A generalised Ladyzhenskaya inequality and a coupled parabolic-elliptic problem

Dave McCormick

joint work with James C. Robinson and José Rodrigo

Mathematics and Statistics Centre for Doctoral Training University of Warwick

January 3rd, 2013

- Introduction
- A priori estimates
- Weak L^{p} spaces and elliptic regularity in L^{1}
- Interpolation spaces and a generalised Ladyzhenskaya inequality
- Global existence and uniqueness of weak solutions

In proving existence and uniqueness of weak solutions to the 2 D Navier-Stokes equations, one uses:

Ladyzhenskaya's inequality

$$
\|u\|_{L^{4}} \leq c\|u\|_{L^{2}}^{1 / 2}\|D u\|_{L^{2}}^{1 / 2} .
$$

Ladyzhenskaya's inequality yields a priori bounds on the nonlinear term $(u \cdot \nabla) u$: if $u \in L^{\infty}\left(0, T ; L^{2}\right)$ and $D u \in L^{2}\left(0, T ; L^{2}\right)$, then

$$
\left|\int(u \cdot \nabla) u \cdot \phi\right|=\left|-\int(u \cdot \nabla) \phi \cdot u\right| \leq\|u\|_{L^{4}}^{2}\|\nabla \phi\|_{L^{2}}
$$

so

$$
\|(u \cdot \nabla) u\|_{H^{-1}} \leq\|u\|_{L^{4}}^{2} \leq c\|u\|_{L^{2}}\|D u\|_{L^{2}}
$$

and thus $(u \cdot \nabla) u \in L^{2}\left(0, T ; H^{-1}\right)$, and hence $\partial_{t} u \in L^{2}\left(0, T ; H^{-1}\right)$.

A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for magnetohydrodynamics on a bounded domain $\Omega \subset \mathbb{R}^{2}$:

$$
\begin{aligned}
-\Delta u+\nabla p & =(B \cdot \nabla) B \\
\partial_{t} B-\varepsilon \Delta B+(u \cdot \nabla) B & =(B \cdot \nabla) u,
\end{aligned}
$$

with $\nabla \cdot u=\nabla \cdot B=0$ and Dirichlet boundary conditions. This is like the standard MHD system, but with the terms $\partial_{t} u+(u \cdot \nabla) u$ removed.

Theorem

Given $u_{0}, B_{0} \in L^{2}(\Omega)$ with $\nabla \cdot u_{0}=\nabla \cdot B_{0}=0$, for any $T>0$ there exists a unique weak solution (u, B) with

$$
u \in L^{\infty}\left(0, T ; L^{2, \infty}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

and

$$
B \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right) .
$$

We prove this using both a generalisation of Ladyzhenskaya's inequality, and some elliptic regularity theory for L^{1} forcing.

A priori estimates

Take inner product with u in the first equation, with B in the second equation

$$
\begin{aligned}
\|\nabla u\|^{2} & =\langle(B \cdot \nabla) B, u\rangle=-\langle(B \cdot \nabla) u, B\rangle \\
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|B\|^{2}+\varepsilon\|\nabla B\|^{2} & =\langle(B \cdot \nabla) u, B\rangle
\end{aligned}
$$

and add:

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|B\|^{2}+\varepsilon\|\nabla B\|^{2}+\|\nabla u\|^{2}=0 .
$$

We get:

$$
B \in L^{\infty}\left(0, T ; L^{2}\right), \quad \nabla B \in L^{2}\left(0, T ; L^{2}\right), \quad \nabla u \in L^{2}\left(0, T ; L^{2}\right) .
$$

We still need elliptic regularity for u :

$$
-\Delta u+\nabla p=(B \cdot \nabla) B=\nabla \cdot(\underbrace{B \otimes B}_{L^{1}})
$$

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ define

$$
d_{f}(\alpha)=\mu\{x:|f(x)|>\alpha\} .
$$

Note that

$$
\|f\|_{L^{p}}^{p}=\int_{\mathbb{R}^{n}}|f(x)|^{p} \geq \int_{\{x:|f(x)|>\alpha\}}|f(x)|^{p} \geq \alpha^{p} d_{f}(\alpha) .
$$

For $1 \leq p<\infty$ set

$$
\|f\|_{L^{p}, \infty}=\inf \left\{C: d_{f}(\alpha) \leq \frac{C^{p}}{\alpha^{p}}\right\}=\sup \left\{\gamma d_{f}(\gamma)^{1 / p}: \gamma>0\right\} .
$$

The space $L^{p, \infty}\left(\mathbb{R}^{n}\right)$ consists of all those f such that $\|f\|_{L^{p}, \infty}<\infty$.

- $L^{p} \subset L^{p, \infty}$
- $|x|^{-n / p} \in L^{p, \infty}\left(\mathbb{R}^{n}\right)$ but $\notin L^{p}\left(\mathbb{R}^{n}\right)$.
- if $f \in L^{p, \infty}\left(\mathbb{R}^{n}\right)$ then $d_{f}(\alpha) \leq\|f\|_{L^{p, \infty}}^{p} \alpha^{-p}$.

Just as with strong L^{p} spaces, we can interpolate between weak L^{p} spaces:

Weak L^{p} interpolation

Take $p<r<q$. If $f \in L^{p, \infty} \cap L^{q, \infty}$ then $f \in L^{r}$ and

$$
\|f\|_{L^{r}} \leq c_{p, r, q}\|f\|_{L^{p}, \infty}^{p(q-r) / r(q-p)}\|f\|_{L^{q}, \infty}^{q(r-p) / r(q-p)} .
$$

Recall Young's inequality for convolutions: if $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+1=\frac{1}{q}+\frac{1}{r}$ then

$$
\|E * f\|_{L^{p}} \leq\|E\|_{L^{q}}\|f\|_{L^{r}} .
$$

There is also a weak form, which requires stronger conditions on p, q, r :

Weak form of Young's inequality for convolutions

If $1 \leq r<\infty$ and $1<p, q<\infty$, and $\frac{1}{p}+1=\frac{1}{q}+\frac{1}{r}$ then

$$
\|E * f\|_{L^{p}, \infty} \leq\|E\|_{L^{q}, \infty}\|f\|_{L^{r}} .
$$

Fundamental solution of Stokes operator on \mathbb{R}^{2} is

$$
E_{i j}(x)=-\delta_{i j} \log |x|+\frac{x_{i} x_{j}}{|x|^{2}},
$$

i.e. solution of $-\Delta u+\nabla p=f$ is $u=E * f$.

Solution of $-\Delta u+\nabla p=\partial f$ is $u=E *(\partial f)=(\partial E) * f$. Note that

$$
\partial_{k} E_{i j}=\delta_{i j} \frac{x_{k}}{|x|^{2}}+\frac{\delta_{i k} x_{j}+\delta_{j k} x_{i}}{|x|^{2}}-\frac{x_{i} x_{j} x_{k}}{|x|^{4}} \sim \frac{1}{|x|} .
$$

Thus $\partial E \in L^{2, \infty}$ and so

$$
f \in L^{1} \Longrightarrow u=\partial E * f \in L^{2, \infty}
$$

If we consider the problem in a bounded domain we have the same regularity. We replace the fundamental solution E by the Dirichlet Green's function G satisfying

$$
-\Delta G=\left.\delta(x-y) \quad G\right|_{\partial \Omega}=0
$$

Mitrea \& Mitrea (2011) showed that in this case we still have $\partial G \in L^{2, \infty}$. So on our bounded domain, $u \in L^{\infty}\left(0, T ; L^{2, \infty}\right)$.

Take $v \in H^{1}$ with $\|v\|_{H^{1}}=1$. Then

$$
\begin{aligned}
\left|\left\langle\partial_{t} B, v\right\rangle\right| & =|\langle\varepsilon \Delta B-(u \cdot \nabla) B+(B \cdot \nabla) u, v\rangle| \\
& \leq \varepsilon\|\nabla B\|\|\nabla v\|+2\|u\|_{L^{4}}\|B\|_{L^{4}}\|\nabla v\|_{L^{2}} .
\end{aligned}
$$

So

$$
\left\|\partial_{t} B\right\|_{H^{-1}} \leq \varepsilon\|\nabla B\|+2\|u\|_{L^{4}}\|B\|_{L^{4}}
$$

Standard 2D Ladyzhenskaya inequality gives

$$
\|B\|_{L^{4}} \leq c\|B\|^{1 / 2}\|\nabla B\|^{1 / 2}
$$

but we only have uniform bounds on u in $L^{2, \infty}$. If $\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|\nabla f\|^{1 / 2}$ then

$$
\left\|\partial_{t} B\right\|_{H^{-1}} \leq \varepsilon\|\nabla B\|+c\|u\|_{L^{2}, \infty}^{1 / 2}\|B\|^{1 / 2}\|\nabla u\|^{1 / 2}\|\nabla B\|^{1 / 2}
$$

which would yield

$$
\partial_{t} B \in L^{2}\left(0, T ; H^{-1}\right) .
$$

Generalised Ladyzhenskaya inequality and interpolation spaces

For $0 \leq \theta \leq 1$ one can define an interpolation space $X_{\theta}:=\left[X^{0}, X^{1}\right]_{\theta}$ in such a way that $\|f\|_{X_{\theta}} \leq c\|f\|_{X^{0}}^{1-\theta}\|f\|_{X^{1}}^{\theta}$. (Note that $\|f\|_{X_{1}} \leq c\|f\|_{X^{1}}$.)

Theorem (Bennett \& Sharpley, 1988)

$L^{p, \infty}=\left[L^{1}, \mathrm{BMO}\right]_{1-(1 / p)}$ for $1<p<\infty$; so $L^{2, \infty}=\left[L^{1}, \mathrm{BMO}\right]_{1 / 2}$.

Reiteration Theorem

If $A_{0}=\left[X_{0}, X_{1}\right]_{\theta_{0}}, A_{1}=\left[X_{0}, X_{1}\right]_{\theta_{1}}$ then $\left[A_{0}, A_{1}\right]_{\theta}=\left[X_{0}, X_{1}\right]_{(1-\theta) \theta_{0}+\theta \theta_{1}}$ provided that $\theta \in(0,1)$.

Write $\mathfrak{B}=\left[L^{1}, \mathrm{BMO}\right]_{1}$ and note that $\|f\|_{\mathfrak{B}} \leq c\|f\|_{\text {вмо }}$. Then $L^{3, \infty}=\left[L^{2, \infty}, \mathfrak{B}\right]_{1 / 3}$ and $L^{6, \infty}=\left[L^{2, \infty}, \mathfrak{B}\right]_{2 / 3}$, and hence

$$
\begin{aligned}
\|f\|_{L^{4}} & \leq c\|f\|_{L^{3}, \infty}^{1 / 2}\|f\|_{L^{6}, \infty}^{1 / 2} \\
& \leq c\left[c\|f\|_{L^{2}, \infty}^{2 / 3}\|f\|_{\mathfrak{B}}^{1 / 3}\right]^{1 / 2}\left[c\|f\|_{L^{2, \infty}}^{1 / 3}\|f\|_{\mathfrak{B}}^{2 / 3}\right]^{1 / 2} \\
& =c\|f\|_{L^{2}, \infty}^{1 / 2}\|f\|_{\mathfrak{B}}^{1 / 2} \leq c\|f\|_{L^{2, \infty}}^{1 / 2}\|f\|_{\text {BMO }}^{1 / 2} .
\end{aligned}
$$

Since $\dot{H}^{1} \subset$ BMO (see Evans, for example) this yields

$$
\|f\|_{L^{4}} \leq c\|f\|_{L^{2}, \infty}^{1 / 2}\|f\|_{\dot{H}^{1}}^{1 / 2}
$$

We have now obtained $\partial_{t} B \in L^{2}\left(0, T ; H^{-1}\right)$. Now from $-\Delta u+\nabla p=(B \cdot \nabla) B$ we have

$$
-\Delta u_{t}+\nabla p_{t}=\left(B_{t} \cdot \nabla\right) B+(B \cdot \nabla) B_{t}
$$

Take $v \in H^{1}$ let ϕ satisfy

$$
\begin{aligned}
-\Delta \phi+\nabla p & =v \quad \Longrightarrow \quad\|\phi\|_{H^{3}} \leq c\|v\|_{H^{1}} . \\
\left|\left\langle u_{t}, v\right\rangle\right| & =\left|\left\langle u_{t},-\Delta \phi+\nabla p\right\rangle\right| \\
& =\left|\left\langle\Delta u_{t}, \phi\right\rangle\right| \\
& \leq\left|\left\langle\left(B_{t} \cdot \nabla\right) B, \phi\right\rangle\right|+\left|\left\langle(B \cdot \nabla) B_{t}, \phi\right\rangle\right| \\
& \leq c\left\|B_{t}\right\|_{H^{-1}}\|B \nabla \phi\|_{H^{1}} \\
& \leq c\left\|B_{t}\right\|_{H^{-1}}\|B\|_{H^{1}}\|\phi\|_{H^{3}} \\
& \leq c\left\|B_{t}\right\|_{H^{-1}}\|B\|_{H^{1}}\|v\|_{H^{1}}
\end{aligned}
$$

so

$$
u_{t} \in L^{1}\left(0, T ; H^{-1}\right)
$$

By using Galerkin approximations, we can make the previous a priori estimates rigorous, and using a variant of the Aubin-Lions compactness lemma (Temam, 1979; Simon, 1987) we obtain a weak solution (u, B) of the equations; similar arguments to the a priori estimates show uniqueness of weak solutions, and so:

Theorem

Given $u_{0}, B_{0} \in L^{2}(\Omega)$ with $\nabla \cdot u_{0}=\nabla \cdot B_{0}=0$, for any $T>0$ there exists a unique weak solution (u, B) with

$$
u \in L^{\infty}\left(0, T ; L^{2, \infty}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

and

$$
B \in L^{\infty}\left(0, T ; L^{2}\right) \cap L^{2}\left(0, T ; H^{1}\right)
$$

What about $\varepsilon=0$?

- Try looking at more regular solutions and taking the limit $\varepsilon \rightarrow 0$ to get local existence
- Assume regularity and show that $u(t) \rightarrow 0$ as $t \rightarrow \infty$ (Moffatt)?

