(Magnetic) Fluid Dynamics from a PDE-Theoretical Point of View

Dave McCormick

Mathematics and Statistics Centre for Doctoral Training University of Warwick

May 9th, 2012

- What are the Navier-Stokes equations?
- Weak derivatives and Sobolev spaces
- Laplace's equation
- Heat equation and the Galerkin method
- Navier-Stokes equations
- Magnetohydrodynamics (MHD)

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}(t, x(t))= \tag{1a}
\end{equation*}
$$

(1b)

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{u}(t, x(t))=\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}= \tag{1a}
\end{equation*}
$$

There are three forcing terms:

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=\nu \Delta \boldsymbol{u} \tag{1a}
\end{equation*}
$$

There are three forcing terms:

- $\nu \Delta u$ represents the viscous friction of the fluid "rubbing against itself" (where the coefficient ν is the viscosity);

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{equation*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=\nu \Delta \boldsymbol{u}-\nabla p \tag{1a}
\end{equation*}
$$

There are three forcing terms:

- $\nu \Delta \boldsymbol{u}$ represents the viscous friction of the fluid "rubbing against itself" (where the coefficient ν is the viscosity);
- ∇p ensures that fluid moves from areas of high pressure to areas of low pressure,

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =\nu \Delta \boldsymbol{u}-\nabla p \tag{1a}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{1b}
\end{align*}
$$

There are three forcing terms:

- $\nu \Delta \boldsymbol{u}$ represents the viscous friction of the fluid "rubbing against itself" (where the coefficient ν is the viscosity);
- ∇p ensures that fluid moves from areas of high pressure to areas of low pressure, thus enforcing the divergence-free condition $\nabla \cdot \boldsymbol{u}=0$;

Let \boldsymbol{u} and p represent the velocity and pressure fields of a fluid. By applying Newton's second law to a small packet of fluid, we obtain the following PDE:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =\nu \Delta \boldsymbol{u}-\nabla p+\boldsymbol{f}, \tag{1a}\\
\nabla \cdot \boldsymbol{u} & =0 . \tag{1b}
\end{align*}
$$

There are three forcing terms:

- $\nu \Delta \boldsymbol{u}$ represents the viscous friction of the fluid "rubbing against itself" (where the coefficient ν is the viscosity);
- ∇p ensures that fluid moves from areas of high pressure to areas of low pressure, thus enforcing the divergence-free condition $\nabla \cdot \boldsymbol{u}=0$;
- f represents an external forcing.

Complications

The Navier-Stokes equations are difficult to deal with rigorously, due to a combination of two factors:

Complications

The Navier-Stokes equations are difficult to deal with rigorously, due to a combination of two factors:

- the nonlinear term $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$, and

Complications

The Navier-Stokes equations are difficult to deal with rigorously, due to a combination of two factors:

- the nonlinear term $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$, and
- the pressure gradient ∇p.

The Navier-Stokes equations are difficult to deal with rigorously, due to a combination of two factors:

- the nonlinear term $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$, and
- the pressure gradient ∇p.

So let's start by considering a simplified equation without either of these difficult terms:

$$
\frac{\partial \boldsymbol{u}}{\partial t}-\Delta \boldsymbol{u}=f
$$

which is the heat equation.

The Navier-Stokes equations are difficult to deal with rigorously, due to a combination of two factors:

- the nonlinear term $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$, and
- the pressure gradient ∇p.

So let's start by considering a simplified equation without either of these difficult terms:

$$
\frac{\partial \boldsymbol{u}}{\partial t}-\Delta \boldsymbol{u}=f
$$

which is the heat equation. To study this, we must first study the time-independent version of this equation:

$$
-\Delta \boldsymbol{u}=f
$$

which is Laplace's equation.

On regions with simple geometry, we can solve Laplace's equation explicitly. For example, Laplace's equation on a ball of radius r :

$$
\begin{aligned}
\Delta u & =0 & & \text { in } B(0, r) \\
u & =g & & \text { on } \partial B(0, r)
\end{aligned}
$$

has the solution formula

$$
u(x)=\frac{r^{2}-|x|^{2}}{r} \frac{\Gamma\left(\frac{n}{2}+1\right)}{n \pi^{n / 2}} \int_{\partial B(0, r)} \frac{g(y)}{|x-y|^{n}} \mathrm{~d} S(y)
$$

What if the domain we want to solve the equation on looks like this?

What if the domain we want to solve the equation on looks like this?

We need a more general theory that can cope with any (reasonable) domain Ω, and doesn't depend on special geometries.

We need a more general theory that can cope with any (reasonable) domain Ω, and doesn't depend on special geometries.

Aim

We wish to use the language of functional analysis - Hilbert and Banach spaces - to study PDEs. The first task is to find the "right" spaces to work in.

Let $C_{c}^{\infty}(\Omega)$ denote the set of infinitely differentiable functions $\phi: \Omega \rightarrow \mathbb{R}$ with compact support in $\Omega-$ that is,

$$
\operatorname{spt}(\phi):=\overline{\{x \in \Omega: \phi(x) \neq 0\}} \subset \Omega^{\circ} .
$$

Let $C_{c}^{\infty}(\Omega)$ denote the set of infinitely differentiable functions $\phi: \Omega \rightarrow \mathbb{R}$ with compact support in Ω - that is,

$$
\operatorname{spt}(\phi):=\overline{\{x \in \Omega: \phi(x) \neq 0\}} \subset \Omega^{\circ} .
$$

Suppose we are given a function $u \in C^{1}(\Omega)$, and $\phi \in C_{c}^{\infty}(\Omega)$. Then we may integrate by parts as follows:

$$
\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}}=-\int_{\Omega} \frac{\partial u}{\partial x_{i}} \phi .
$$

Let $C_{c}^{\infty}(\Omega)$ denote the set of infinitely differentiable functions $\phi: \Omega \rightarrow \mathbb{R}$ with compact support in Ω - that is,

$$
\operatorname{spt}(\phi):=\overline{\{x \in \Omega: \phi(x) \neq 0\}} \subset \Omega^{\circ} .
$$

Suppose we are given a function $u \in C^{1}(\Omega)$, and $\phi \in C_{c}^{\infty}(\Omega)$. Then we may integrate by parts as follows:

$$
\int_{\Omega} u \frac{\partial \phi}{\partial x_{i}}=-\int_{\Omega} \frac{\partial u}{\partial x_{i}} \phi
$$

More generally, if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ and $u \in C^{k}(\Omega)$, then we may integrate by parts $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$ times to obtain:

$$
\int_{\Omega} u\left(D^{\alpha} \phi\right)=(-1)^{|\alpha|} \int_{\Omega}\left(D^{\alpha} u\right) \phi
$$

Notice that the left-hand side of this formula makes sense even if u is not C^{k}. The problem is that if u is not C^{k} then $D^{\alpha} u$ has no obvious meaning. We circumvent this by using the above expression to define $D^{\alpha} u$:

Notice that the left-hand side of this formula makes sense even if u is not C^{k}. The problem is that if u is not C^{k} then $D^{\alpha} u$ has no obvious meaning. We circumvent this by using the above expression to define $D^{\alpha} u$:

Definition

Suppose $u, v \in L_{\text {loc }}^{1}(\Omega)$, and $\alpha \in \mathbb{N}_{0}^{n}$ is a multi-index. We say that v is the $\alpha^{\text {th }}$ weak partial derivative of u, written $D^{\alpha} u$, provided that

$$
\int_{\Omega} u\left(D^{\alpha} \phi\right)=(-1)^{|\alpha|} \int_{\Omega} v \phi
$$

for all $\phi \in C_{c}^{\infty}(\Omega)$.

Definition

Given $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, the Sobolev space $W^{k, p}(\Omega)$ is defined by

$$
W^{k, p}(\Omega):=\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \begin{array}{l}
\text { for all } \alpha \in \mathbb{N}_{0}^{n} \text { such that } \\
|\alpha| \leq k, D^{\alpha} u \in L^{p}(\Omega)
\end{array}\right\},
$$

where we identify functions which agree almost everywhere.

Definition

Given $k \in \mathbb{N}$ and $1 \leq p \leq \infty$, the Sobolev space $W^{k, p}(\Omega)$ is defined by

$$
W^{k, p}(\Omega):=\left\{u \in L_{\mathrm{loc}}^{1}(\Omega): \begin{array}{l}
\text { for all } \alpha \in \mathbb{N}_{0}^{n} \text { such that } \\
|\alpha| \leq k, D^{\alpha} u \in L^{p}(\Omega)
\end{array}\right\}
$$

where we identify functions which agree almost everywhere. The $W^{k, p}$ norm is defined by

$$
\begin{aligned}
\|u\|_{W^{k, p}(\Omega)} & :=\left(\sum_{|\alpha| \leq k} \int_{\Omega}\left|D^{\alpha} u\right|^{p}\right)^{1 / p} \quad \text { if } 1 \leq p<\infty \\
\|u\|_{W^{k}, \infty(\Omega)} & :=\sum_{|\alpha| \leq k} \underset{\Omega}{\operatorname{ess} \sup }\left|D^{\alpha} u\right|
\end{aligned}
$$

Lemma
$W^{k, p}(\Omega)$ is a separable Banach space.

Lemma

$W^{k, p}(\Omega)$ is a separable Banach space.

Definition

When $p=2$, we write $H^{k}(\Omega):=W^{k, p}(\Omega)$, and define the H^{k} inner product by

$$
(u, v)_{H^{k}(\Omega)}:=\sum_{|\alpha| \leq k} \int_{\Omega}\left(D^{\alpha} u\right)\left(D^{\alpha} v\right)
$$

Lemma

$W^{k, p}(\Omega)$ is a separable Banach space.

Definition

When $p=2$, we write $H^{k}(\Omega):=W^{k, p}(\Omega)$, and define the H^{k} inner product by

$$
(u, v)_{H^{k}(\Omega)}:=\sum_{|\alpha| \leq k} \int_{\Omega}\left(D^{\alpha} u\right)\left(D^{\alpha} v\right)
$$

Lemma

$H^{k}(\Omega)$ is a separable Hilbert space.

It often proves useful to approximate Sobolev functions by smooth test functions. It is an easy fact from measure theory that $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$.

It often proves useful to approximate Sobolev functions by smooth test functions. It is an easy fact from measure theory that $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$. One might think, therefore, that $C_{c}^{\infty}(\Omega)$ is dense in $W^{k, p}(\Omega)$ for $k \geq 1$, but this is in fact not true: in fact, the closure of $C_{c}^{\infty}(\Omega)$ is a new, smaller space:

It often proves useful to approximate Sobolev functions by smooth test functions. It is an easy fact from measure theory that $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$. One might think, therefore, that $C_{c}^{\infty}(\Omega)$ is dense in $W^{k, p}(\Omega)$ for $k \geq 1$, but this is in fact not true: in fact, the closure of $C_{c}^{\infty}(\Omega)$ is a new, smaller space:

Definition

For $1<p<\infty, W_{0}^{k, p}(\Omega)$ is defined to be the completion of $C_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$; i.e., $u \in W_{0}^{k, p}(\Omega)$ if and only if there exist functions $u_{m} \in C_{c}^{\infty}(\Omega)$ such that $u_{m} \rightarrow u$ in $W^{k, p}(\Omega)$.

It often proves useful to approximate Sobolev functions by smooth test functions. It is an easy fact from measure theory that $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega)$. One might think, therefore, that $C_{c}^{\infty}(\Omega)$ is dense in $W^{k, p}(\Omega)$ for $k \geq 1$, but this is in fact not true: in fact, the closure of $C_{c}^{\infty}(\Omega)$ is a new, smaller space:

Definition

For $1<p<\infty, W_{0}^{k, p}(\Omega)$ is defined to be the completion of $C_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$; i.e., $u \in W_{0}^{k, p}(\Omega)$ if and only if there exist functions $u_{m} \in C_{c}^{\infty}(\Omega)$ such that $u_{m} \rightarrow u$ in $W^{k, p}(\Omega)$.

Heuristically, $W_{0}^{k, p}(\Omega)$ comprises those functions $u \in W^{k, p}(\Omega)$ such that " $D^{\alpha} u=0$ on $\partial \Omega$ " for all $|\alpha| \leq k-1$. Again, we write $H_{0}^{k}(\Omega):=W_{0}^{k, 2}(\Omega)$.

Definition

For $1<p<\infty$, we define the norm $W_{0}^{k, p}(\Omega)$ by

$$
\|u\|_{W_{0}^{k, p}(\Omega)}:=\left(\sum_{|\alpha|=k} \int_{\Omega}\left|D^{\alpha} u\right|^{p}\right)^{1 / p}
$$

Definition

For $1<p<\infty$, we define the norm $W_{0}^{k, p}(\Omega)$ by

$$
\|u\|_{W_{0}^{k, p}(\Omega)}:=\left(\sum_{|\alpha|=k} \int_{\Omega}\left|D^{\alpha} u\right|^{p}\right)^{1 / p}
$$

and the $H_{0}^{k}(\Omega)$ inner product by

$$
(u, v)_{H_{0}^{k}(\Omega)}:=\sum_{|\alpha|=k} \int_{\Omega}\left(D^{\alpha} u\right)\left(D^{\alpha} v\right)
$$

Poincaré's inequality

Let $1<p<\infty$, and suppose Ω is bounded. Then there exists a constant c_{p} such that

$$
\|u\|_{L^{p}(\Omega)} \leq C\|u\|_{W_{0}^{k, p}(\Omega)}
$$

for all $u \in W_{0}^{k, p}(\Omega)$.

Poincaré's inequality

Let $1<p<\infty$, and suppose Ω is bounded. Then there exists a constant c_{p} such that

$$
\|u\|_{L^{p}(\Omega)} \leq C\|u\|_{W_{0}^{k, p}(\Omega)}
$$

for all $u \in W_{0}^{k, p}(\Omega)$.
In other words, on $W_{0}^{k, p}(\Omega)$, the norms $\|\cdot\|_{W_{0}^{k, p}(\Omega)}$ and $\|\cdot\|_{W^{k, p}(\Omega)}$ are equivalent.

Laplace's equation

We can now reformulate Laplace's equation in Sobolev spaces. Take Laplace's equation with Dirichlet boundary conditions:

$$
\begin{aligned}
\Delta u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

We can now reformulate Laplace's equation in Sobolev spaces. Take Laplace's equation with Dirichlet boundary conditions:

$$
\begin{aligned}
\Delta u & =f & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

Suppose we have a smooth solution u of Laplace's equation, and let $v \in C_{c}^{\infty}(\Omega)$ be a smooth test function. Multiplying the equation by v and integrating over Ω, we get

$$
-\int_{\Omega}(\Delta u) v=\int_{\Omega} f v
$$

Using the fact that $v=0$ on $\partial \Omega$, we may integrate by parts and obtain

$$
(u, v)_{H_{0}^{1}(\Omega)}=\int_{\Omega} \nabla u \cdot \nabla v=\int_{\Omega} f v
$$

Let $H^{-1}(\Omega)$ denote the dual space to $H_{0}^{1}(\Omega)$ (that is, the space of all bounded linear functionals from $H_{0}^{1}(\Omega)$ into \mathbb{R}), and let $\langle\cdot, \cdot\rangle$ denote the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Let $H^{-1}(\Omega)$ denote the dual space to $H_{0}^{1}(\Omega)$ (that is, the space of all bounded linear functionals from $H_{0}^{1}(\Omega)$ into \mathbb{R}), and let $\langle\cdot, \cdot\rangle$ denote the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Definition

Given $f \in H^{-1}(\Omega), u \in H_{0}^{1}(\Omega)$ is a weak solution of Laplace's equation if it satisfies

$$
\begin{equation*}
(u, v)_{H_{0}^{1}(\Omega)}=\langle f, v\rangle \tag{2}
\end{equation*}
$$

for all $v \in H_{0}^{1}(\Omega)$.

Let $H^{-1}(\Omega)$ denote the dual space to $H_{0}^{1}(\Omega)$ (that is, the space of all bounded linear functionals from $H_{0}^{1}(\Omega)$ into \mathbb{R}), and let $\langle\cdot, \cdot\rangle$ denote the duality pairing between $H^{-1}(\Omega)$ and $H_{0}^{1}(\Omega)$.

Definition

Given $f \in H^{-1}(\Omega), u \in H_{0}^{1}(\Omega)$ is a weak solution of Laplace's equation if it satisfies

$$
\begin{equation*}
(u, v)_{H_{0}^{1}(\Omega)}=\langle f, v\rangle \tag{2}
\end{equation*}
$$

for all $v \in H_{0}^{1}(\Omega)$.
If $f \in H^{-1}(\Omega)$ then, by the Riesz representation theorem applied to the linear functional $\ell(v):=\int_{\Omega} f v$, there exists a unique $u \in H_{0}^{1}(\Omega)$ such that (2) holds. Furthermore, if f is more regular, then so is u.

By the Hilbert-Schmidt theorem we may prove the following:

Theorem

Given a domain Ω, there exists a countably infinite sequence of $C^{\infty}(\Omega)$ eigenfunctions $\left(w_{n}\right)_{n \in \mathbb{N}}$ satisfying

$$
\begin{aligned}
-\Delta w_{n} & =\lambda_{n} w_{n} & & \text { in } \Omega \\
w_{n} & =0 & & \text { on } \partial \Omega
\end{aligned}
$$

where $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$. These eigenfunctions (w_{n} form an orthonormal basis of $L^{2}(\Omega)$.

We now consider the heat equation:

$$
\frac{\partial u}{\partial t}-\Delta u=f(t)
$$

subject to the boundary condition $u=0$ on $\partial \Omega$ and the initial condition $u(x, 0)=u_{0}(x)$.

We now consider the heat equation:

$$
\frac{\partial u}{\partial t}-\Delta u=f(t)
$$

subject to the boundary condition $u=0$ on $\partial \Omega$ and the initial condition $u(x, 0)=u_{0}(x)$.

Energy evolution law

A smooth solution u of the heat equation, subject to Dirichlet boundary conditions, satisfies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|u\|_{2}^{2}=-\nu\|\nabla u\|_{2}^{2}+(f, u)
$$

Multiplying the equation by a fixed $v \in C_{c}^{\infty}(\Omega)$ and integrating (in space) yields

$$
\left(\frac{\partial u}{\partial t}, v\right)_{L^{2}(\Omega)}+(\nabla u, \nabla v)_{L^{2}(\Omega)}=\langle f(t), v\rangle
$$

Multiplying the equation by a fixed $v \in C_{c}^{\infty}(\Omega)$ and integrating (in space) yields

$$
\left(\frac{\partial u}{\partial t}, v\right)_{L^{2}(\Omega)}+(\nabla u, \nabla v)_{L^{2}(\Omega)}=\langle f(t), v\rangle .
$$

This motivates the following definition:

Definition

Given $u_{0} \in L^{2}(\Omega)$ and $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, u is a weak solution of the heat equation if:

- $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right.$;
- its weak time derivative $\dot{u} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$; and
- u satisfies

$$
(\dot{u}, v)_{L^{2}(\Omega)}+(\nabla u, \nabla v)_{L^{2}(\Omega)}=\langle f(t), v\rangle
$$

for all $v \in H_{0}^{1}(\Omega)$ and almost every $t \in(0, T)$.

To show existence (and uniqueness) of weak solutions of the heat equation, we will use the Galerkin method:

- take the infinite-dimensional PDE problem,
- approximate by a sequence of finite-dimensional ODE problems,
- then take the limit.

To show existence (and uniqueness) of weak solutions of the heat equation, we will use the Galerkin method:

- take the infinite-dimensional PDE problem,
- approximate by a sequence of finite-dimensional ODE problems,
- then take the limit.

Let $\left(w_{n}\right)_{n \in \mathbb{N}}$ be the eigenfunctions of the Laplacian, which as above form an orthonormal basis of $L^{2}(\Omega)$. Given $u \in L^{2}(\Omega)$, we can approximate it in the space spanned by the first n eigenfunctions as follows:

$$
P_{n} u=\sum_{j=1}^{n}\left(u, w_{j}\right) w_{j}
$$

Galerkin approximations

Let $u_{n}(t)$ be contained in the span of $\left\{w_{1}, \ldots, w_{n}\right\}$:

$$
u_{n}(t)=\sum_{j=1}^{n} u_{n, j}(t) w_{j} .
$$

Galerkin approximations

Let $u_{n}(t)$ be contained in the span of $\left\{w_{1}, \ldots, w_{n}\right\}$:

$$
u_{n}(t)=\sum_{j=1}^{n} u_{n, j}(t) w_{j}
$$

We try to solve

$$
\left(\dot{u}_{n}, w_{j}\right)_{L^{2}(\Omega)}+\left(\nabla u_{n}, \nabla w_{j}\right)_{L^{2}(\Omega)}=\left\langle f(t), w_{j}\right\rangle
$$

with $u_{n}(0)=P_{n} u_{0}$, for $j=1, \ldots, n$. There are two ways of thinking of this:

Galerkin approximations

Let $u_{n}(t)$ be contained in the span of $\left\{w_{1}, \ldots, w_{n}\right\}$:

$$
u_{n}(t)=\sum_{j=1}^{n} u_{n, j}(t) w_{j}
$$

We try to solve

$$
\left(\dot{u}_{n}, w_{j}\right)_{L^{2}(\Omega)}+\left(\nabla u_{n}, \nabla w_{j}\right)_{L^{2}(\Omega)}=\left\langle f(t), w_{j}\right\rangle
$$

with $u_{n}(0)=P_{n} u_{0}$, for $j=1, \ldots, n$. There are two ways of thinking of this:
(1) as a system of n ODEs for $u_{n, j}, j=1, \ldots, n$:

$$
\dot{u}_{n, j}+\lambda_{j} u_{n, j}=f_{j}(t):=\left\langle f(t), w_{j}\right\rangle ;
$$

Galerkin approximations

Let $u_{n}(t)$ be contained in the span of $\left\{w_{1}, \ldots, w_{n}\right\}$:

$$
u_{n}(t)=\sum_{j=1}^{n} u_{n, j}(t) w_{j}
$$

We try to solve

$$
\left(\dot{u}_{n}, w_{j}\right)_{L^{2}(\Omega)}+\left(\nabla u_{n}, \nabla w_{j}\right)_{L^{2}(\Omega)}=\left\langle f(t), w_{j}\right\rangle
$$

with $u_{n}(0)=P_{n} u_{0}$, for $j=1, \ldots, n$. There are two ways of thinking of this:
(1) as a system of n ODEs for $u_{n, j}, j=1, \ldots, n$:

$$
\dot{u}_{n, j}+\lambda_{j} u_{n, j}=f_{j}(t):=\left\langle f(t), w_{j}\right\rangle ;
$$

(2) as a truncated PDE for u_{n} :

$$
\frac{\partial u_{n}}{\partial t}-\Delta u_{n}=P_{n} f(t)
$$

- Standard ODE theory gives a unique solution to the system of ODEs

$$
\dot{u}_{n, j}+\lambda_{j} u_{n, j}=f_{j}(t):=\left\langle f(t), w_{j}\right\rangle
$$

at least for some short time interval.

- Standard ODE theory gives a unique solution to the system of ODEs

$$
\dot{u}_{n, j}+\lambda_{j} u_{n, j}=f_{j}(t):=\left\langle f(t), w_{j}\right\rangle
$$

at least for some short time interval.

- Problems only occur if the norm blows up, i.e. if $\sum_{j=1}^{n}\left|u_{n, j}\right|^{2}$ becomes infinite. This sum is equal to the L^{2} norm of the function u_{n}, so it suffices to show that $\left\|u_{n}\right\|_{L^{2}(\Omega)}$ remains bounded independent of n (so that we can take the limit as $n \rightarrow \infty$.

Uniform boundedness

To see this, take the inner product of the PDE with u_{n} :

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}
\end{aligned} \quad\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} .
$$

Uniform boundedness

To see this, take the inner product of the PDE with u_{n} :

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad=\left\langle P_{n} f(t), u_{n}\right\rangle=\left\langle f(t), P_{n} u_{n}\right\rangle=\left\langle f(t), u_{n}\right\rangle \\
& \quad \leq\|f(t)\|_{H^{-1}(\Omega)}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}=\|f(t)\|_{H^{-1}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

By Young's inequality we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq\|f(t)\|_{H^{-1}(\Omega)}^{2}
$$

To see this, take the inner product of the PDE with u_{n} :

$$
\begin{aligned}
& \frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \\
& \quad=\left\langle P_{n} f(t), u_{n}\right\rangle=\left\langle f(t), P_{n} u_{n}\right\rangle=\left\langle f(t), u_{n}\right\rangle \\
& \quad \leq\|f(t)\|_{H^{-1}(\Omega)}\left\|u_{n}\right\|_{H_{0}^{1}(\Omega)}=\|f(t)\|_{H^{-1}(\Omega)}\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

By Young's inequality we get

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|u_{n}\right\|_{L^{2}(\Omega)}^{2}+\left\|\nabla u_{n}\right\|_{L^{2}(\Omega)}^{2} \leq\|f(t)\|_{H^{-1}(\Omega)}^{2}
$$

so integrating in time from 0 to t we get, for all $t \in[0, T]$,

$$
\begin{aligned}
& \left\|u_{n}(t)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\left\|\nabla u_{n}(s)\right\|_{L^{2}(\Omega)}^{2} \mathrm{~d} s \\
& \quad \leq\left\|u_{n}(0)\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|f(s)\|_{H^{-1}(\Omega)}^{2} \mathrm{~d} s \\
& \quad \leq\left\|u_{0}\right\|_{L^{2}(\Omega)}^{2}+\int_{0}^{t}\|f(s)\|_{H^{-1}(\Omega)}^{2} \mathrm{~d} s .
\end{aligned}
$$

Uniform boundedness

This tells us that $\left(u_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$.

This tells us that $\left(u_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. To get a bound on the time derivative, consider that

$$
\frac{\partial u_{n}}{\partial t}=\Delta u_{n}+P_{n} f(t) .
$$

Since (as we showed above) u_{n} is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, Δu_{n} is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$; since $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, we see that $\frac{\partial u_{n}}{\partial t}$ is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ independently of n.

This tells us that $\left(u_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. To get a bound on the time derivative, consider that

$$
\frac{\partial u_{n}}{\partial t}=\Delta u_{n}+P_{n} f(t) .
$$

Since (as we showed above) u_{n} is bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$, Δu_{n} is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$; since $f \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$, we see that $\frac{\partial u_{n}}{\partial t}$ is bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ independently of n. In summary, the sequence $\left(u_{n}\right)$ of approximations satisfies:

- $\left(u_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$;
- $\left(u_{n}\right)$ is uniformly bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$;
- $\left(\dot{u}_{n}\right)$ is uniformly bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$.
- The Banach-Alaoglu compactness theorem tells us that there is a subsequence $u_{n_{j}}$ such that

$$
\begin{array}{ll}
u_{n_{j}} \rightharpoonup u & \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \\
u_{n_{j}} \stackrel{*}{\rightharpoonup} u & \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \\
\dot{u}_{n_{j}} \stackrel{*}{\rightharpoonup} v & \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right)
\end{array}
$$

- The Banach-Alaoglu compactness theorem tells us that there is a subsequence $u_{n_{j}}$ such that

$$
\begin{array}{ll}
u_{n_{j}} \rightharpoonup u & \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \\
u_{n_{j}} \stackrel{*}{\rightharpoonup} u & \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \\
\dot{u}_{n_{j}} \stackrel{*}{\rightharpoonup} v & \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right)
\end{array}
$$

- It remains to check that u is actually a weak solution of the equations, and that v is actually its weak time derivative!
- The Banach-Alaoglu compactness theorem tells us that there is a subsequence $u_{n_{j}}$ such that

$$
\begin{array}{ll}
u_{n_{j}} \rightharpoonup u & \text { in } L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right) \\
u_{n_{j}} \stackrel{*}{\rightharpoonup} u & \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \\
\dot{u}_{n_{j}} \stackrel{*}{\rightharpoonup} v & \text { in } L^{2}\left(0, T ; H^{-1}(\Omega)\right)
\end{array}
$$

- It remains to check that u is actually a weak solution of the equations, and that v is actually its weak time derivative!
- To show uniqueness, we can prove that $u \in L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$ and $\dot{u} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$ implies that $u \in C\left([0, T] ; L^{2}(\Omega)\right.$.

We return now to the Navier-Stokes equations:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =\nu \Delta \boldsymbol{u}-\nabla p+\boldsymbol{f} \tag{3a}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{3b}
\end{align*}
$$

We return now to the Navier-Stokes equations:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =\nu \Delta \boldsymbol{u}-\nabla p+\boldsymbol{f} \tag{3a}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{3b}
\end{align*}
$$

Energy evolution law

A smooth solution \boldsymbol{u} of the Navier-Stokes equations (1), subject to Dirichlet boundary conditions, satisfies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\boldsymbol{u}\|_{2}^{2}=-\nu\|\nabla \boldsymbol{u}\|_{2}^{2}+(\boldsymbol{f}, \boldsymbol{u})
$$

We can again take Galerkin approximations, in which $\left(\boldsymbol{u}_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Bounding the time derivative $\dot{\boldsymbol{u}}$, however, now requires bounding $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$ in $H^{-1}(\Omega)$:

We can again take Galerkin approximations, in which $\left(\boldsymbol{u}_{n}\right)$ is uniformly bounded in $L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$. Bounding the time derivative $\dot{\boldsymbol{u}}$, however, now requires bounding $(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}$ in $H^{-1}(\Omega)$:

$$
\|(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\|_{H^{-1}(\Omega)}=\sup _{\substack{\boldsymbol{v} \in H_{0}^{1}(\Omega) \\\|\boldsymbol{v}\|_{H_{0}^{1}(\Omega)}=1}}\langle(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}, \boldsymbol{v}\rangle=-\sup \langle(\boldsymbol{u} \cdot \nabla) \boldsymbol{v}, \boldsymbol{u}\rangle
$$

Now, $\langle(\boldsymbol{u} \cdot \nabla) \boldsymbol{v}, \boldsymbol{u}\rangle \leq\|\boldsymbol{u}\|_{L^{4}(\Omega)}^{2}\|\nabla \boldsymbol{v}\|_{L^{2}(\Omega)}$, so
$\|(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}\|_{H^{-1}(\Omega)} \leq\|\boldsymbol{u}\|_{L^{4}(\Omega)}^{2}$.

Bounding $\|\boldsymbol{u}\|_{L^{4}(\Omega)}^{2}$ depends on the dimension!

- In two dimensions, we have

$$
\|\boldsymbol{u}\|_{L^{4}(\Omega)}^{2} \leq\|\boldsymbol{u}\|_{L^{2}(\Omega)}\|\nabla \boldsymbol{u}\|_{L^{2}(\Omega)}
$$

so $\dot{\boldsymbol{u}} \in L^{2}\left(0, T ; H^{-1}(\Omega)\right)$.

- In three dimensions, however, we have

$$
\|\boldsymbol{u}\|_{L^{4}(\Omega)}^{2} \leq\|\boldsymbol{u}\|_{L^{2}(\Omega)}^{1 / 2}\|\nabla \boldsymbol{u}\|_{L^{2}(\Omega)}^{3 / 2}
$$

so $\dot{\boldsymbol{u}} \in L^{4 / 3}\left(0, T ; H^{-1}(\Omega)\right)$!
This is the key difference that makes proving uniqueness (and regularity) in 3D so hard.

The Euler equations are the special case of the Navier-Stokes equations when the viscosity $\nu=0$:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\nabla p+\boldsymbol{f}, \tag{4a}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{4b}
\end{align*}
$$

The Euler equations are the special case of the Navier-Stokes equations when the viscosity $\nu=0$:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u} & =-\nabla p+\boldsymbol{f} \tag{4a}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{4b}
\end{align*}
$$

Energy conservation

A smooth solution \boldsymbol{u} of the Euler equations (4) satisfies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|\boldsymbol{u}\|_{2}^{2}=(\boldsymbol{f}, \boldsymbol{u})
$$

The MHD equations for a conducting fluid in a domain $\Omega \subset \mathbb{R}^{3}$ can be written in the following form:

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}-\nu \Delta \boldsymbol{u}+\nabla p_{*} & =(\boldsymbol{B} \cdot \nabla) \boldsymbol{B}+\boldsymbol{f}, \tag{5a}\\
\frac{\partial \boldsymbol{B}}{\partial t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{B}-\mu \Delta \boldsymbol{B} & =(\boldsymbol{B} \cdot \nabla) \boldsymbol{u}, \tag{5b}\\
\nabla \cdot \boldsymbol{u} & =0 \tag{5c}\\
\nabla \cdot \boldsymbol{B} & =0 . \tag{5d}
\end{align*}
$$

Here $\boldsymbol{u}, \boldsymbol{B}$, and p are the velocity, magnetic, and pressure fields respectively, $p_{*}=p+\frac{1}{2}|\boldsymbol{B}|^{2}, \boldsymbol{f}$ is an external forcing, and ν and μ are the fluid viscosity and magnetic resistivity respectively.

Energy evolution law

A smooth solution $\boldsymbol{u}, \boldsymbol{B}$ of equations (5) satisfies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|\boldsymbol{u}(t)\|_{2}^{2}+\|\boldsymbol{B}(t)\|_{2}^{2}\right)=-\nu\|\nabla \boldsymbol{u}\|_{2}^{2}-\mu\|\nabla \boldsymbol{B}\|_{2}^{2}+(\boldsymbol{f}, \boldsymbol{u})
$$

Energy evolution law

A smooth solution $\boldsymbol{u}, \boldsymbol{B}$ of equations (5) satisfies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|\boldsymbol{u}(t)\|_{2}^{2}+\|\boldsymbol{B}(t)\|_{2}^{2}\right)=-\nu\|\nabla \boldsymbol{u}\|_{2}^{2}-\mu\|\nabla \boldsymbol{B}\|_{2}^{2}+(\boldsymbol{f}, \boldsymbol{u})
$$

- In two dimensions there is existence and uniqueness theory for the case where $\nu>0$ and $\mu>0$.
- Kozono (1989) proved global existence (but not uniqueness) of solutions when $\nu=0$ (but $\mu>0$).
- When $\mu=0$, only existence results for short time or small initial data have been proved.

