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Introduction

I Data assimilation is a technique used to make predictions of the
future state of a system using information from both a model of
the system and observations.

I It has many applications in fields such as geoscience, weather
forecasting and hydrology. We focus on the simple case of
applying 3DVar to 2D fluid flow with periodic boundary conditions,
as there are still open questions here.

I Let {un} represent the state of the system at timestep n. Suppose
we have model which can predict the state of the system at each
timestep, and a sequence of noisy observations {yn}.

I In an ideal world, the model and the observations agree; how do
we reconcile the model and the data when they do not agree?

I Goal: Estimate un given {y1, · · · , yn}, and only uncertain
knowledge of u0.

Notation

I Let X and Y be Hilbert spaces. If L is a self-adjoint,
positive-definite operator on either X or Y , we define the L-inner
product and L-norm as

〈·, ·〉L := 〈·, L−1·〉, ‖ · ‖L := ‖L−1/2 · ‖.

I Let Ψ: X → X be the operator which evolves a system at time nh
to the system at time (n + 1)h, with initial condition u0 ∈ X. We
define {un} ⊂ X by

un+1 := Ψ(un).
I Let {ξ̄n+1} denote a sequence of i.i.d. Y -valued random variables

representing the observation error. We define the observations
{yn} ⊂ Y by

yn+1 := un+1 + ξ̄n+1.

3DVar

I Let ûn denote our estimate of un. Given ûn we define ûn+1 by

ûn+1 := arg min
u∈X

(
1

2
‖u− yn+1‖2

Γ +
1

2
‖u− Ψ(ûn)‖2

C

)
.

I This encodes our belief that the estimators should be guided by
the observations (the 1

2‖u− yn+1‖2
Γ term) and the model (the

1
2‖u− Ψ(ûn)‖2

C term).
I The estimator ûn+1 is the solution to

(C−1 + Γ−1)ûn+1 = C−1Ψ(ûn) + Γ−1yn+1. (1)

The forward model

I We consider the 2D Navier-Stokes equations (NSE) on the torus
T2:

∂tu− ν∆u + u · ∇u +∇p = f on T2 × (0,∞) (2a)
∇ · u = 0 on T2 × (0,∞) (2b)
u(x, 0) = u0(x) on T2 (2c)

I We work in the space

H :=

{
u ∈ (L2(T2))2 : ∇ · u = 0,

∫
T2

u(x) dx = 0

}
,

which projects the NSE into their divergence-free form, and use
Fourier analysis. The NSE can be simplified to:

du

dt
+ νAu + B(u, u) = f , u(0) = u0,

where A is the projection of −∆ onto H, B(u, u) is the projection of
u · ∇u onto H, and, abusing notation, f is the forcing projected
onto H.

Analysis

We consider the case when C−1 and Γ−1 are both powers of A, i.e.,

C−1 =
1

δ2
Aγ, Γ−1 =

1

ε2
Aβ.

Substituting this into equation (1) and multiplying through by ε2A−β we obtain

ûn+1 = η2(I + η2Aα)−1AαΨ(ûn) + (I + η2Aα)−1yn+1, (3)

where α = γ − β and η = ε/δ.

Effects of α

I Equation (3) shows that ûn+1 is a convex combination of the dynamics Ψ(ûn) and
the observations yn+1.

I α controls the weightings we put on each of these components:
I If α = −1 the observations have a larger weight than the dynamics for large wavenumbers.
I If α = 1 the dynamics have a larger weight than the observations for large wavenumbers.

I We prove two theorems for the case α = −1, and perform numerical simulations
for α = ±1.

Theorem 1 (Convergence of estimators with same observations)

Suppose the true solution un and the observation noise ξ̄n are uniformly bounded in
Hs := D(As/2) ⊂ H. Given initial estimators û0, v̂0 ∈ Hs, for all sufficiently small η,
there exists a constant λ < 1 such that, for all n ∈ N,

‖ûn − v̂n‖s ≤ λn‖û0 − v̂0‖s.

Theorem 2 (Convergence of estimators to the truth)

Suppose the truth un and the observation noise ξ̄n are uniformly bounded in Hs; set
M := sup ‖ξ̄n‖s. Given initial estimators û0, v̂0 ∈ Hs, for all sufficiently small η, there
exists a constant λ < 1 such that, for all n ∈ N,

‖un − ûn‖s ≤ λn‖u0 − û0‖s +
M

1− λ
.

Numerical simulations

We used MATLAB, with code written by Kody Law, to simulate the NSE with different
viscosity values ν. Here we exhibit typical stream functions from numerical
simulations to show the limiting behaviour in three different regimes: steady, periodic,
and turbulent dynamics.
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(a) ν = 0.04 (steady state)
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(b) ν = 0.03 (periodic state)
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(c) ν = 0.016 (turbulent state)

Figure 1: Snapshots of the stream function of the NSE at one point in time, with different viscosity values.

Numerical results for α = −1

I Here we present numerical simulations for 3DVar in the turbulent regime, with ν = 0.016, in the case α = −1.
I For frequent observations (i.e. for small h), we observe that two estimators with different initial conditions become

asymptotically equal to each other and to the truth, even for large η (figure 2(a)).
I However, if we increase h from 0.032 to 0.16, we fail to get convergence unless η is made smaller (figure 2(b)).
I The spatial L2 difference between two estimators with different initial conditions converges exponentially to zero (figure 3(a)),

which confirms theorem 1.
I After a time, the spatial L2 error between an estimator and the truth remains below a small threshold (figure 3(b)), which

confirms theorem 2.
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(a) The two estimators are asymptotically equal: for sufficiently large times they
are almost indistinguishable.
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(b) Infrequent observations prevent the estimators locking onto the truth.

Figure 2: Estimators exposed to the same observations but with two different initial conditions u0 and v0. ⊗ denotes the estimators ûn and ◦ denotes Ψ(ûn),
the estimators evolved forward by the model one time step. + denote the observations yn+1 that are being assimilated, and the black line is the truth.
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(a) The squared L2 difference between estimators for two different initial condi-
tions decreases exponentially; eventually we are limited by machine precision.
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(b) A plot of e2n := ‖ûn − un‖2 against time. The error decreases rapidly to
around 10−4.

Figure 3: L2 error plots for α = −1.

Numerical predictions for α = 1

I Here we present numerical simulations for 3DVar in the turbulent regime, with ν = 0.016, in the case α = 1.
I For well-chosen parameter values (e.g. η = 0.05, h = 0.032) two estimators with different initial conditions will converge together

and to the truth (figure 4(a)). However η and h have to be chosen more carefully than in the α = −1 case to get convergence.
I The spatial L2 error between two estimators with different initial conditions will decrease exponentially to zero (figure 4(b)).
I After a time the spatial L2 error between an estimator and the truth will remain below a small threshold (figure 4(c)). This

threshold appears to be smaller than in the α = −1 case.
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(a) The estimators become asymptotically equal, as in the
α = −1 case.
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L2 error between estimators for different ICs with η=0.015, h=0.032 and α=1

(b) As before, the square of the L2 difference between the
estimators decreases exponentially.
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(c) We get a lower bound on the error e2n := ‖ûn − un‖2 than
in the α = −1 case.

Figure 4: Estimators and L2 error plots for α = 1.
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