ω, p̃ ∈ Ω̃) output indistinguishable,
Σ(p) ∼ Σ̃(p̃), if y(t ,p) = ỹ(t , p̃) for all t .

Σ and Σ̃ structurally indistinguishable if
for generic p ∈ Ω there exists p̃ ∈ Ω̃ s.t. Σ(p) ∼ Σ̃(p̃);
for generic p̃ ∈ Ω̃ there exists p ∈ Ω s.t. Σ(p) ∼ Σ̃(p̃).
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Summary

Structural identifiability is an important step in modelling
process

Theoretical prerequisite to experiment design, system
identification, and parameter estimation
Techniques involve generation, manipulation & solution of
nonlinear algebraic equations
Need for more tractable techniques for nonlinear systems

Structural indistinguishability similarly important (more
general framework)

Both are highly relevant to models in Biomedical Systems
Modelling/Systems Biology
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