A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

Dave McCormick

joint work with James Robinson and José Rodrigo

Mathematics and Statistics Centre for Doctoral Training University of Warwick

February 26th, 2013

A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for magnetohydrodynamics on a bounded domain $\Omega \subset \mathbb{R}^{2}$:

$$
\begin{aligned}
-\Delta u+\nabla p & =(B \cdot \nabla) B \\
\partial_{t} B-\varepsilon \Delta B+(u \cdot \nabla) B & =(B \cdot \nabla) u,
\end{aligned}
$$

with $\nabla \cdot u=\nabla \cdot B=0$ and Dirichlet boundary conditions. This is like the standard MHD system, but with the terms $\partial_{t} u+(u \cdot \nabla) u$ removed.

Theorem

Given $u_{0}, B_{0} \in L^{2}(\Omega)$ with $\nabla \cdot u_{0}=\nabla \cdot B_{0}=0$, for any $T>0$ there exists a unique weak solution (u, B) with

$$
u \in L^{\infty}\left(0, T ; L^{2, \infty}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

and

$$
B \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right) .
$$

We prove this using both a generalisation of Ladyzhenskaya's inequality, and some elliptic regularity theory for L^{1} forcing.

Consider the Navier-Stokes equations on a domain $\Omega \subset \mathbb{R}^{n}, n=2$ or 3:

$$
\partial_{t} u+(u \cdot \nabla) u-\Delta u+\nabla p=0
$$

with $\nabla \cdot u=0$, and Dirichlet boundary conditions.

Theorem (Leray, 1934, and Hopf, 1951)

Given $u_{0} \in L^{2}(\Omega)$ with $\nabla \cdot u_{0}=0$, there exists a weak solution u of the Navier-Stokes equations satisfying

$$
u \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

Moreover, if $n=2$, this weak solution is unique.
The same is true if $\Omega=\mathbb{R}^{n}$, or if $\Omega=[0,1]^{n}$ with periodic boundary conditions.

Let u^{m} be the m th Galerkin approximation: i.e., the solution of

$$
\partial_{t} u^{m}+P^{m}\left[\left(u^{m} \cdot \nabla\right) u^{m}\right]-\Delta u^{m}+\nabla p^{m}=0 .
$$

Taking the L^{2} inner product with u^{m}, we get

$$
\left\langle\partial_{t} u^{m}, u^{m}\right\rangle+\left\langle\left(u^{m} \cdot \nabla\right) u^{m}, u^{m}\right\rangle-\left\langle\Delta u^{m}, u^{m}\right\rangle+\underbrace{\left\langle\nabla p^{m}, u^{m}\right\rangle}_{=0}=0 .
$$

Fact

If $\nabla \cdot u=0$, and $u, v, w=0$ on $\partial \Omega$, then

$$
\langle(u \cdot \nabla) v, w\rangle=-\langle(u \cdot \nabla) w, v\rangle
$$

Hence

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|u^{m}\right\|^{2}+\left\|\nabla u^{m}\right\|^{2}=0
$$

so integrating in time yields

$$
\left\|u^{m}(t)\right\|^{2}+\int_{0}^{t}\left\|\nabla u^{m}(s)\right\|^{2} \mathrm{~d} s=\left\|u^{m}(0)\right\|^{2} \leq\left\|u_{0}\right\|^{2}
$$

Hence u^{m} are uniformly bounded in $L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right)$.

Ladyzhenskaya's inequality

To get uniform bounds on $\partial_{t} u^{m}=\Delta u^{m}-P^{m}\left[\left(u^{m} \cdot \nabla\right) u^{m}\right]$, one uses:

Ladyzhenskaya's inequality in 2D (1958)

$$
\|u\|_{L^{4}} \leq c\|u\|_{L^{2}}^{1 / 2}\|\nabla u\|_{L^{2}}^{1 / 2} .
$$

Ladyzhenskaya's inequality yields a priori bounds on the nonlinear term $\left(u^{m} \cdot \nabla\right) u^{m}$:

$$
\left|\int\left(u^{m} \cdot \nabla\right) u^{m} \cdot \phi\right|=\left|-\int\left(u^{m} \cdot \nabla\right) \phi \cdot u^{m}\right| \leq\left\|u^{m}\right\|_{L^{4}}^{2}\|\nabla \phi\|_{L^{2}},
$$

So

$$
\left\|\left(u^{m} \cdot \nabla\right) u^{m}\right\|_{H^{-1}} \leq\left\|u^{m}\right\|_{L^{4}}^{2} \leq c\left\|u^{m}\right\|_{L^{2}}\|\nabla u\|_{L^{2}}
$$

and thus $\left(u^{m} \cdot \nabla\right) u^{m} \in L^{2}\left(0, T ; H^{-1}\right)$, and hence $\partial_{t} u^{m} \in L^{2}\left(0, T ; H^{-1}\right)$.
Theorem (Aubin, 1963, and Lions, 1969)
If $u^{m} \in L^{2}\left(0, T ; H^{1}\right)$ and $\partial_{t} u^{m} \in L^{2}\left(0, T ; H^{-1}\right)$ uniformly, then a subsequence $u^{m_{k}} \rightarrow u \in L^{2}\left(0, T ; L^{2}\right)$ (strongly).

Aim to construct stationary solutions of the Euler equations with non-trivial topology: $(u \cdot \nabla) u+\nabla p=0$.
Consider the MHD equations with zero magnetic resistivity

$$
\begin{aligned}
u_{t}-\Delta u+(u \cdot \nabla) u+\nabla p & =(B \cdot \nabla) B \\
B_{t}+(u \cdot \nabla) B & =(B \cdot \nabla) u
\end{aligned}
$$

and assume that smooth solutions exist for all $t \geq 0$ (open even in 2D). Energy equation

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\|u\|^{2}+\|B\|^{2}\right)+\|\nabla u\|^{2}=0
$$

So $\|B\|$ decreases while $\|\nabla u\| \neq 0$.
Since the 'magnetic helicity' $\mathscr{H}=\int A \cdot B$ is preserved, where $B=\nabla \times A$ and $\nabla \cdot A=0,\|B\|$ is bounded below:

$$
c\|B\|^{4} \geq\|B\|^{2}\|A\|^{2} \geq\left(\int A \cdot B\right)^{2}=\mathscr{H}^{2}
$$

"So" $u(t) \rightarrow 0$ as $t \rightarrow \infty$ (Nuñez, 2007) and $B(t) \rightarrow B$ with $\nabla p=(B \cdot \nabla) B$.

The dynamics are arbitrary, so consider instead the 'simpler' model

$$
\begin{aligned}
-\Delta u+\nabla p & =(B \cdot \nabla) B \\
B_{t}+(u \cdot \nabla) B & =(B \cdot \nabla) u .
\end{aligned}
$$

The new energy equation is

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|B\|^{2}+\|\nabla u\|^{2}=0
$$

"So" $\|\nabla u\|^{2} \rightarrow 0$ " $\Longrightarrow " u(t) \rightarrow 0$ and $B(t) \rightarrow B^{*}$ as $t \rightarrow \infty$.
Open: does $u(t) \rightarrow 0$ as $t \rightarrow \infty$ in this case?
To address existence of solutions we make two simplifications: we consider 2D, and regularise the B equation:

$$
\begin{aligned}
-\Delta u+\nabla p & =(B \cdot \nabla) B \\
B_{t}-\varepsilon \Delta B+(u \cdot \nabla) B & =(B \cdot \nabla) u .
\end{aligned}
$$

A priori estimates

We consider the 2D system

$$
\begin{aligned}
-\Delta u+\nabla p & =(B \cdot \nabla) B & \nabla \cdot u & =0 \\
B_{t}-\varepsilon \Delta B+(u \cdot \nabla) B & =(B \cdot \nabla) u & \nabla \cdot B & =0 .
\end{aligned}
$$

'Toy version' of 3D Navier-Stokes, which in vorticity form $(\omega=\nabla \times u)$ is

$$
\omega_{t}-\nu \Delta \omega+(u \cdot \nabla) \omega=(\omega \cdot \nabla) u
$$

Take inner product with u in the first equation, with B in the second equation

$$
\begin{aligned}
\|\nabla u\|^{2} & =\langle(B \cdot \nabla) B, u\rangle=-\langle(B \cdot \nabla) u, B\rangle \\
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|B\|^{2}+\varepsilon\|\nabla B\|^{2} & =\langle(B \cdot \nabla) u, B\rangle
\end{aligned}
$$

and add:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|B\|^{2}+\varepsilon\|\nabla B\|^{2}+\|\nabla u\|^{2}=0
$$

We get:

$$
B \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right), \quad u \in L^{2}\left(0, T ; H^{1}\right)
$$

What can we say about u ? We know that $B \in L^{\infty}\left(0, T ; L^{2}\right)$.
Note that $[(u \cdot \nabla) v]_{i}=u_{j} \partial_{j} v_{i}=\partial_{j}\left(u_{j} v_{i}\right)=: \nabla \cdot(u \otimes v)$, since $\nabla \cdot v=0$.
We can write the equation for u as

$$
-\Delta u+\nabla p=(B \cdot \nabla) B=\nabla \cdot(\underbrace{B \otimes B}_{L^{1}}) .
$$

Elliptic regularity works for $p>1$:

$$
-\Delta u+\nabla p=f, \quad f \in L^{p} \Longrightarrow u \in W^{2, p}
$$

(e.g. Temam, 1979).

If we could take $p=1$ then we would expect, for RHS ∂f with $f \in L^{1}$, to get $u \in W^{1,1} \subset L^{2}$.
In fact for RHS ∂f with $f \in L^{1}$ we get $u \in L^{2, \infty}$, where $L^{2, \infty}$ is the weak- L^{2} space.

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ define

$$
d_{f}(\alpha)=\mu\{x:|f(x)|>\alpha\} .
$$

Note that

$$
\|f\|_{L^{p}}^{p}=\int_{\mathbb{R}^{n}}|f(x)|^{p} \geq \int_{\{x:|f(x)|>\alpha\}}|f(x)|^{p} \geq \alpha^{p} d_{f}(\alpha) .
$$

For $1 \leq p<\infty$ set

$$
\|f\|_{L^{p}, \infty}=\inf \left\{C: d_{f}(\alpha) \leq \frac{C^{p}}{\alpha^{p}}\right\}=\sup \left\{\gamma d_{f}(\gamma)^{1 / p}: \gamma>0\right\} .
$$

The space $L^{p, \infty}\left(\mathbb{R}^{n}\right)$ consists of all those f such that $\|f\|_{L^{p}, \infty}<\infty$.

- $L^{p} \subset L^{p, \infty}$
- $|x|^{-n / p} \in L^{p, \infty}\left(\mathbb{R}^{n}\right)$ but $\notin L^{p}\left(\mathbb{R}^{n}\right)$.
- if $f \in L^{p, \infty}\left(\mathbb{R}^{n}\right)$ then $d_{f}(\alpha) \leq\|f\|_{L^{p, \infty}}^{p} \alpha^{-p}$.

Just as with strong L^{p} spaces, we can interpolate between weak L^{p} spaces:

Weak L^{p} interpolation

Take $p<r<q$. If $f \in L^{p, \infty} \cap L^{q, \infty}$ then $f \in L^{r}$ and

$$
\|f\|_{L^{r}} \leq c_{p, r, q}\|f\|_{L^{p}, \infty}^{p(q-r) / r(q-p)}\|f\|_{L^{q}, \infty}^{q(r-p) / r(q-p)} .
$$

Recall Young's inequality for convolutions: if $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+1=\frac{1}{q}+\frac{1}{r}$ then

$$
\|E * f\|_{L^{p}} \leq\|E\|_{L^{q}}\|f\|_{L^{r}} .
$$

There is also a weak form, which requires stronger conditions on p, q, r :

Weak form of Young's inequality for convolutions

If $1 \leq r<\infty$ and $1<p, q<\infty$, and $\frac{1}{p}+1=\frac{1}{q}+\frac{1}{r}$ then

$$
\|E * f\|_{L^{p}, \infty} \leq\|E\|_{L^{q}, \infty}\|f\|_{L^{r}} .
$$

Fundamental solution of Stokes operator on \mathbb{R}^{2} is

$$
E_{i j}(x)=-\delta_{i j} \log |x|+\frac{x_{i} x_{j}}{|x|^{2}},
$$

i.e. solution of $-\Delta u+\nabla p=f$ is $u=E * f$.

Solution of $-\Delta u+\nabla p=\partial f$ is $u=E *(\partial f)=(\partial E) * f$. Note that

$$
\partial_{k} E_{i j}=\delta_{i j} \frac{x_{k}}{|x|^{2}}+\frac{\delta_{i k} x_{j}+\delta_{j k} x_{i}}{|x|^{2}}-\frac{x_{i} x_{j} x_{k}}{|x|^{4}} \sim \frac{1}{|x|} .
$$

Thus $\partial E \in L^{2, \infty}$ and so

$$
f \in L^{1} \Longrightarrow u=\partial E * f \in L^{2, \infty}
$$

If we consider the problem in a bounded domain we have the same regularity. We replace the fundamental solution E by the Dirichlet Green's function G satisfying

$$
-\Delta G=\left.\delta(x-y) \quad G\right|_{\partial \Omega}=0
$$

Mitrea \& Mitrea (2011) showed that in this case we still have $\partial G \in L^{2, \infty}$. So on our bounded domain, $u \in L^{\infty}\left(0, T ; L^{2, \infty}\right)$.

Take $v \in H^{1}$ with $\|v\|_{H^{1}}=1$. Then

$$
\begin{aligned}
\left|\left\langle\partial_{t} B, v\right\rangle\right| & =|\langle\varepsilon \Delta B-(u \cdot \nabla) B+(B \cdot \nabla) u, v\rangle| \\
& \leq \varepsilon\|\nabla B\|\|\nabla v\|+2\|u\|_{L^{4}}\|B\|_{L^{4}}\|\nabla v\|_{L^{2}} .
\end{aligned}
$$

So

$$
\left\|\partial_{t} B\right\|_{H^{-1}} \leq \varepsilon\|\nabla B\|+2\|u\|_{L^{4}}\|B\|_{L^{4}}
$$

Standard 2D Ladyzhenskaya inequality gives

$$
\|B\|_{L^{4}} \leq c\|B\|^{1 / 2}\|\nabla B\|^{1 / 2}
$$

but we only have uniform bounds on u in $L^{2, \infty}$. If $\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|\nabla f\|^{1 / 2}$ then

$$
\left\|\partial_{t} B\right\|_{H^{-1}} \leq \varepsilon\|\nabla B\|+c\|u\|_{L^{2}, \infty}^{1 / 2}\|B\|^{1 / 2}\|\nabla u\|^{1 / 2}\|\nabla B\|^{1 / 2}
$$

which would yield

$$
\partial_{t} B \in L^{2}\left(0, T ; H^{-1}\right) .
$$

In 2 D ,

$$
\|f\|_{L^{4}}^{2} \leq c\|f\|_{L^{2}}\|\nabla f\|_{L^{2}} .
$$

Proof:
(i) write $f^{2}=2 \int f \partial_{j} f \mathrm{~d} x_{j}$ and integrate $\left(f^{2}\right)^{2}$.
(ii) use the Sobolev embedding $\dot{H}^{1 / 2} \subset L^{4}$ and interpolation in \dot{H}^{s} :

$$
\|f\|_{L^{4}} \leq c\|f\|_{\dot{H}^{1 / 2}} \leq c\|f\|_{L^{2}}^{1 / 2}\|f\|_{\dot{H}^{1}}^{1 / 2}
$$

In fact, using the theory of interpolation spaces:

$$
\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|f\|_{\mathrm{BMO}}^{1 / 2}
$$

Since $\dot{H}^{1} \subset$ BMO in 2D, this yields

$$
\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|f\|_{\dot{H}^{1}}^{1 / 2}
$$

Besides the proof using interpolation spaces, we can also prove this directly using Fourier transforms.

Let $f_{Q}:=\frac{1}{|Q|} \int_{Q} f(x) \mathrm{d} x$ denote the average of f over a cube $Q \subset \mathbb{R}^{n}$. Define

$$
\|f\|_{\text {вмо }}:=\sup _{Q} \frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right| \mathrm{d} x,
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$. Let $\mathrm{BMO}\left(\mathbb{R}^{n}\right)$ denote the set of functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ for which $\|f\|_{\text {вмо }}<\infty$.

- $\|f\|_{\text {вмо }}=0 \Longrightarrow f$ is constant (almost everywhere).
- $L^{\infty} \subsetneq$ ВМО and $\|f\|_{\text {вмо }} \leq 2\|f\|_{\infty} ; \log |x| \in$ BMO but is unbounded.
- $\dot{H}^{n / 2} \subset$ BMO and $\|f\|_{\text {вмо }} \leq c\|f\|_{\dot{H}^{n / 2}}$ in \mathbb{R}^{n}, even though $\dot{H}^{n / 2} \not \subset L^{\infty}$.
- $W^{1, n} \subset B M O$, by Poincaré's inequality: let B be a ball of radius r, then

$$
\begin{aligned}
& \quad \frac{1}{|B|} \int_{B}\left|f(x)-f_{B}\right| \mathrm{d} x \leq \frac{c r}{r^{n}} \int_{B}|\mathrm{D} f| \mathrm{d} x \leq c\left(\int_{B}|\mathrm{D} f|^{n} \mathrm{~d} x\right)^{1 / n} \leq c\|f\|_{W^{1, n}} \text {, } \\
& \text { so }\|f\|_{\text {вмо }} \leq c\|f\|_{W^{1, n}} \text {. }
\end{aligned}
$$

For $0 \leq \theta \leq 1$ one can define an interpolation space $X_{\theta}:=\left[X^{0}, X^{1}\right]_{\theta}$ in such a way that $\|f\|_{X_{\theta}} \leq c\|f\|_{X^{0}}^{1-\theta}\|f\|_{X^{1}}^{\theta}$. (Note that $\|f\|_{X_{1}} \leq c| | f \|_{X^{1}}$.)

Theorem (Bennett \& Sharpley, 1988)

$L^{p, \infty}=\left[L^{1}, \mathrm{BMO}\right]_{1-(1 / p)}$ for $1<p<\infty$; so $L^{2, \infty}=\left[L^{1}, \mathrm{BMO}\right]_{1 / 2}$.
Write $\mathfrak{B}=\left[L^{1}, \mathrm{BMO}\right]_{1}$ and note that $\|f\|_{\mathfrak{B}} \leq c\|f\|_{\text {вмо }}$.

Reiteration Theorem

If $A_{0}=\left[X_{0}, X_{1}\right]_{\theta_{0}}$ and $A_{1}=\left[X_{0}, X_{1}\right]_{\theta_{1}}$ then for $0<\theta<1$

$$
\left[A_{0}, A_{1}\right]_{\theta}=\left[X_{0}, X_{1}\right]_{(1-\theta) \theta_{0}+\theta \theta_{1}}
$$

So $L^{3, \infty}=\left[L^{2, \infty}, \mathfrak{B}\right]_{1 / 3}$ and $L^{6, \infty}=\left[L^{2, \infty}, \mathfrak{B}\right]_{2 / 3}$, and hence

$$
\begin{aligned}
\|f\|_{L^{4}} & \leq c\|f\|_{L^{3, \infty}}^{1 / 2}\|f\|_{L^{6, \infty}}^{1 / 2} \\
& \leq c\left[c\|f\|_{L^{2, \infty}}^{2 / 3}\|f\|_{\mathfrak{B}}^{1 / 3}\right]^{1 / 2}\left[c\|f\|_{L^{2, \infty}}^{1 / 3}\|f\|_{\mathfrak{B}}^{2 / 3}\right]^{1 / 2} \\
& =c\|f\|_{L^{2, \infty}}^{1 / 2}\|f\|_{\mathfrak{B}}^{1 / 2} \leq c\|f\|_{L^{2, \infty}}^{1 / 2}\|f\|_{\text {BMO }}^{1 / 2} .
\end{aligned}
$$

There exists a Schwartz function ϕ such that if \hat{f} is supported in $B(0, R)$,

$$
f=\phi^{1 / R} * f, \quad \text { where } \phi^{1 / R}(x)=R^{n} \phi(R x)
$$

(Take ϕ with $\hat{\phi}=1$ on $B(0,1)$; then $\mathscr{F}\left[\phi^{1 / R} * f\right]=\mathscr{F}\left[\phi^{1 / R}\right] \hat{f}=\hat{f}$.)

Lemma (Weak-strong Bernstein inequality)

Suppose that $\operatorname{supp}(\hat{f}) \subset B(0, R)$. Then for $1 \leq p<q<\infty$

$$
\|f\|_{L^{q}} \leq c R^{n(1 / p-1 / q)}\|f\|_{L^{p, \infty}}
$$

Using the weak form of Young's inequality, for $1+\frac{1}{q}=\frac{1}{r}+\frac{1}{p}$,

$$
\|f\|_{L^{q, \infty}}=\left\|\phi^{1 / R} * f\right\|_{L^{q, \infty}} \leq c\left\|\phi^{1 / R}\right\|_{L^{r}}\|f\|_{L^{p}, \infty}
$$

and noting that $\left\|\phi^{1 / R}\right\|_{L^{r}}=c R^{n(1-1 / r)}$, it follows that

$$
\|f\|_{L^{1, \infty}} \leq c R^{n(1 / p-1)}\|f\|_{L^{p, \infty}} \quad \text { and } \quad\|f\|_{L^{2 q, \infty}} \leq c R^{n(1 / p-1 / 2 q)}\|f\|_{L^{p}, \infty} .
$$

Finally interpolate L^{q} between $L^{1, \infty}$ and $L^{2 q, \infty}$.

To show

$$
\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|f\|_{\dot{H}^{1}}^{1 / 2}
$$

write

$$
f(x)=\underbrace{\int_{|k| \leq R} \hat{f}(k) e^{2 \pi i k \cdot x} \mathrm{~d} k}_{f_{-}}+\underbrace{\int_{|k| \geq R} \hat{f}(k) e^{2 \pi i k \cdot x} \mathrm{~d} k}_{f_{+}} .
$$

Now using the weak-strong Bernstein inequality

$$
\left\|f_{-}\right\|_{L^{4}} \leq c R^{1 / 2}\|f\|_{L^{2, \infty}}
$$

and using the embedding $\dot{H}^{1 / 2} \subset L^{4}$,

$$
\begin{aligned}
\left\|f_{+}\right\|_{L^{4}}^{2} \leq c\left\|f_{+}\right\|_{\dot{H}^{1 / 2}}^{2} & =c \int_{|k| \geq R}|k||\hat{f}(k)|^{2} \mathrm{~d} k \\
& \leq \frac{c}{R} \int_{|k| \geq R}|k|^{2}|\hat{f}(k)|^{2} \mathrm{~d} k \\
& \leq \frac{c}{R}\|f\|_{\dot{H}^{1}}^{2}
\end{aligned}
$$

Thus

$$
\|f\|_{L^{4}} \leq c R^{1 / 2}\|f\|_{L^{2, \infty}}+c R^{-1 / 2}\|f\|_{\dot{H}^{1}}
$$

and choosing $R=\|f\|_{\dot{H}^{1}} /\|f\|_{L^{2}, \infty}$ yields the inequality.

Generalised Gagliardo-Nirenberg inequalities

It is not hard to generalise this direct proof to prove the following:

Theorem

Take $1 \leq q<p<\infty$ and $s>n\left(\frac{1}{2}-\frac{1}{p}\right)$. There exists a constant $c_{p, q, s}$ such that if $f \in L^{q, \infty} \cap \dot{H}^{s}$ then $f \in L^{p}$ and

$$
\|f\|_{L^{p}} \leq c_{p, q, s}\|f\|_{L^{q, \infty}}^{\theta}\|f\|_{\dot{H}^{s}}^{1-\theta}
$$

for every $f \in L^{q, \infty} \cap \dot{H}^{s}$, where $\frac{1}{p}=\frac{\theta}{q}+(1-\theta)\left(\frac{1}{2}-\frac{s}{n}\right)$.
With a little work, in the case $s=n / 2$ we can generalise this:

Theorem

Take $1 \leq q<p<\infty$. There exists a constant $c_{p, q}$ such that iff $\in L^{q, \infty} \cap \mathrm{BMO}$ then $f \in L^{p}$ and

$$
\|f\|_{L^{p}} \leq c_{p, q}\|f\|_{L^{q, \infty}}^{q / p}\|f\|_{\text {BMO }}^{1-q / p}
$$

for every $f \in L^{q, \infty} \cap$ BMO.

Take $B^{m}(0)=P^{m} B(0)$ and consider the Galerkin approximations:

$$
\begin{aligned}
-\Delta u^{m}+\nabla p & =P^{m}\left(B^{m} \cdot \nabla\right) B^{m} \\
\partial_{t} B^{m}-\varepsilon \Delta B^{m}+P^{m}\left(u^{m} \cdot \nabla\right) B^{m} & =P^{m}\left(B^{m} \cdot \nabla\right) u^{m}
\end{aligned}
$$

The B^{m} equation is a Lipschitz ODE on a finite-dimensional space, so it has a unique solution. By repeating the a priori estimates on these smooth equations (now rigorous) we can obtain estimates uniform in n :

$$
B^{m} \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right), \quad \partial_{\mathrm{t}} B^{m} \in L^{2}\left(0, T ; H^{-1}\right)
$$

and

$$
u^{m} \in L^{\infty}\left(0, T ; L^{2, \infty}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

By Aubin-Lions, a subsequence of the Galerkin approximations $B^{m} \rightarrow B$ strongly in $L^{2}\left(0, T ; L^{2}\right)$. Hence, by elliptic regularity,

$$
\left\|u^{m}-u\right\|_{L^{2}, \infty} \leq\left\|B^{m} \otimes B^{m}-B \otimes B\right\|_{L^{1}} \leq\left\|B^{m}-B\right\|_{L^{2}}\left(\left\|B^{m}\right\|_{L^{2}}+\|B\|_{L^{2}}\right)
$$

hence $u^{m} \rightarrow u$ strongly in $L^{2}\left(0, T ; L^{2, \infty}\right)$. This is enough to show the nonlinear terms converge weak-* in $L^{2}\left(0, T ; H^{-1}\right)$, and hence that (u, B) is a weak solution (i.e. a solution with equality in $L^{2}\left(0, T ; H^{-1}\right)$).

Similar arguments to the a priori estimates show uniqueness of weak solutions, and so:

Theorem

Given $u_{0}, B_{0} \in L^{2}(\Omega)$ with $\nabla \cdot u_{0}=\nabla \cdot B_{0}=0$, for any $T>0$ there exists a unique weak solution (u, B) with

$$
u \in L^{\infty}\left(0, T ; L^{2, \infty}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

and

$$
B \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

What about $\varepsilon=0$?

- Try looking at more regular solutions and taking the limit $\varepsilon \rightarrow 0$ to get local existence
- Assume regularity and show that $u(t) \rightarrow 0$ as $t \rightarrow \infty$ (Moffatt)?
- D. S. McCormick, J. C. Robinson and J. L. Rodrigo, 'Generalised Gagliardo-Nirenberg inequalities using weak Lebesgue spaces and BMO', submitted.
- D. S. McCormick, J. C. Robinson and J. L. Rodrigo, 'Existence and uniqueness for a coupled parabolic-elliptic model with applications to magnetic relaxation', in preparation.
- H. K. Moffatt (1985), 'Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. I. Fundamentals', J. Fluid Mech. 159, 359-378.
- H. K. Moffatt (2009), 'Relaxation routes to steady Euler flows of complex topology', slides of talk given during MIRaW Day, Warwick, June 2009.
- M. Núñez (2007), 'The limit states of magnetic relaxation', J. Fluid Mech. 580, 251-260.
- L. Grafakos (2008), Classical Fourier Analysis and Modern Fourier Analysis. Springer, New York, GTM 249 and 250.
- C. Bennett and R. Sharpley (1988), Interpolation of Operators. Academic Press, New York.

