A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

Dave McCormick

joint work with James C. Robinson and José Rodrigo

Mathematics and Statistics Centre for Doctoral Training University of Warwick

January 3rd, 2013

- Introduction
- A priori estimates
- Weak L^p spaces and elliptic regularity in L^1
- Interpolation spaces and a generalised Ladyzhenskaya inequality
- Global existence and uniqueness of weak solutions

In proving existence and uniqueness of weak solutions to the 2D Navier–Stokes equations, one uses:

Ladyzhenskaya's inequality

 $||u||_{L^4} \leq c ||u||_{L^2}^{1/2} ||Du||_{L^2}^{1/2}.$

Ladyzhenskaya's inequality yields a priori bounds on the nonlinear term $(u \cdot \nabla)u$: if $u \in L^{\infty}(0, T; L^2)$ and $Du \in L^2(0, T; L^2)$, then

$$\left|\int (u\cdot\nabla)u\cdot\phi\right| = \left|-\int (u\cdot\nabla)\phi\cdot u\right| \le \|u\|_{L^4}^2\|\nabla\phi\|_{L^2},$$

SO

 $\|(u \cdot \nabla)u\|_{H^{-1}} \le \|u\|_{L^4}^2 \le c \|u\|_{L^2} \|Du\|_{L^2},$

and thus $(u \cdot \nabla)u \in L^2(0,T;H^{-1})$, and hence $\partial_t u \in L^2(0,T;H^{-1})$.

A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for magnetohydrodynamics on a bounded domain $\Omega \subset \mathbb{R}^2$:

$$-\Delta u + \nabla p = (B \cdot \nabla)B$$

 $\partial_t B - \varepsilon \Delta B + (u \cdot \nabla)B = (B \cdot \nabla)u,$

with $\nabla \cdot u = \nabla \cdot B = 0$ and Dirichlet boundary conditions. This is like the standard MHD system, but with the terms $\partial_t u + (u \cdot \nabla)u$ removed.

Theorem

Given $u_0, B_0 \in L^2(\Omega)$ with $\nabla \cdot u_0 = \nabla \cdot B_0 = 0$, for any T > 0 there exists a unique weak solution (u, B) with

$$u \in L^{\infty}(0,T;L^{2,\infty}) \cap L^{2}(0,T;H^{1})$$

and

$$B \in L^{\infty}(0,T;L^2) \cap L^2(0,T;H^1).$$

We prove this using both a generalisation of Ladyzhenskaya's inequality, and some elliptic regularity theory for L^1 forcing.

A priori estimates

Take inner product with u in the first equation, with B in the second equation

$$\begin{split} \|\nabla u\|^2 &= \langle (B \cdot \nabla)B, u \rangle = -\langle (B \cdot \nabla)u, B \rangle \\ \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|B\|^2 + \varepsilon \|\nabla B\|^2 &= \langle (B \cdot \nabla)u, B \rangle \end{split}$$

and add:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|B\|^2 + \varepsilon\|\nabla B\|^2 + \|\nabla u\|^2 = 0.$$

We get:

$$B \in L^{\infty}(0,T;L^2), \qquad \nabla B \in L^2(0,T;L^2), \qquad \nabla u \in L^2(0,T;L^2).$$

We still need elliptic regularity for *u*:

$$-\Delta u + \nabla p = (B \cdot \nabla)B = \nabla \cdot \underbrace{(B \otimes B)}_{L^1}$$

For $f \colon \mathbb{R}^n \to \mathbb{R}$ define

$$d_f(\alpha) = \mu\{x: |f(x)| > \alpha\}.$$

Note that

$$\|f\|_{L^p}^p = \int_{\mathbb{R}^n} |f(x)|^p \geq \int_{\{x: \ |f(x)| > \alpha\}} |f(x)|^p \geq \alpha^p d_f(\alpha).$$

For $1 \le p < \infty$ set

$$\|f\|_{L^{p,\infty}}=\inf\left\{C:\ d_f(lpha)\leq rac{C^p}{lpha^p}
ight\}=\sup\{\gamma d_f(\gamma)^{1/p}:\ \gamma>0\}.$$

The space $L^{p,\infty}(\mathbb{R}^n)$ consists of all those f such that $\|f\|_{L^{p,\infty}} < \infty$.

- $L^p \subset L^{p,\infty}$
- $|x|^{-n/p} \in L^{p,\infty}(\mathbb{R}^n)$ but $\notin L^p(\mathbb{R}^n)$.
- if $f \in L^{p,\infty}(\mathbb{R}^n)$ then $d_f(\alpha) \le \|f\|_{L^{p,\infty}}^p \alpha^{-p}$.

$L^{p,\infty}$: weak L^p spaces

Just as with strong L^p spaces, we can interpolate between weak L^p spaces:

Weak *L^p* interpolation

Take
$$p < r < q$$
. If $f \in L^{p,\infty} \cap L^{q,\infty}$ then $f \in L^r$ and

$$||f||_{L^r} \leq c_{p,r,q} ||f||_{L^{p,\infty}}^{p(q-r)/r(q-p)} ||f||_{L^{q,\infty}}^{q(r-p)/r(q-p)}.$$

Recall Young's inequality for convolutions: if $1 \le p, q, r \le \infty$ and $\frac{1}{p} + 1 = \frac{1}{q} + \frac{1}{r}$ then $\|E * f\|_{L^p} \le \|E\|_{L^q} \|f\|_{L^r}.$

There is also a weak form, which requires stronger conditions on p, q, r:

Weak form of Young's inequality for convolutions

If
$$1 \le r < \infty$$
 and $1 < p, q < \infty$, and $\frac{1}{p} + 1 = \frac{1}{q} + \frac{1}{r}$ then

 $||E * f||_{L^{p,\infty}} \le ||E||_{L^{q,\infty}} ||f||_{L^{r}}.$

Elliptic regularity in L^1

Fundamental solution of Stokes operator on \mathbb{R}^2 is

$$E_{ij}(x) = -\delta_{ij} \log |x| + rac{x_i x_j}{|x|^2},$$

i.e. solution of $-\Delta u + \nabla p = f$ is u = E * f. Solution of $-\Delta u + \nabla p = \partial f$ is $u = E * (\partial f) = (\partial E) * f$. Note that

$$\partial_k E_{ij} = \delta_{ij} \frac{x_k}{|x|^2} + \frac{\delta_{ik} x_j + \delta_{jk} x_i}{|x|^2} - \frac{x_i x_j x_k}{|x|^4} \sim \frac{1}{|x|}.$$

Thus $\partial E \in L^{2,\infty}$ and so

$$f \in L^1 \implies u = \partial E * f \in L^{2,\infty}.$$

If we consider the problem in a bounded domain we have the same regularity. We replace the fundamental solution E by the Dirichlet Green's function G satisfying

$$-\Delta G = \delta(x - y)$$
 $G|_{\partial\Omega} = 0$

Mitrea & Mitrea (2011) showed that in this case we still have $\partial G \in L^{2,\infty}$. So on our bounded domain, $u \in L^{\infty}(0, T; L^{2,\infty})$.

Estimates on time derivatives: $\partial_t B \in L^2(0, T; H^{-1})$?

Take
$$v \in H^1$$
 with $||v||_{H^1} = 1$. Then
 $|\langle \partial_t B, v \rangle| = |\langle \varepsilon \Delta B - (u \cdot \nabla)B + (B \cdot \nabla)u, v \rangle|$
 $\leq \varepsilon ||\nabla B|| ||\nabla v|| + 2||u||_{L^4} ||B||_{L^4} ||\nabla v||_{L^2}.$

SO

$$\|\partial_t B\|_{H^{-1}} \leq \varepsilon \|\nabla B\| + 2\|u\|_{L^4} \|B\|_{L^4}.$$

Standard 2D Ladyzhenskaya inequality gives

$$\|B\|_{L^4} \le c \|B\|^{1/2} \|\nabla B\|^{1/2};$$

but we only have uniform bounds on u in $L^{2,\infty}$. If $||f||_{L^4} \le c ||f||_{L^{2,\infty}}^{1/2} ||\nabla f||^{1/2}$ then

$$\|\partial_{t}B\|_{H^{-1}} \leq \varepsilon \|\nabla B\| + c \|u\|_{L^{2,\infty}}^{1/2} \|B\|^{1/2} \|\nabla u\|^{1/2} \|\nabla B\|^{1/2}$$

which would yield

$$\partial_t B \in L^2(0,T;H^{-1}).$$

Generalised Ladyzhenskaya inequality and interpolation spaces

For $0 \le \theta \le 1$ one can define an interpolation space $X_{\theta} := [X^0, X^1]_{\theta}$ in such a way that $\|f\|_{X_{\theta}} \le c \|f\|_{X^0}^{1-\theta} \|f\|_{X^1}^{\theta}$. (Note that $\|f\|_{X_1} \le c \|f\|_{X^1}$.)

Theorem (Bennett & Sharpley, 1988)

 $L^{p,\infty} = [L^1, BMO]_{1-(1/p)}$ for $1 ; so <math>L^{2,\infty} = [L^1, BMO]_{1/2}$.

Reiteration Theorem

If $A_0 = [X_0, X_1]_{\theta_0}$, $A_1 = [X_0, X_1]_{\theta_1}$ then $[A_0, A_1]_{\theta} = [X_0, X_1]_{(1-\theta)\theta_0 + \theta\theta_1}$ provided that $\theta \in (0, 1)$.

Write
$$\mathfrak{B} = [L^1, \mathsf{BMO}]_1$$
 and note that $||f||_{\mathfrak{B}} \leq c||f||_{\mathsf{BMO}}$. Then
 $L^{3,\infty} = [L^{2,\infty}, \mathfrak{B}]_{1/3}$ and $L^{6,\infty} = [L^{2,\infty}, \mathfrak{B}]_{2/3}$, and hence
 $||f||_{L^4} \leq c||f||_{L^{3,\infty}}^{1/2} ||f||_{L^{6,\infty}}^{1/2}$
 $\leq c[c||f||_{L^{2,\infty}}^{2/3} ||f||_{\mathfrak{B}}^{1/3}]^{1/2} [c||f||_{L^{2,\infty}}^{1/3} ||f||_{\mathfrak{B}}^{2/3}]^{1/2}$
 $= c||f||_{L^{2,\infty}}^{1/2} ||f||_{\mathfrak{B}}^{1/2} \leq c||f||_{L^{2,\infty}}^{1/2} ||f||_{\mathfrak{BMO}}^{1/2}.$

Since $\dot{H}^1 \subset$ BMO (see Evans, for example) this yields

 $\|f\|_{L^4} \leq c \|f\|_{L^{2,\infty}}^{1/2} \|f\|_{\dot{H}^1}^{1/2}.$

Estimates on time derivatives 2: $\partial_t u \in L^1(0,T;H^{-1})$

We have now obtained $\partial_t B \in L^2(0, T; H^{-1})$. Now from $-\Delta u + \nabla p = (B \cdot \nabla)B$ we have

$$-\Delta u_t + \nabla p_t = (B_t \cdot \nabla)B + (B \cdot \nabla)B_t.$$

Take $v \in H^1$ let ϕ satisfy

$$-\Delta \phi + \nabla p = \nu \qquad \Longrightarrow \qquad \|\phi\|_{H^3} \le c \|\nu\|_{H^1}.$$

$$\begin{split} |\langle u_{t}, v \rangle| &= |\langle u_{t}, -\Delta \phi + \nabla p \rangle| \\ &= |\langle \Delta u_{t}, \phi \rangle| \\ &\leq |\langle (B_{t} \cdot \nabla) B, \phi \rangle| + |\langle (B \cdot \nabla) B_{t}, \phi \rangle| \\ &\leq c ||B_{t}||_{H^{-1}} ||B \nabla \phi||_{H^{1}} \\ &\leq c ||B_{t}||_{H^{-1}} ||B||_{H^{1}} ||\phi||_{H^{3}} \\ &\leq c ||B_{t}||_{H^{-1}} ||B||_{H^{1}} ||v||_{H^{1}}, \end{split}$$

so

$$u_t \in L^1(0,T;H^{-1}).$$

Conclusion

By using Galerkin approximations, we can make the previous a priori estimates rigorous, and using a variant of the Aubin–Lions compactness lemma (Temam, 1979; Simon, 1987) we obtain a weak solution (u, B) of the equations; similar arguments to the a priori estimates show uniqueness of weak solutions, and so:

Theorem

Given $u_0, B_0 \in L^2(\Omega)$ with $\nabla \cdot u_0 = \nabla \cdot B_0 = 0$, for any T > 0 there exists a unique weak solution (u, B) with

$$u \in L^{\infty}(0,T;L^{2,\infty}) \cap L^2(0,T;H^1)$$

and

$$B \in L^{\infty}(0,T;L^2) \cap L^2(0,T;H^1).$$

What about $\varepsilon = 0$?

- Try looking at more regular solutions and taking the limit $\varepsilon \to 0$ to get local existence
- Assume regularity and show that $u(t) \rightarrow 0$ as $t \rightarrow \infty$ (Moffatt)?