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Ladyzhenskaya’s inequality

In proving existence and uniqueness of weak solutions to the 2D
Navier–Stokes equations, one uses:

Ladyzhenskaya’s inequality

‖u‖L4 ≤ c‖u‖1/2
L2 ‖Du‖1/2

L2 .

Ladyzhenskaya’s inequality yields a priori bounds on the nonlinear term
(u · ∇)u: if u ∈ L∞(0, T; L2) and Du ∈ L2(0, T; L2), then∣∣∣∣∫ (u · ∇)u · φ

∣∣∣∣ =

∣∣∣∣−∫ (u · ∇)φ · u
∣∣∣∣ ≤ ‖u‖2

L4‖∇φ‖L2 ,

so
‖(u · ∇)u‖H−1 ≤ ‖u‖2

L4 ≤ c‖u‖L2‖Du‖L2 ,

and thus (u · ∇)u ∈ L2(0, T; H−1), and hence ∂tu ∈ L2(0, T; H−1).



A coupled parabolic-elliptic MHD system

We consider the following modified system of equations for
magnetohydrodynamics on a bounded domain Ω ⊂ R2:

−∆u +∇p = (B · ∇)B

∂tB− ε∆B + (u · ∇)B = (B · ∇)u,

with ∇ · u = ∇ · B = 0 and Dirichlet boundary conditions. This is like the
standard MHD system, but with the terms ∂tu + (u · ∇)u removed.

Theorem
Given u0,B0 ∈ L2(Ω) with ∇ · u0 = ∇ · B0 = 0, for any T > 0 there exists a
unique weak solution (u,B) with

u ∈ L∞(0, T; L2,∞) ∩ L2(0, T; H1)

and
B ∈ L∞(0, T; L2) ∩ L2(0, T; H1).

We prove this using both a generalisation of Ladyzhenskaya’s inequality, and
some elliptic regularity theory for L1 forcing.



A priori estimates

Take inner product with u in the first equation, with B in the second equation

‖∇u‖2 = 〈(B · ∇)B, u〉 = −〈(B · ∇)u,B〉
1
2

d
dt
‖B‖2 + ε‖∇B‖2 = 〈(B · ∇)u,B〉

and add:
1
2

d
dt
‖B‖2 + ε‖∇B‖2 + ‖∇u‖2 = 0.

We get:

B ∈ L∞(0, T; L2), ∇B ∈ L2(0, T; L2), ∇u ∈ L2(0, T; L2).

We still need elliptic regularity for u:

−∆u +∇p = (B · ∇)B = ∇ · (B⊗ B︸ ︷︷ ︸
L1

)



Lp,∞: weak Lp spaces

For f : Rn → R define
df (α) = µ{x : |f(x)| > α}.

Note that
‖f‖p

Lp =

∫
Rn
|f(x)|p ≥

∫
{x: |f(x)|>α}

|f(x)|p ≥ αpdf (α).

For 1 ≤ p <∞ set

‖f‖Lp,∞ = inf
{

C : df (α) ≤ Cp

αp

}
= sup{γdf (γ)1/p : γ > 0}.

The space Lp,∞(Rn) consists of all those f such that ‖f‖Lp,∞ <∞.

• Lp ⊂ Lp,∞

• |x|−n/p ∈ Lp,∞(Rn) but /∈ Lp(Rn).

• if f ∈ Lp,∞(Rn) then df (α) ≤ ‖f‖p
Lp,∞α

−p.



Lp,∞: weak Lp spaces

Just as with strong Lp spaces, we can interpolate between weak Lp spaces:

Weak Lp interpolation
Take p < r < q. If f ∈ Lp,∞ ∩ Lq,∞ then f ∈ Lr and

‖f‖Lr ≤ cp,r,q‖f‖p(q−r)/r(q−p)
Lp,∞ ‖f‖q(r−p)/r(q−p)

Lq,∞ .

Recall Young’s inequality for convolutions: if 1 ≤ p, q, r ≤ ∞ and
1
p + 1 = 1

q + 1
r then

‖E ∗ f‖Lp ≤ ‖E‖Lq‖f‖Lr .

There is also a weak form, which requires stronger conditions on p, q, r:

Weak form of Young’s inequality for convolutions
If 1 ≤ r <∞ and 1 < p, q <∞, and 1

p + 1 = 1
q + 1

r then

‖E ∗ f‖Lp,∞ ≤ ‖E‖Lq,∞‖f‖Lr .



Elliptic regularity in L1

Fundamental solution of Stokes operator on R2 is

Eij(x) = −δij log |x|+ xixj

|x|2 ,

i.e. solution of −∆u +∇p = f is u = E ∗ f .
Solution of −∆u +∇p = ∂f is u = E ∗ (∂f) = (∂E) ∗ f . Note that

∂kEij = δij
xk

|x|2 +
δikxj + δjkxi

|x|2 − xixjxk

|x|4 ∼
1
|x| .

Thus ∂E ∈ L2,∞ and so

f ∈ L1 =⇒ u = ∂E ∗ f ∈ L2,∞.

If we consider the problem in a bounded domain we have the same regularity.
We replace the fundamental solution E by the Dirichlet Green’s function G
satisfying

−∆G = δ(x − y) G|∂Ω = 0.

Mitrea & Mitrea (2011) showed that in this case we still have ∂G ∈ L2,∞.
So on our bounded domain, u ∈ L∞(0, T; L2,∞).



Estimates on time derivatives: ∂tB ∈ L2(0,T;H−1)?

Take v ∈ H1 with ‖v‖H1 = 1. Then

|〈∂tB, v〉| = |〈ε∆B− (u · ∇)B + (B · ∇)u, v〉|
≤ ε‖∇B‖‖∇v‖+ 2‖u‖L4‖B‖L4‖∇v‖L2 .

so
‖∂tB‖H−1 ≤ ε‖∇B‖+ 2‖u‖L4‖B‖L4 .

Standard 2D Ladyzhenskaya inequality gives

‖B‖L4 ≤ c‖B‖1/2‖∇B‖1/2;

but we only have uniform bounds on u in L2,∞.
If ‖f‖L4 ≤ c‖f‖1/2

L2,∞‖∇f‖1/2 then

‖∂tB‖H−1 ≤ ε‖∇B‖+ c‖u‖1/2
L2,∞‖B‖

1/2‖∇u‖1/2‖∇B‖1/2

which would yield
∂tB ∈ L2(0, T; H−1).



Generalised Ladyzhenskaya inequality and interpolation spaces

For 0 ≤ θ ≤ 1 one can define an interpolation space Xθ := [X0, X1]θ in such a
way that ‖f‖Xθ ≤ c‖f‖1−θ

X0 ‖f‖θX1 . (Note that ‖f‖X1 ≤ c‖f‖X1 .)

Theorem (Bennett & Sharpley, 1988)
Lp,∞ = [L1,BMO]1−(1/p) for 1 < p <∞; so L2,∞ = [L1,BMO]1/2.

Reiteration Theorem
If A0 = [X0, X1]θ0 , A1 = [X0, X1]θ1 then [A0,A1]θ = [X0, X1](1−θ)θ0+θθ1 provided
that θ ∈ (0, 1).

Write B = [L1,BMO]1 and note that ‖f‖B ≤ c‖f‖BMO. Then
L3,∞ = [L2,∞,B]1/3 and L6,∞ = [L2,∞,B]2/3, and hence

‖f‖L4 ≤ c‖f‖1/2
L3,∞‖f‖

1/2
L6,∞

≤ c[c‖f‖2/3
L2,∞‖f‖

1/3
B ]1/2[c‖f‖1/3

L2,∞‖f‖
2/3
B ]1/2

= c‖f‖1/2
L2,∞‖f‖

1/2
B ≤ c‖f‖1/2

L2,∞‖f‖
1/2
BMO.

Since Ḣ1 ⊂ BMO (see Evans, for example) this yields

‖f‖L4 ≤ c‖f‖1/2
L2,∞‖f‖

1/2
Ḣ1 .



Estimates on time derivatives 2: ∂tu ∈ L1(0,T;H−1)

We have now obtained ∂tB ∈ L2(0, T; H−1).
Now from −∆u +∇p = (B · ∇)B we have

−∆ut +∇pt = (Bt · ∇)B + (B · ∇)Bt.

Take v ∈ H1 let φ satisfy

−∆φ+∇p = v =⇒ ‖φ‖H3 ≤ c‖v‖H1 .

|〈ut, v〉| = |〈ut,−∆φ+∇p〉|
= |〈∆ut, φ〉|
≤ |〈(Bt · ∇)B, φ〉|+ |〈(B · ∇)Bt, φ〉|
≤ c‖Bt‖H−1‖B∇φ‖H1

≤ c‖Bt‖H−1‖B‖H1‖φ‖H3

≤ c‖Bt‖H−1‖B‖H1‖v‖H1 ,

so
ut ∈ L1(0, T; H−1).



Conclusion

By using Galerkin approximations, we can make the previous a priori
estimates rigorous, and using a variant of the Aubin–Lions compactness
lemma (Temam, 1979; Simon, 1987) we obtain a weak solution (u,B) of the
equations; similar arguments to the a priori estimates show uniqueness of
weak solutions, and so:

Theorem
Given u0,B0 ∈ L2(Ω) with ∇ · u0 = ∇ · B0 = 0, for any T > 0 there exists a
unique weak solution (u,B) with

u ∈ L∞(0, T; L2,∞) ∩ L2(0, T; H1)

and
B ∈ L∞(0, T; L2) ∩ L2(0, T; H1).

What about ε = 0?

• Try looking at more regular solutions and taking the limit ε→ 0 to get
local existence

• Assume regularity and show that u(t)→ 0 as t→∞ (Moffatt)?


