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Abstract

A method of Objective Molecular Dynamics is considered for a system of gaseous

particles dilutely and periodically distributed in Rd, to find the existence or non-

existence of solutions to the Boltzmann equation in the case of motion on an evolving

Torus.

A reference configuration of the d dimensional torus is used to describe this

system, where motion is given by the Boltzmann equation with a forcing term. The

balance laws of mass, momentum and energy are analysed, to find a time dependence

of the form ξ(t)G(η(t)w) for the system. This then immediately gives the solution

in scaled velocity space for uniform dilation as a Maxwellian

In the case of simple shearing, a linearisation of the collision operator and

Maxwellian molecular interactions are used, and this results in the expectation of

non-existence of scaled solutions of this form.
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Chapter 1

Introduction

In 1872, Boltzmann published [Bol72], a result deriving an equation, later called

the Boltzmann equation, that described the evolution of the velocities of particles

in a dilute gas, within a region of space. He proceeded to prove a result we now call

Boltzmann’s H theorem, which proves that the entropy of a gas in a fixed box with

energy and mass conserved increases. This is the only known proof of the second

law of thermodynamics. This proof also gives, for this situation, the existence of a

density, called a Maxwellian, that is a time independent solution of the equation.

It can also be shown that the density of the gas converges to this as t → ∞ in a

suitable sense.

For many years hence, people have attempted to prove similar versions to

this for other spaces. This work is interested in a situation where one has a spatially

periodic distribution of one species of gaseous atoms in Rd. One has an initial

deformation given by a matrix B and a deformation over time given by the matrix

A. This situation falls into the wider category of Objective Molecular Dynamics,

introduced in [DJ07] with further work in [DJ10] and [DJ12].

As such, this system can be viewed as the evolution of a gas, given by the

Boltzmann equation, in the time dependent torus U(t) = Rd/(B+tA). However, this

poses difficulties with regards to the moving boundary. Thus instead, the situation

is related to the evolution of a gas, given by the Boltzmann equation together with

a forcing term, on the fixed torus Td = Rd/Zd. This method of considering the

evolution of the system in a reference configuration should be compared with the

Lagrangian method of describing motion, although this is more for intuition rather

than for correct mathematical thoughts. This system contains the special cases of

shearing, uniform dilation or contraction and a combination of the two. However,

time independent solutions only make sense in the case of shearing, although energy
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is not conserved here so a renormalisation is needed. One possible renormalisation

is given in section 2.6.

The equation for the density on the torus is

∂g

∂t
+∇x ·

[
B−1
t wg

]
−∇w ·

[
AB−1

t wg
]

= Q[g, g]

which is derived in section 2.1. Observe that A = 0 corresponds to unforced motion

on the torus which is well understood, and the stationary density is a Maxwellian

in this case.

The main aim is to prove the existence or non-existence of a stationary

density for the system, when it makes sense to do so. This is attempted with the

following simplifications.

1. spatial homogeneity to remove the ∇x term from the equation, although where

this is not necessary, inhomogeneous equations are derived where the deriva-

tion is the same for both cases.

2. a Maxwellian interaction, so the interaction does not depend on the relative

velocities is used. This simplifies the collision kernel to be solely a function of

the angle between the colliding particles.

3. a time dependence of the form

g(t, w) = ξ(t)G(η(t)w)

for some real valued functions ξ, η, is used to derive a simpler equation. This is

introduced in 2.5. The role of η is to renormalise due to the lack of conservation

of energy, shown in section 2.4 and the ξ is so that it has total mass 1.

These assumptions result in a simpler equation of the form

∇v · [G(Cv)] = Q[G,G](v)

for some time dependent matrix C, and this is derived in section 2.6 for the motion

on the torus. The case of simple shearing and uniform dilation are particularly

useful here as the matrix C does not depend on time. Much of this work follows

with a certain closeness [MJ]. It is shown that in the case of uniform dilation, the

function G is a Maxwellian.

Turning to the study of the simple shearing case, the collision operator is

linearised in section 3.1 and properties of this linearised operator are studied in

2



order to prove the non existence of a solution to the simpler problem of

L(h) = ∇v · [Cvµ(v)]

where µ is the Maxwellian about which L is linearised.

Suggestions are then made as to why this equation has no solutions in the

case of shearing, the expectation being that the rescaling is not suitable for shearing,

since in shearing one has an energy lump moving in one direction, whereas the scaling

is uniform.
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Chapter 2

A Derivation of a Boltzmann

Equation in Objective

Molecular Dynamics

Firstly, in sections 2.1 and 2.2, a derivation of a general Boltzmann equation is given

where one has a periodic gas in Rd, where one relates this to a forced gas lying on

the torus Td to simplify the periodicity relation.

One then considers the Lyapunov function H and its use in Boltzmann’s H

Theorem, in section 2.3, though this is only useful in the case of A = 0, as is seen

in section 2.4 on balance laws, where mass is shown to be conserved, but energy in

general is not.

The molecular interaction type introduced by Maxwell, where one assumes

a repulsion of the form Cr−(2d−1)−1 is assumed and motivated, in section 2.5, and

this is then used to simplify the collision operator to write a simpler equation using

a time dependence of the form

ξ(t)G(η(t)w)

in section 2.6, to get an equation which describes a parametric dependence of G

upon the deformation A ∈Md×d(R) and the initial periodicity B ∈Md×d
≥0 (R).

The function G is shown to be a Maxwellian in the case of uniform dilation.
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2.1 Motion of Particles

One considers an initial configuration of Rd given by a matrix B ∈ Md×d(R) with

positive determinant, which gives a right handed basis of Rd. This partitions Rd

into integral translates of the cell U(0) = Rd/B. M particles are then distributed

in this cell from a density, with some initial velocities and the motion is that of

Newtonian dynamics. and this distributes particles in all Rd with the relation that

if a particle is at point y0 ∈ U(0) then there is a particle at y0 + Bk where k ∈ Zd.
This distributes particles periodically throughout Rd.

Then a linear deformation of this space given by a matrix A ∈ Md×d(R) is

considered. The deformation A is in some way related to the initial configuration B,

and as such A is generally considered as a multiple of B or a tensor product of several

columns of B, though this is by no means an exhaustive list of the possibilities of A.

Figure 2.1 shows two situations that can arise within this type of periodicity, those

of uniform dilation in 2.1a and simple shearing in 2.1b.

(a) The case of uniform dilation (b) The case of simple shearing

Figure 2.1: Examples of situations described by periodicity in Rd

This linear deformation A deforms the point y to the point tAy in time t and

so the deformation from some fixed configuration is given by the mapping from Rd

to Rd by

y 7→ (B + tA)y =: Bty (2.1)

Observe that this motion partitions Rd into translations of the cell U(t) = Rd/(BtZd),
where one has the relation

f(t, y, v) = f(t, y +Btk, v) ∀k ∈ Zd
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between the cells. Thus it is enough to consider this system as the motion of M

particles in the moving periodic cell U(t), which henceforth is done.

Observing that the map Bt as given in equation (2.1) maps Td = Rd/Zd to

U(t) one can consider the dynamics on the unit torus by performing the map B−1
t

from U(t). This gives rise to two different situations. The first is the reference

configuration as given by the dynamics on Td and the latter is the actual config-

uration as given by the dynamics in the cell U(t). Henceforth if one uses the bold

words above then we refer to that situation.

The velocities on the torus are modified by subtracting the velocity of the

point y in the actual cell, which is AB−1
t y. This comes about due to the compar-

ison of the Lagrangian description, with the moving boundary, and the Eulerian

description with the fixed boundary.

O.M.D. is now introduced to justify from a physical point of view why a

linear deformation is considered, and other deformations need not be considered.

2.1.1 Objective Molecular Dynamics

In O.M.D., introduced in [DJ07], the mappings Bt = B + tA are replaced by time

dependent isometries of Rd. By this is meant that one considers a collection G of

time dependent isometries of Rd that characterises the periodicity of the particles.

For each instance of time, the collection G is a group of isometries with the group

operation given by composition of functions.

One now considers M atoms yk(t) for k = 1, . . . ,M , called simulated

atoms, and these are translated by every element in the collection G, where the

cardinality of G is given by N . As such, one then considers elements

yp,k(t) := ιp(yk(t), t) k = 1, . . . ,M ιp ∈ G

In the situation above, the ιp are given by ιp(y) = y +Btp for p ∈ Zd.
Two assumptions are made upon the particular motion. If Fp,k : RdMN → Rd

is the force on atom p, k, then for all Q ∈ O(d) and b ∈ Rd one has

QFp,k(. . . , yi1,1, . . . , yi1,M , . . . ) = Fp,k(. . . , Qyi1,1 + b, . . . , Qyi1,M + b, . . . ) (2.2)

and one also has permutation indifference, meaning if σ is a species preserving

permutation, then,

Fσ(p,k)(. . . , yi1,1, . . . , yi1,M , . . . ) = Fp,k(. . . , yσ(i1,1), . . . , yσ(i1,M), . . . ) (2.3)
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where preserving species means that the atomic mass and number of the atom is

unchanged under this permutation. In the gaseous situation in question, one has

only one species of atom for simplicity.

A final assumption is made on the time dependence of the elements of G.

This is as follows. If ιp(x, t) = Q(t)x+ c(t) ∈ G then one has

d2

dt2
yp,k(t) =

d2

dt2
ιp(yk(t), t) =

d2

dt2
yk(t) (2.4)

and this then implies that c(t) must be an affine function of t, and that Q(t) must

be constant. This is why it suffices for the form of the deformation Bt to be linear,

since the system should satisfy Galilean invariance.

2.2 Boltzmann Equation

This was introduced in 1872 by Boltzmann in his paper [Bol72] and gave lectures

on the subject, which have been translated in [Bol64].

While it is not considered here, much work has been done to try to establish

the relationship between the molecular dynamical representation of a gas, and the

statistical physics method of the Boltzmann equation. We here just use the Boltz-

mann representation with no justification as to its approximation of a molecular

system.

The Boltzmann equation describes the evolution of a molecular density func-

tion f which takes as arguments time in [0,∞), position in a subset of Rd, d ≥ 2,

denoted by X, and velocity in Rd, and gives the distribution of particle velocities.

As such, it is a function in C1([0,∞), L1(X × Rd)), so that at each time t ∈ [0,∞)

a density function f(t, ·, ·) is given. Then the evolution of the density is governed

by the equation
∂f

∂t
+ v · ∇yf = Q[f, f ] (2.5)

where we have

Q[f, f ] =

∫
Rd

∫
Sd−1

(
f(t, y, v? − ((v? − v) · ν)ν)f(t, y, v + ((v? − v) · ν)ν)

− f(t, y, v?)f(t, y, v)
)
S(ν, v? − v)dνdv? (2.6)

where ν is an impact parameter in Sd−1, and Sd−1 is the unit sphere in Rd. The

terms in Q correspond to first a gain at sites (y, v) and at (y, v?) and the second term

corresponds to loss at (y, v) and (y, v?). The gain and loss characterise a collision.
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When two particles collide, the pre-collision velocities are changed to post-collision

velocities, dependent on the angle of collision, and on the function S.

Certain properties of the collision operator Q are derived in section 2.3.2, and

these are used in the conservation laws in section 2.4 and to prove the H theorem.

A linearisation of the collision operator is also considered in section 3.1.

For simplicity of notation, one introduces the following:

f ′?(t, y, v, v?, ν) = f(t, y, v? − ((v? − v) · ν)ν)

f ′(t, y, v, v?, ν) = f(t, y, v + ((v? − v) · ν)ν)

f?(t, y, v?) = f(t, y, v?)

(2.7)

although the variables on the left hand side will normally be suppressed, and so the

Q term becomes

Q[f, f ](t, y, v) =

∫
Rd

∫
Sd−1

(
f ′?f
′ − f?f

)
S(ν, v? − v)dνdv?

The term S in the collision operator shall be called the collision kernel.

This characterises how the particles interact. For example, it could be of the form

|v? − v|γβ(ν). The form used throughout this work will be S = β(ν) where one

assumes that there is no dependence on the relative velocities of the particles that

are colliding. It should also be noted that it is a positive function.

It is very important to note here that the results one obtains are in general

specific to one type of collision kernel. Different kernels give fundamentally different

results on the density and on the motion itself. Thus results discussed later requiring

the interaction to be Maxwellian do not hold for other types of collision kernel.

2.2.1 Relation to Above Dynamics

The dynamics of the system introduced at the start of the section can be char-

acterised by the Boltzmann equation in two different ways. One can consider the

space X to be Td or alternatively U(t). On the torus one has more sophisticated

dynamics, as it has to consider the changing of space.

We assume that the density in U(t) is denoted by f(t, y, v) and the density

in the torus is g(t, x, w), so g : [0,∞)×Td×Rd → R. The relation between the two

is the following:

g(t, x, w) = det (Bt) f(t, Btx,w +Ax)

8



or alternatively

f(t, y, v) = det
(
B−1
t

)
g(t, B−1

t y, v −AB−1
t y) (2.8)

Now the aim is to derive an equation for the density g. This will require the

following result on the derivative of the determinant, taken from [GS08].

Lemma 2.1 Suppose that C is a d × d matrix with time dependent entries and

which is invertible for all time, then,

d

dt
(detC) = det (C) tr

(
C−1 dC

dt

)
Proof Let ψ(C) = detC. Then

d

dt
ψ(C) =

d

dt
ψ(C11, . . . , Cdd)

and by the chain rule we have

d

dt
ψ(C) =

∂ψ

∂C11
(C)

dC11

dt
+ · · ·+ ∂ψ

∂Cdd
(C)

dCdd
dt

= tr

(
(∇ψ(C))T

dC

dt

)
and since ∇ψ(C) = det(C)C−T one obtains

d

dt
det(C) = det(C)tr

(
C−1 dC

dt

)
as required. �

Furthermore one needs

Lemma 2.2 Suppose that the matrix M contains entries that depend on time, and

that for all t, M(t) is invertible. Then

d

dt

(
M(t)−1

)
= −M(t)−1 d

dt
(M(t))M(t)−1

Proof We have that

M(t)−1M(t) = I

and then it follows that

d

dt

(
M(t)−1M(t)

)
=

d

dt
I = 0

and then the product rule and rearranging gives the result. �

9



Now calculating the derivatives of f in equation 2.5 and expressing these in

terms of g give:

∂f

∂t
(t, y, v) =

∂

∂t

[
det
(
B−1
t

)
g(t, B−1

t y, v −AB−1
t y)

]
=

∂

∂t

(
det
(
B−1
t

))
g(t, B−1

t y, v −AB−1
t y)

+ det
(
B−1
t

) ∂
∂t

(
g(t, B−1

t y, v −AB−1
t y)

)
= det

(
B−1
t

) [
−tr

(
B−1
t A

)
g(t, x, w) +

∂g

∂t
(t, x, w) +

∂

∂t

(
B−1
t y

)
· ∇xg+

+
∂

∂t

(
v −AB−1

t y
)
· ∇wg

]
= det

(
B−1
t

) [
−tr

(
B−1
t A

)
g(t, x, w) +

∂g

∂t
(t, x, w)−

(
B−1
t Ax

)
· ∇xg+

+
(
AB−1

t Ax
)
· ∇wg

]
where in the third line one has used Lemma 2.1 and to get the final line one uses

Lemma 2.2, and one denotes x = B−1
t y and w = v −AB−1

t y. Furthermore,

∇yf(t, y, v) = ∇y
[
det
(
B−1
t

)
g(t, B−1

t y, v −AB−1
t y)

]
= det

(
B−1
t

) [(
∇y
(
B−1
t y

))
∇xg +

(
∇y
(
v −AB−1

t y
))
∇wg

]
= det

(
B−1
t

) [
B−Tt ∇xg − (AB−1

t )T∇wg
]

which is more easily seen if one considers the coordinates of this derivative, and so

v · ∇yf(t, y, v) = det
(
B−1
t

) [
B−1
t v · ∇xg −AB−1

t v · ∇wg
]

and the Q term becomes:

Q[f, f ](t, y, v) =

∫
Rd

∫
Sd−1

(
f(t, y, v? − ((v? − v) · ν)ν)f(t, y, v + ((v? − v) · ν)ν)

− f(t, y, v?)f(t, y, v)
)
S(ν, v? − v)dνdv?

=

∫
Rd

∫
Sd−1

det
(
B−1
t

) (
g(t, x, w? − ((w? − w) · ν)ν)×

× g(t, x, w + ((w? − w) · ν)ν)

− g(t, x, w?)g(t, x, w)
)
S(ν, w? − w)dνdw?

= det
(
B−1
t

)
Q[g, g](t, x, w)

10



where one again denotes x = B−1
t y and w = v − AB−1

t y and one obtains this by a

change of variables w? = v? −AB−1
t y.

Then observing that by combining the ∇x and ∇w terms together, and using

the relation w = v −AB−1
t y, one obtains an equation of the form

−tr
(
B−1
t A

)
g +

∂g

∂t
+B−1

t w · ∇xg −AB−1
t w · ∇wg = Q[g, g] (2.9)

for the density g. One can rewrite this using several product rules to get

∂g

∂t
+∇x ·

[
B−1
t wg

]
−∇w ·

[
AB−1

t wg
]

= Q[g, g] (2.10)

Looking at this equation, the terms tr(ABt), B
−1
t and AB−1

t will in general

be dependent on time, and thus there will be no hope in deriving a time independent

solution of this equation. Thus several cases of the equation are considered where

the algebra for consideration is much simpler.

Thus the next goal is to analyse the blow up of energy to find the right

rescaling of the velocity to annul this problem.

2.2.2 Special Cases of Deformation

One is motivated by the physical setting to consider the following types of defor-

mation matrix A, which are introduced with suggestive nomenclature, solely to give

some physical justification.

2.2.3 Shearing

The first case is where one has B arbitrary, and A = a ⊗ n with a · n = 0, with

a one of the columns of B and n determining the hyper-surface along which the

deformation moves. Then it is clear that trA = a · n = 0 and it is also the case that

AB−1
t = A(B + tA)−1 = a⊗ n = A

and so this has tr
(
AB−1

t

)
= tr ((a⊗ n)) = 0 and so using equation (2.9) one has

the form
∂g

∂t
+B−1

t w · ∇xg − (a⊗ n)w · ∇wg = Q[g, g]

for the Boltzmann equation. If the density is spatially homogeneous then this sim-

plifies to

∂g

∂t
− (a⊗ n)w · ∇wg = Q[g, g] (2.11)

11



and in particular note that the only term here that depends on time is the density

g. Thus in this spatially homogeneous shearing case it makes sense to consider time

independent states of the system.

Analysing whether a Maxwellian can be a time independent solution of this

equation, one observes that a time independent solution solves

−(a⊗ n)w · ∇wg = Q[g, g]

and one checks whether a Maxwellian can satisfy this. A Maxwellian, of the form

Ae−β|w−u|
2
, for β > 0, A ∈ R \ {0} and u ∈ Rd, has Q

[
Ae−β|w−u|

2
, Ae−β|w−u|

2
]

= 0

and

∇w
(
Ae−β|w−u|

2
)

= −2βAe−β|w−u|
2
(w − u)

and so one has(
−2βAe−β|w−u|

2
)

(a⊗ n)w · w =
(
−2βAe−β|w−u|

2
)

(a⊗ n)w · u

and the value of β and A does not affect the equation. One has here that the

left hand side is a quadratic in w and the right hand side is linear in w. Since

this equation should hold for arbitrary w, a Maxwellian cannot be the stationary

solution in this case.

This is not surprising, since physically one expects energy to increase due to

the work being done on the system to shear it. Thus one where energy is constant

would not be physical.

2.2.4 Dilation/Contraction

Here A = αB with B an arbitrary change of basis matrix, for some α 6= 0. For

α > 0 one considers this dilation for all time. However, for α < 0 in the contraction

case one considers this only for times in t ∈ [0,−1/α). In both cases, one has

Bt = (1 + αt)B and thus the inverse to this is

B−1
t =

1

1 + αt
B−1

where B−1 is well defined as the assumption that detB > 0 was made. Then

AB−1
t =

α

1 + αt
I

and so tr
(
AB−1

t

)
= tr

(
α

1+αtI
)

= αd
1+αt

12



Then using (2.10) and the assumption of spatial homogeneity, the Boltzmann

equation in this case is

∂g

∂t
− α

1 + αt
∇w · [wg] = Q[g, g] (2.12)

As one can see, in the case of dilation, it does not make sense to consider time

independent solutions of the equation, as the divergence in velocity space depends

on time.

2.3 Boltzmann H-Theorem

Returning to the general equation (2.9), considerations are made as to whether

there is a Lyapunov function for the equation. First some properties of these pro-

posed Lyapunov functions, Boltzmann’s H function, are discussed, as well as some

properties of the collision operator Q are shown, which are used later. This is the

consideration of the next part, although the use is limited as in section 2.4 it is

shown that energy is not conserved. The method for showing the H theorem is

similar to [Cer75] and in [CIP94]. The proof, as done by Boltzmann, is in [Bol64],

which is a translation from the German.

2.3.1 H function

For the solution g, one defines H : [0,∞)× Td → R to be

H(t, x) =

∫
Rd
g(t, x, w) log g(t, x, w)dw (2.13)

This H is used for systems which are spatially homogeneous and so H(t, x) = H(t)

here, and the following quantity H is used for systems where one does not have

spatial homogeneity. Furthermore, one can define H : [0,∞)→ R by

H(t) =

∫
Td

∫
Rd
g(t, x, w) log g(t, x, w)dwdx

It is of interest to discuss the sign of the time derivative of both these quan-

tities, as then this may give stability of the system near a stationary solution. As

such, properties of the collision operator are considered with the aim of analysing

the sign of the time derivative. This property of stability should remind the reader

of Lyapunov functions.
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These quantities in general will not be positive, and positivity is a desirable

property. However, the following lemma ensures that they are bounded below, and

so one can add a constant to make both positive.

Lemma 2.3 If g(t, ·, ·) ∈ L1(Rd) for each t > 0 and∫
Td

∫
Rd
gdwdx = 1

and g is such that g(t, x, w) > 0 for all t, x, w then H is bounded below.

Note that if one instead takes g ∈ L1(Td × Rd) then one has that H is bounded

below. Proof We work only with H. By definition one has

H =

∫
Rd
g log gdw

=

∫
Rd
1({g ≥ 1})g log gdw +

∫
Rd
1({g < 1})g log gdw

≥ −
∫
Rd
1({g < 1})g(− log g)dw

(2.14)

and for g ∈ L1(Rd) one must have, outside of some ball of radius R, B(0, R) that g

decays like 1
‖w‖d+ε

for ε > 0. Then one has

∫
Rd∩{g<1}

g(− log g)dw = C +

∫
(Rd\B(0,R))∩{g<1}

1

‖w‖d+ε

(
− log

(
1

‖w‖d+ε

))
dw

= C +K

∫ ∞
R

r−1−ε(d+ ε) log(r)dr

<∞
(2.15)

where C =
∫

(Rd∩B(0,R))∩{g<1} g (− log g) dw < ∞ and K contains integrals over

angles. This gives a lower bound on H as required. The bound for H is proved

similarly. �

Thus I use H and H somewhat liberally to refer to the values as defined

above, or to the values above with a constant added, to ensure that the terms are

positive for simplicity.

Before analysing H and H further, properties of the collision operator Q are

looked at as these are necessary tools to analyse the H functions.
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2.3.2 Collision Operator

The following properties can be found in [Cer75] and in [CIP94]. One defines a

bilinear quantity Q : L2(Rd)× L2(Rd)→ L2(Rd) by

Q[f, g] =
1

2

∫
Rd

∫
Sd−1

(
f ′?g
′ + f ′g′? − fg? − f?g

)
S(ν, v? − v)dνdv? (2.16)

and clearly this is symmetric in its arguments. Note that one has Q[f, f ] to be the

right hand side of the Boltzmann equation in (2.5).

Lemma 2.4 For φ : Rd → R such that φ ∈ L2(Rd) one has∫
Rd
Q[f, g]φ(w)dw =

1

8

∫
Rd

∫
Rd

∫
Sd−1

(
f ′?g
′ + f ′g′? − fg? − f?g

)
×

×
(
φ+ φ? − φ′ − φ′?

)
S(ν, v? − v)dνdv?dw

Proof This is a simple consequence of the fact that the formula for Q is symmetric

in the following changes of coordinates.

w 7→ w?

w 7→ w′ = w + ((w? − w) · nu)ν

w 7→ w′? = w? − ((w? − w) · ν)ν

�

Observe that the equation in this lemma could be used to define the collision

operator in a weak sense as an operator on L2.

As a consequence of this representation, one notes that

Corollary 2.5 For a ∈ R, ∫
Rd
aQ[f, g]dw = 0

For some b ∈ Rd, one has ∫
Rd
b · wQ[f, g]dw = 0∫

Rd
|w|2Q[f, g]dw = 0

Furthermore, if h : Rd → R satisfies∫
Rd
h(w)Q[f, g]dw = 0

15



then h is a linear combination of the above three terms.

Proof Simple applications of lemma 2.4 give the first three results, whereby one

notes that the integral is zero if φ + φ? − φ′ − φ′? = 0. The last part is proved in

[CIP94, Theorem 3.1.1] and is somewhat involved so is omitted. �

These functions, the constant, scalar product and norm, are called the col-

lision invariants for this operator. They provide a key rôle in determining the

Maxwellian as the stationary state of the Boltzmann equation, in certain cases,

discussed in [CIP94, p.51].

To prove the Boltzmann H theorem, the following inequality is also needed.

Lemma 2.6 (Boltzmann Inequality) Suppose that f ∈ L2(Rd) and f > 0. Then∫
Rd

log(f)Q[f, f ]dw ≤ 0

Proof Using Lemma 2.4 one has∫
Rd

log(f)Q[f, f ]dw =
1

4

∫
Rd

∫
Rd

∫
Sd−1

(
f ′?f
′ − ff?

)
log

(
ff?
f ′f ′?

)
×

× S(ν, w? − w)dνdw?dw

=
1

4

∫
Rd

∫
Rd

∫
Sd−1

f ′f ′?

(
1− ff?

f ′f ′?

)
log

(
ff?
f ′f ′?

)
×

× S(ν, w? − w)dνdw?dw

and note that f ′f ′? > 0, ν is a positive measure on the sphere, and S is positive as

well, and for any λ ≥ 0 one has that

(1− λ) log λ ≤ 0

to conclude. �

2.3.3 H time derivative sign

The following calculations are somewhat formal, since in section 2.4 one shows that

in general there is no conservation of energy. Furthermore one needs to assume

enough regularity of the functions so that one can exchange integrals and derivatives

where one needs to.

The aim is to get an inequality for dH
dt . This is done by noting that this term

arises by multiplication of the Boltzmann equation with log g and then integration

over w, with a product rule for this term ∂g
∂t log g.
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We perform the calculation for general A. One takes equation (2.9) which is

−tr
(
B−1
t A

)
g +

∂g

∂t
+B−1

t w · ∇xg −AB−1
t w · ∇wg = Q[g, g]

and multiplies by log(g) and integrates over Rd. The trace term becomes

−
∫
Rd

tr
(
B−1
t A

)
g log(g)dw = −tr

(
B−1
t A

)
H

and the second and third terms are simplified using a product rule and the divergence

theorem, similar to the final term, where one gets∫
Rd
AB−1

t w · ∇wg log(g)dw =

∫
Rd
∇w ·

[
AB−1

t wg log g
]

dw

−
∫
Rd

tr
(
AB−1

t

)
g log(g)dw

−
∫
Rd
AB−1

t w · ∇wgdw

= −tr
(
AB−1

t

)
H −

∫
Rd
AB−1

t w · ∇wgdw

where the last line follows from an application of the divergence theorem, with the

fact that g → 0 as w →∞ means that the first term here is zero. Thus one has an

equation for H of the form

− tr
(
B−1
t A

)
H +

∫
Rd

tr
(
AB−1

t

)
gdw +

∂H

∂t
+

∫
Rd
B−1
t w · ∇x · (g log(g)) dw

+ tr
(
AB−1

t

)
H =

∫
Rd
Q[g, g][log(g) + 1]dw

where it has been noted that the terms
∫ ∂g
∂t ,

∫
B−1
t w · ∇xg and

∫
AB−1

t w · ∇wg
combine to give

∫
Q[g, g]−

∫
tr(AB−1

t )gdw. Then using Lemma 2.6, the Boltzmann

inequality, one gets

∂H

∂t
≤ −

∫
Rd

tr (ABt) gdw −
∫
Rd
B−1
t w · ∇x (g log(g)) dw

Introducing H =
∫
Td Hdx one obtains from the above that

dH

dt
≤ −

∫
Td

∫
Rd

tr
(
AB−1

t

)
gdwdx−

∫
Td

∫
Rd
B−1
t w · ∇x (g log(g)) dwdx︸ ︷︷ ︸

=0

where the second term is zero by the divergence theorem, and, since one can assume
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that g ∈ L1
(
Td × Rd

)
, this becomes

dH

dt
≤ −tr

(
AB−1

t

)
Mg(t) (2.17)

where Mg is the total mass, as defined in definition 2.11, and is always positive.

If g is space homogeneous then one uses H and one obtains

∂H

∂t
≤ −tr

(
AB−1

t

)
ρg(t) (2.18)

due to the fact that g is a density with norm ρg, called the mass density (defined in

Definition 2.8).

Since H is bounded below, one can add a constant to ensure that H is positive

without changing any of the above calculations, except for adding a positive constant

to the above. Then one just needs to consider the sign of tr
(
AB−1

t

)
. Observe that

when A = 0 then one has that ∂H
∂t is clearly decreasing.

2.3.4 Special Cases of Motion

Considerations to the special cases of motion introduced before in section 2.2.2 are

now given.

As was shown earlier, in the case of shearing one has tr
(
AB−1

t

)
= 0 and so

∂H

∂t
,
dH

dt
≤ 0

and so H and H are decreasing with time.

In the case of dilation, one has that

tr
(
AB−1

t

)
=

αd

1 + αt

and this is positive for α > 0 and negative for α < 0, and t ∈ [0,−1/α). Thus one

has that, for α > 0,
∂H

∂t
,
dH

dt
≤ 0

and so H and H are decreasing with time.

2.3.5 H Theorem for no deformation

It should come as no surprise, especially from looking at the equations for H and

H, that in a system where one has no deformation, and the particles move unforced
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on the torus that one has an analogous result to Boltzmann’s H theorem.

Theorem 2.7 Suppose that A = 0, and that g has enough regularity to ensure that

one can interchange differentiation with respect to t and integration with respect to

x and w. Then the following hold:

(a) Suppose that the gas is spatially homogeneous, i.e. g does not depend on x.

Then H never increases with times and is steady if and only if the distribution

function g is Maxwellian.

(b) If the gas is not spatially homogeneous, then H never increases with time. How-

ever, a Maxwellian is not a time independent solution of this system.

Proof

(a) If g does not depend on position, then using equation (2.18) above one has

∂H

∂t
≤ 0

which gives the first claim. If now one has H steady then this furthermore

implies that ∫
Rd
Q[g, g] log(g)dw =

∂H

∂t
= 0

then Corollary 2.5 implies that log(g) must be of the form

log(g) = a− b|w − c|2

for some a, b ∈ R and c ∈ Rd. This this implies that g is a Maxwellian, namely

of the form g = ea−b|w−c|
2

and this trivially satisfies the Boltzmann equation

since both sides are zero.

The only if part follows from g solving the equation and the fact that dH
dt ≤ 0

is a global property.

(b) If one does not have spatial homogeneity, then H satisfies the inequality

dH

dt
≤ 0

as required, from equation (2.17).

The equation in this case is

∂g

∂t
+B−1

t w · ∇xg = Q[g, g]
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and if one assumes that g is time independent and a Maxwellian then the first

and last terms in the above equation are zero, and so one gets that

B−1
t w · ∇xg = 0

and for g a time independent Maxwellian then one has a left hand side dependent

on time and a right hand side that doesn’t, and this clearly cannot be the case,

unless the Maxwellian is constant, which is unphysical.

�

2.4 Conservation Laws

So far the microscopic properties of the gas have been analysed, and an equation for

the microscopic velocities has been derived. This section focuses upon the macro-

scopic properties of the gas. The properties of mass density, bulk velocity, internal

and total energy are considered. Balance laws for the mass density and energy are

considered.

These properties are defined from the velocity density g, and the balance

laws governing them are derived. The definitions come from [CIP94].

In the situation we have, there are double the quantities of interest. All of the

following definitions are for the density g, but all could be repeated with the density

f . Thus the following quantities have a superscript to denote they are derived from

g. If the superscript is replaced with an f , then they relate to the density f instead.

Definition 2.8 One defines the mass density to be the integral of the distribution

g, namely

ρg(t, x) =

∫
Rd
g(t, x, w)dw

One defines the bulk velocity to be the average of the distribution g, namely

ug(t, x) =
1

ρg(t, x)

∫
Rd
wg(t, x, w)dw

One defines the momentum tensor to be the second moment of the distribution g,

namely

pg(t, x) =

∫
Rd
w ⊗ wg(t, x, w)dw
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and the stress tensor to be the negative of the variance of the distribution g namely

T g(t, x) = −1

2

∫
Rd

(w − ug(t, x))⊗ (w − ug(t, x)) g(t, x, w)dw

In the definition of stress tensor the minus sign is used so that the balance law for

internal energy is suggestive of the continuum mechanical description, whereby one

has the rate of change of energy is equal to the stress tensor matrix inner product

with the gradient of the bulk velocity.

The bulk velocity is the average of the molecular velocities, and as such is

the velocity of the wind of the gas. This is what we can directly perceive of the

molecular motion at a macroscopic level.

Definition 2.9 The energy density is defined to be

Jg(t, x) =
1

2

∫
Rd
|w|2g(t, x, w)dw

The Internal energy is defined to be

Eg(t, x) =
1

2ρ(t, x)

∫
Rd
|w − ug(t, x)|2 g(t, x, w)dw

Observe that the internal energy is the trace of the variance of g and the energy

density is the trace of the second moment of g.

From looking at these definitions, one can immediately show

Theorem 2.10

pg(t, x) = ρgug(t, x)⊗ ug(t, x) + T g(t, x)

Jg(t, x) =
1

2
ρg(t, x)|ug(t, x)|2 + ρg(t, x)Eg(t, x)

2ρgEg = −trT g (Ideal Gas Law)

One then uses quantities that are integrals over space, namely

Definition 2.11 The Total Mass

Mg(t) =

∫
Td
ρg(t, x)dx

and the Total Energy

Eg(t) =

∫
Td
Jg(t, x)dx
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The rest of this section aims to derive balance laws for the mass density,

momentum and energy density for the system in question.

Recall Corollary 2.5 which gives certain quantities ψ, the collision invariants,

such that ∫
Rd
ψQ[g, g]dw = 0

and then using this one obtains that

−
∫
Rd
ψtr

(
B−1
t A

)
gdw +

∂

∂t

∫
Rd
ψgdw +∇x ·

∫
Rd
ψB−1

t wgdw

−
∫
Rd
ψAB−1

t w · ∇wgdw = 0 (2.19)

if one assumes enough regularity to do so. Then substituting the different collision

invariants ψ one obtains the different balance laws. This is performed explicitly in

the following.

2.4.1 Mass Conservation

Taking ψ = 1 in the above equation leads to

−
∫
Rd

tr
(
B−1
t A

)
gdw+

∂

∂t

∫
Rd
gdw+∇x ·

∫
Rd
B−1
t wgdw−

∫
Rd
AB−1

t w · ∇wgdw = 0

and so
∂ρg

∂t
+∇x ·

(
ρgB−1

t u
)

=

∫
Rd
AB−1

t w · ∇wgdw + tr
(
B−1
t A

)
ρg

and then the fact that

∇w · [AB−1
t wg(t, x, w)] = AB−1

t w · ∇wg + tr(AB−1
t )g

gives the density balance equation as

∂ρg

∂t
+∇x ·

(
ρgB−1

t ug
)

= 0 (2.20)

Physically this makes sense, since if A = 0 then one has the usual density balance,

except that the velocities are scaled since space has been scaled as well.

Integrating this equation with respect to x and using the divergence theorem

on the ∇x term gives

d

dt
Mg(t) = 0 (2.21)
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This makes sense due to the fact that on the torus, the particles are fixed and cannot

move, so the density and the mass should be constant.

2.4.2 Momentum Balance Law

Taking equation (2.19) with ψ = wi for i ∈ {1, . . . , d} gives the equation

−
∫
Rd
witr

(
B−1
t A

)
gdw +

∂

∂t

∫
Rd
wigdw +∇x ·

∫
Rd
wiB

−1
t wgdw

−
∫
Rd
wiAB

−1
t w · ∇wgdw = 0

and this then gives, for each i = 1, . . . , d, that

∂

∂t
(ρgugi ) +∇x ·

(
ρgugiB

−1
t ug +

∫
Rd
ciB
−1
t cgdw

)
=

∫
Rd
wiAB

−1
t w · ∇wgdw + tr(B−1

t A)ρgugi

Again this equation makes sense physically. If one takes A = 0 then one

recovers the usual momentum conservation equation, with scaled velocity, as before.

For A 6= 0 one has the momentum change modified in a similar manner to before.

Then if one assumes spatial homogeneity, and using the product rule

∇w ·
[
wiAB

−1
t wg

]
= wiAB

−1
t w · ∇wg + witr

(
AB−1

t

)
g + (AB−1

t w)ig

the momentum balance becomes

d

dt
(ρg(t)ug(t)) = −ρg(t)AB−1

t ug(t) (2.22)

2.4.3 Internal Energy Balance Law

Taking equation (2.19) with ψ = |w − ug(t, x)|2 gives the equation

−
∫
Rd
|w−ug|2tr

(
AB−1

t

)
gdw+

∂

∂t

∫
Rd
|w−ug|2gdw+∇x ·

∫
Rd
|w−ug|2B−1

t wgdw

−
∫
Rd
|w − ug|2AB−1

t w · ∇wgdw = 0

Using the definition of Eg one gets this equation as

− 2ρgEgtr
(
AB−1

t

)
+
∂

∂t
ρgEg +∇x ·

∫
Rd
|w − ug|2B−1

t wgdw
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−
∫
Rd
|w − ug|2AB−1

t w · ∇wgdw = 0

then using the product rule

∇w ·
[
|w − u|2AB−1

t wg
]

= |w − u|2AB−1
t w · ∇wg + |w − u|2gtr

(
AB−1

t

)
+ 2(w − u) ·AB−1

t wg

one gets

∂

∂t
ρgEg +∇x ·

∫
Rd
|w − ug|2B−1

t wgdw −
∫
Rd
∇w ·

[
|w − ug|2AB−1

t wg
]

dw

+

∫
Rd

2(w − ug) ·AB−1
t wgdw = 0

and then using the divergence term on the fourth term results in that being zero, as

before, and if we assume that g is homogeneous in space then the equation becomes

∂

∂t
ρgEg +

∫
Rd

2(w − ug) ·AB−1
t wgdw = 0

Thus

ρg
∂

∂t
Eg +AB−1

t : T g + ρAB−1
t ug · ug −

∫
Rd
AB−1

t ug · wgdw = 0

and the last two terms are equal and so we get

ρg
∂

∂t
Eg(t) = AB−1

t : T g(t) (2.23)

which is the usual equation for the rate of change of energy.

2.4.4 Energy Balance Law

Taking equation (2.19) with ψ = |w|2 gives the equation

−
∫
Rd
|w|2tr

(
B−1
t A

)
gdw +

∂

∂t

∫
Rd
|w|2gdw +∇x ·

∫
Rd
|w|2B−1

t wgdw

−
∫
Rd
|w|2AB−1

t w · ∇wgdw = 0

and this then gives, using the definitions of J and r,

2
∂

∂t
Jg(t, x) +∇x · rg(t, x,B−1

t ) =

∫
Rd
|w|2AB−1

t w · ∇wgdw + 2tr(B−1
t A)Jg(t, x)
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Then assuming spatial homogeneity and using a divergence theorem on the first

term on the right hand side gives

d

dt
Jg +

∫
Rd
w ·AB−1

t wgdw = 0

and then observing that w · Cw = C : w ⊗ w gives

d

dt
Jg(t) = −AB−1

t : pg(t) (2.24)

And if A = 0 then one has that the energy is constant, as expected. Furthermore if

the system is expanding then energy is not conserved and is decreasing.

2.4.5 Shearing Balance Laws

As was defined earlier, this case is given by A = a ⊗ n with a · n = 0. Then the

calculations before gave that

tr
(
AB−1

t

)
= 0

Then one obtains that
∂ρg

∂t
+∇x ·

(
ρgB−1

t ug
)

= 0

and if the gas is spatially homogeneous then this becomes

∂ρg

∂t
= 0

and furthermore in all cases of homogeneity, the mass is conserved, namely

d

dt
Mg(t) = 0

The evolution of the energy is given by the equation

d

dt
Eg(t) = −2

∫
Rd
w · a⊗ nwgdw

2.4.6 Dilation/Contraction Balance Laws

Here A = αB for some α 6= 0. Then recall that

AB−1
t =

α

1 + αt
I

As is always the case, the mass is conserved and the evolution of the energy
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is given by the equation

d

dt
Eg(t) = −α(d+ 2)

1 + αt
Eg(t)

2.5 Maxwell Molecules

As was said in the introduction, the assumption of the interaction being Maxwellian

is used, and as such, a derivation of why this form of interaction is useful is now

given, at least for dimension 3. This section is somewhat self contained and only the

part from equation (2.29) is useful for the rest of the work. This simplification of

the interaction, where the relative velocity of the two particles in collision does not

affect the collision, was first noted by Maxwell in [Max66] and has been reprinted

in [Max65].

Definition 2.12 A collection of Maxwell molecules is a collection of molecules

for which the repulsion between any pair of them is of the form Cr1−(2d−1) where r

is the distance between the two molecules, and C is some constant.

2.5.1 Collision term

To fully justify the use of Maxwell molecules, it is useful to derive an equation for

the collision term S. This can be found in greater detail in [Cer75]. The following

is explicit for d = 3 only, but can be generalised to general dimensions. To do

this, one considers the two body problem. Here the potential attributed to each

molecule will be assumed to be U(ρ), where ρ is the distance from the particle in

consideration. Furthermore one assumes that these potentials have been cut off,

namely there exists σ > 0 such that for ρ ≥ σ the potential U is constant. Later it

will be assumed that U(ρ) = kρ−(n−1) but for now we perform the calculation for

general potentials U .

This collision is considered in a plane which contains the two particles centres

of mass and has normal perpendicular to the velocities of the two particles. Figure

2.2 shows such a situation. One furthermore considers this motion as if one of the

particles were at rest, and the other had mass

µ =
mm?

m+m?
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Figure 2.2: Nomenclature for a Two Body interaction. Image copied from [Cer75]

In this plane of motion, η and φ will be the radial and angular coordinates respec-

tively.

One supposes that r is the distance of closest approach of the two particles,

and θ is the angle between the velocity before, v and after, v?, the collision. Then

one defines

S(θ, v? − v) = ‖v? − v‖ r
∂r

∂θ

Then for this two body problem, conservation of energy and conservation of

mass give

1

2
µ

((
dρ

dt

)2

+ ρ2

(
dφ

dt

)2
)

+ U(ρ) =
1

2
µ ‖v? − v‖2 + U(σ)k ρ ≤ σ

ρ2 dφ

dt
= r ‖v? − v‖

(2.25)

where σ is the cut off of the potential U . Then, using V = ‖v? − v‖, and the fact

that the orbit is symmetric in the apse line, and so “the angle can be easily evaluated

since it is the angle between V and the apse line”, giving that

θ =
(µ

2

) 1
2
V r

∫ σ

ρ0

ρ−2

[
µ

2
V 2

(
1− r2

ρ2

)
− U(ρ) + U(σ)

]− 1
2

dρ+ sin−1
( r
σ

)
(2.26)

where ρ0 is the distance of closest approach which satisfies the equation

µ

2
V 2

(
1− r2

ρ2
0

)
= U(ρ0)− U(σ)
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although clearly ρ0 ≤ σ or otherwise there is no collision. Observe that this holds

for any potential U . However, if now we assume that

U(ρ) =

kρ1−n ρ ≤ σ

kσ1−n ρ ≥ σ

then one can easily substitute this potential into equation (2.26) for θ to get

θ =
(µ

2

) 1
2
V r

∫ σ

ρ0

ρ−2

[
µ

2
V 2

(
1− r2

ρ2

)
− kρ1−n + kσ1−n

]− 1
2

dρ+ sin−1
( r
σ

)
Setting

b = r

(
µ

2k
V 2 +

k

σn−1

) 1
n−1

x =
r

ρ

(
1 +

2k

µV 2σn−1

) 1
2

λ =
r

σ

(
1 +

2k

µV 2σn−1

) 1
2

(2.27)

the equation becomes

θ =

∫ x0

λ

dx√
1− x2 −

(
x
b

)n−1
+ sin−1

( r
σ

)
(2.28)

where x0 satisfies

1− x2
0 − (x0/b)

n−1 = 0

Considering the limiting case, where σ →∞ one obtains

θ =

∫ x0

0

dx√
1− x2 −

(
x
b

)n−1

and

b = r
( µ

2k

) 1
n−1

V
2

n−1

Thus using these two equations to calculate an equation for r one obtains

r =

(
2k

µ

) 1
n−1

V −
2

n−1 b(θ)
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Thus one obtains

S(θ, ‖v? − v‖) = ‖v? − v‖
n−5
n−1

(
2k

µ

) 1
n−1

b
db

dθ

which is of the form

sin θS(θ, ‖v? − v‖) = β(θ) ‖v? − v‖
n−5
n−1

this coming from [TM80] or from [Cer75, pp 68-71] for the case of d = 3.

The general dimension case is mentioned in [Vil02], and the relationship is

sin θS(θ, ‖v? − v‖) = β(θ) ‖v? − v‖
n−(2d−1)
n−1 (2.29)

In particular, this implies that for λ > 0,

S(θ, λ ‖v? − v‖) = λ
n−(2d−1)
n−1 S(ν, ‖v? − v‖)

and so for (2d − 1)th power molecules, where one would have n = 2d − 1, this is

independent of the magnitude of the difference in velocities, so the interaction is of

the form U(ρ) = kρ−(2d−2).

One can furthermore rewrite Q[g, g] as

Q[g(λ·), g(λ·)](t, x, w) =

∫
Rd

∫
Sd−1

(
f ′?f
′ − f?f

)
S(θ, λ ‖w? − w‖)dνdw?

= λ
5−n
n−1λ−d

∫
Rd

∫
Sd−1

(
f ′?f
′ − f?f

)
S(θ, ‖w? − w‖)dνdw?

= λ
5−n
n−1
−dQ[g, g](t, x, λw)

Thus for Maxwell molecules, where n = 5 in dimension 3, one has this scaling like

the dimension of the space.

2.6 Simplified Time Dependence Boltzmann Equation

As has been seen in section 2.4 on balance laws, the energy is in general not con-

served. Thus one takes a special simplification of the density g by modifying velocity

space to account for this. The simplest such time dependence is

g(t, w) = ξ(t)G(η(t)w) (2.30)
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where ξ, η : R+ → R and G : Rd → R, and one also assumes that

ξ(0) = 1 = η(0)

These functions are such that η characterises the renormalisation of velocity space

on the torus which decays to zero in such a way that this internal energy remains

constant. Then to ensure that the total mass of the system is constant, one must

multiply by a factor ξ(t) so that this is the case. This is the justification for this

simplification.

This simplification is somewhat arbitrary, but gives a particularly nice equa-

tion in the end. This is one of its justifications. Something of the form g(t, w) =

ξ(t)G(t, η(t)w) may well be useful or more realistic, but the final equation is harder

to deal with. Thus as a first simplification, the above is used.

Furthermore for simplicity one assumes that

ug(0) = 0

which should be the case, since the bulk velocity is the velocity of the deformation,

which in the reference configuration is zero initially.

A physical interpretation of ξ and η would be nice, and as such one considers

the density and internal energy definitions to get equations for η and ξ as follows.

We henceforth drop the superscripts of the g on the properties for ease of notation.

The definition of density gives

ρ(t) =

∫
g(t, w)dw

= ξ(t)

∫
G(η(t)w)dw

=
ξ(t)

η(t)d

∫
G(z)dz

=
ξ(t)

η(t)d
ρ(0)

and the definition of internal energy gives

E(t) =
1

2ρ(t)

∫
|w − ug(t)|2g(t, w)dw

=
1

2ρ(t)

∫
|w|2ξ(t)G(η(t)w)dw

=
1

2ρ(t)η(t)d+2

∫
|z2|G(z)dz
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=
E(0)ρ(0)

2ρ(t)η(t)d+2

=
1

η(t)2E(0)

and so

η(t) =

(
E(t)

E(0)

)−1/2

ξ(t) =
1

(E(t)/E(0))d/2

where one uses that the density is constant, as shown in section 2.4.1.

Now assuming that one has Maxwell molecules, one has, from section 2.5

Q[g(λ·), g(λ·)](w) = λ−dQ[g, g](λw)

and defining

E(t) =
E(t)

E(0)

one wishes to rewrite the Boltzmann equation (2.9) for this time dependence. Drop-

ping the time dependence of E for ease of notation, and setting v = η(t)w, then the

g term becomes

−tr(AB−1
t )g = −tr(AB−1

t )
1

Ed/2
G(E−1/2

w) = −tr(AB−1
t )

1

Ed/2
G(v)

and the time derivative becomes

∂g

∂t
=

∂

∂t
(ξ(t)G(η(t)w))

= ξ′(t)G(v) + ξ(t)∇vG(v)η′(t)

=
− d

dt

(
E−d/2

)
Ed

G(v)− 1

2Ed/2
E−3/2 d

dt
Ew · ∇vG(v)

= −
d d

dtE

2E
d+2
2

G(v)−
d
dtE

2E
d+2
2

v · ∇vG(v)

and the velocity derivative becomes

∇wg(t, w) = ∇w(ξ(t)G(η(t)w))

= ξ(t)∇w(Gη(t)w)

= ξ(t)η(t)∇vG(v)
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and thus

AB−1
t w · ∇wg =

1

Ed/2
AB−1

t v · ∇vG(v)

and so the Boltzmann equation becomes

−

[
tr(AB−1

t )
1

Ed/2
+

d d
dtE

2E
d+2
2

]
G(v)−

[
d
dtE

2E
d+2
2

I +
1

Ed/2
AB−1

t

]
v · ∇vG(v)

=
1

Ed/2
Q[G,G](v)

Now defining

T̃ (0) =
T (0)

2ρE(0)

and using the balance law for E , namely d
dtE = 1

ρE(0)AB
−1
t : T , this then gives the

equation as

1

Ed/2
[(
−
(
I + dT̃ (0)

)
: AB−1

t

)
G(v)−∇vG(v) ·

((
T̃ (0) : AB−1

t

)
I +AB−1

t

)
v
]

=
1

Ed/2
Q[G,G](v)

and then since I is a diagonal matrix, one has that

tr
[(
T̃ (0) : AB−1

t

)
I +AB−1

t

]
= dT̃ (0) : AB−1

t + trAB−1
t =

(
I + dT̃ (0)

)
: AB−1

t

and so the equation becomes

−∇v ·
[
G(v)

[(
T̃ (0) : AB−1

t

)
I +AB−1

t

]
v
]

= Q[G,G](v) (2.31)

Then using the Ideal gas law one can show that

tr
(
T̃ (0)

)
=

1

ρE
tr

(
ρET (0)

2ρ(0)E(0)

)
=

2

ρE
trT = −1

and a dependence of

T (t) =

∫
w ⊗ wg(t, w)dw =

ξ

ηd+2

∫
z ⊗ zG(z)dz = E(t)T (0)

for the stress tensor. The aim now is to analyse the time dependence of AB−1
t . The

two special situations of shearing and dilation are now considered as these have time

independence in AB−1
t .
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2.6.1 Simplified time dependence in the case of Simple Shearing

Suppose that one is in d = 2 and that A =

(
0 1

0 0

)
=

(
1

0

)
⊗

(
0

1

)
and that B = I.

Then the equation for motion with the above time dependence becomes

∇v ·

[
G(v)

(
−T (0)12

2ρE(0) −1
ρ

0 −T (0)12
2ρE(0)

)
v

]
= Q[G,G](v)

and this is the same as

−T (0)12

ρE(0)
G−

(
T (0)12

2ρE(0)
v1 +

1

ρ
v2

)
∂v1G(v)− T (0)12

2ρE(0)
v2∂v2G(v) = Q[G,G](v)

Then one can interpret the functions ξ and η as

ξ(t) = e2βt η(t) = eβt

Then one can show the stress tensor to be

T (t) = e(2−(2+2))βtT (0)

With this one can find, using the ideal gas law, that

β = −κT (0)12

3P (0)

where T (0) is the initial stress tensor and P (0) is the initial pressure and A =

κ a
|a| ⊗

n
|n| where κ = |a||n|.
Furthermore one needs that this β < 0. Clearly P (0) is positive since it is

the product of the initial density and energy, both of which are positive. One thus

needs the sign of κ and (T (0))12 need to be the same.

In the situation as above, if one takes the equation of motion, multiplies by

logG and integrates over all v, then using the divergence theorem one finds that

−T (0)12

ρE(0)

∫
G logGdv ≤ 0

and by adding a constant to ensure that
∫
G logGdv ≥ 0 one finds that

T (0)12 ≥ 0

with equality if and only if G is a collision invariant. Thus β < 0 since G is not a
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Maxwellian, as needed.

Then for d = 2 one has

T (t) = T (0)e
2κT (0)12
3P (0)

t

and thus

E(t) = − 1

2ρ
tr

(
T (0)e

2κT (0)12
3P (0)

t
)

=
3P (0)

2ρ
e

2κT (0)12
3P (0)

t

and so

ρ
d

dt
E(t) =

d

dt

(
3P (0)

2ρ
e

2κT (0)12
3P (0)

t
)

=
2κ(T (0))12

3P (0)

3P (0)

2ρ
e

2κT (0)12
3P (0)

t

= κ(T )12

= T : AB−1
t

and observe that this is accordance with the conservation law in section 2.4

2.6.2 Simplified time dependence in the case of Dilation

Theorem 2.13 Suppose that B is the matrix characterising the initial configuration

of space, and suppose that A = αB for some α ∈ R. Then a solution to the equation

(2.31) in this case is a Maxwellian.

Proof One has that

−AB−1
t = −AB−1

t =
−α

1 + αt
I

and one also has that

−T̃ (0) : AB−1
t =

−α
1 + αt

tr
(
T̃ (0)

)
=

α

1 + αt

and so (
T̃ (0) : AB−1

t

)
I +AB−1

t = 0

thus giving the equation in this case to be

Q[G,G](v) = 0

resulting in G being a Maxwellian. �

One now turns attention to the case of simple shearing, and that is the focus

in the next chapter.
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Chapter 3

Applied Functional Analysis to

the case of O.M.D.

In this chapter the main aim is to prove the existence or non-existence of a solution

to the Boltzmann equation in the case of simple shearing with the special time

dependence as given in the previous chapter. This is shown to have the expectation

of non-existence.

Firstly a linearisation of the Collision operator is introduced, with the main

aim to prove that it is a Fredholm operator, and to analyse its spectrum. These and

Fréchet derivatives are introduced in the second section, and the Implicit Function

Theorem for Banach spaces is stated, so that one can discount the use of the IFT.

The chapter concludes with the use of a result on self adjoint operators to prove the

non-existence of a solution to the special time dependence in shearing.
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3.1 The Linearised Collision Operator

Since the general collision operatorQ is hard to deal with, one linearises this operator

in such a manner that one can prove nice properties about the linearisation. From

a physical point of view, one can justify this by considering the linearisation about

some distribution to be the deviation from some background noise of the system in

question.

One supposes that

µ(w) =
1

(2π)
d
2

e−
|w|2
2

and then one linearises the collision operator around this Maxwellian. Observe that

for µ, one has

µ′µ′? = µµ?

from the section on collision invariants.

This linearisation about the Maxwellian is performed as follows. One sup-

poses that the function g = µ+ µ1/2h and then

Q[g, g] = Q[µ+ µ1/2h, µ+ µ1/2h] = 2Q[µ1/2h, µ] +Q[µ1/2h, µ1/2h]

and observing that the first term on the right hand side is linear in h, and normalising

by multiplying by µ−1/2 one defines:

Definition 3.1 The Linearised collision operator is defined to be a map L :

L2(Rd)→ L2(Rd) with

L(h) =

∫
Rd

∫
Sd−1

(
h′(µ1/2)′? + (µ1/2)′h′? − (µ1/2)h? − h(µ1/2)?

)
×

× (µ1/2)?S(ν, w? − w)dνdw?

This definition of the linearised collision operator is that used in [CIP94].

This is not the only form though. A similar form, where one takes instead g = µ+µh

is used in [Cer88]. This changes the space over which each operator is symmetric.

The former, as is soon to be seen, is symmetric on L2(Rd) whereas the latter is

symmetric on L2(Rd, µdw).

Both of these linearisations are used. The former because there is a nice

exposition for it in [CIP94] and the latter, namely

LB(h) =

∫
Rd

∫
Sd−1

(
h′ + h′? − h? − h

)
µ?S(ν, w? − w)dνdw?
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because the spectrum and eigenfunctions for it have been explicitly calculated in

[CdBFU70] and [Cer69] and stated in [Cer88]. The paper by Drange, [Dra75],

relates the two different linearisations and uses a decomposition similar to the one

derived below. Most of the other literature is on the operator LB.

Much work has been performed on and using this linearized collision operator.

It has been used to prove global classical solutions of the Boltzmann equation near

equilibrium in [GS11]. Spectral gap results have also been proved in [Mou06] and

[MS07].

The work generally consists of a choice of collision kernel, and the type of

cut off employed, for example in [Cer67], or not, as in [Kla77]. The choice of kernel

is key, as for some cut off functions, one does not have a self adjoint operator on L2,

and with others, such as the Maxwellian molecule with Grad’s cut off, one does.

Lemma 3.2 On L2(Rd), L is a linear, non-positive and self-adjoint operator. Fur-

thermore, the kernel of L is d+ 2 dimensional and is spanned by the set

{ψα} :=
{
µ1/2, |w|2µ1/2, wiµ

1/2, i = 1, . . . , d
}

The kernel of LB is spanned by

{
1, |w|2, wi, i = 1, . . . , d

}
Proof The linearity is clear from the definitions in equations (2.7).

The self adjointness comes from the fact that∫
L(h)gdw =

∫
L(g)hdw

and the fact that the maximal domain of this operator is L2.

We now show non-positivity. One has that, using an equation similar to

Lemma 2.4, that∫
Rd
hL(h)dw =

∫
Rd

∫
Rd

∫
Sd−1

(
h′(µ1/2)′? + (µ1/2)′h′? − (µ1/2)h? − h(µ1/2)?

)
×

× (µ1/2)?
(
h+ h? − h′? − h′

)
S(ν, w? − w)dνdw?dw

= −
∫
Rd

∫
Rd

∫
Sd−1

(
h′(µ1/2)′? + (µ1/2)′h′? − (µ1/2)h? − h(µ1/2)?

)2
×

× S(ν, w? − w)dνdw?dw

≤ 0
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and is negative since it is minus an integral of a positive, or zero function.

Suppose that L(h) = 0. Then one has that

h′(µ1/2)′? + (µ1/2)′h′? − (µ1/2)h? − h(µ1/2)? = 0

for all w ∈ Rd. This is the same as

h′(
µ1/2

)′ +
h′?(
µ1/2

)′
?

− h?(
µ1/2

)
?

− h

µ1/2
= 0

at which point h/µ1/2 is a collision invariant, as required. A similar method shows

the claim for the kernel of LB �

The assumption of a Maxwellian interaction, used in the previous section,

means that the collision term S has the form

S(ν, w? − w) = β(ν)

As will be seen shortly, it is necessary to use the Grad cut off for the angular

collision kernel as was introduced in [Gra58] and discussed in [Cer88].

3.1.1 A Decomposition of the Linearised Collision Operator

One now aims to prove that the linearised collision operator is a sum of a compact

operator and a bounded linear operator. To such an end, the following split of the

linearised collision operator is performed, similar to [CIP94]. One defines

K1(h) =

∫
Rd

∫
Sd−1

h(w?)µ
1/2(w)µ1/2(w?)S(ν, w? − w)dνdw?

K2(h) =

∫
Rd

∫
Sd−1

(
h′
(
µ1/2

)′
?

+
(
µ1/2

)′
h′?

)
µ1/2(w?)S(ν, w? − w)dνdw?

K3 =

∫
Rd

∫
Sd−1

µ(w?)S(ν, w? − w)dνdw?

(3.1)

at which point one then has that

L(h) = K2(h)−K1(h)−K3I(h)

where I is the identity operator. One has a similar decomposition for LB.

Observe that K2 corresponds to the gain part of the collision operator; that

part which characterises which velocities are gained after a collision. This is a non

local operator and so one expects it to be hard to deal with. The other terms, K1
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and K3 are the loss parts, so correspond to the velocities which are lost in a collision,

and since these are local, they depend only on one velocity, one would expect them

to be simple to deal with. The loss term has been split up into two parts because

the difference K2 −K1 will turn out to be a compact operator. Properties of these

operators are now discussed, leading up to Theorem 3.6.

It is clear that K1 can be expressed in the form
∫
Rd h(w?)k1(w,w?)dw? where

k1(w,w?) = e−(|w|2+|w?|2)/4

∫
Sd−1

β(ν)dν (3.2)

Now using the special form of the collision term, and standard formulas for

the integration of a Gaussian, one can write K3 as

K3 =

∫
Rd

∫
Sd−1

µ(w?)S(ν, w? − w)dνdw? = 2d
∫
Sd−1

β(ν)dν (3.3)

We now consider K2, which is somewhat more involved.

K2(h) =

∫
Rd

∫
Sd−1

(h(w + ((w? − w) · ν)ν)µ1/2(w? − ((w? − w) · ν)ν)+

+ µ1/2(w + ((w? − w) · ν)ν)h(w? − ((w? − w) · ν)ν))µ1/2(w?)β(ν)dνdw?

A change of variables of the following form is now used. Set m to be a unit vector

orthogonal to ν in the plane spanned by ν and w? − w. Then one has that

w? − w = ((w? − w) · ν)ν + ((w? − w) ·m)m

which results in h′
(
µ1/2

)′
?

= h′?
(
µ1/2

)′
and

β(ν) = β

(
w? − w
|w? − w|

· ν
)

= β

(
1− w? − w
|w? − w|

·m
)

=: β̃(m)

and defining β(ν) := β(ν) + β̃(m) one obtains

K2(h) =

∫
Rd

∫
Sd−1

h(w+((w?−w) ·ν)ν)µ1/2(w?−((w?−w) ·ν)ν)µ1/2(w?)β(ν)dνdw?

A change of variables of the following form is now used to change this equa-

tion. For fixed ν, decompose w? − w into the parallel and perpendicular parts to
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the hyperplane with ν as the normal. Do this by setting

v = ((w? − w) · ν)ν

w̃ = (w? − w)− ((w? − w) · ν)ν

and then, for fixed ν, integration with respect to w? is replaced by integration over

|v| and w̃. By varying ν one then varies v = |v|ν over all Rd and w̃ varies over the

hyperplane perpendicular to v through the origin. Then due to the reverse polar

coordinate change that has been performed, one has that

dνdw? = 2|v|−(d−1)dvdw̃

Then observing that the function β depends only on the angle between the velocity

difference and the parameter ν, one has that

β

(
(w? − w)

|w? − w|
· ν
)

= β

(
|v|
|v + w̃|

)
Then, denoting the hyperplane perpendicular to v through the origin by Π(v), one

gets

K2(h) = 2

∫
Rd
h(w+ v)

∫
Π(v)

µ1/2(w̃+w)µ1/2(w+ v+ w̃)β

(
|v|
|v + w̃|

)
|v|−(d−1)dw̃dv

Then by setting w + v =: ξ̃ one has

K2(h) = 2

∫
Rd
h(ξ̃)|ξ̃ − w|−(d−1)

∫
Π(ξ̃−w)

β

(
|ξ̃ − w|
|ξ̃ − w + w̃|

)
µ1/2(w̃ + w)×

× µ1/2(w̃ + ξ̃)dw̃dξ̃

and from this one can see that K2 has kernel given by

k2(w, ξ̃) = |ξ̃ − w|−(d−1)

∫
Π(ξ̃−w)

β

(
|ξ̃ − w|
|ξ̃ − w + w̃|

)
µ1/2(w̃ + w)µ1/2(w̃ + ξ̃)dw̃

This form is not useful though, because the integral over the plane has a dependence

upon w and ξ̃. This dependence is now analysed. Observe that

µ1/2(w̃ + w)µ1/2(w̃ + ξ̃) = µ1/2

(√
2w̃ +

1√
2

(ξ̃ + w)

)
µ1/2

(
1√
2

(ξ̃ − w)

)
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and so the kernel becomes

k2(w, ξ̃) = |ξ̃ − w|−(d−1)µ1/2

(
1√
2

(ξ̃ − w)

)∫
Π(ξ̃−w)

β

(
|ξ̃ − w|
|ξ̃ − w + w̃|

)
×

× µ1/2

(√
2w̃ +

1√
2

(ξ̃ + w)

)
dw̃

The integral in this expression still depends on w and ξ̃, and to remove this depen-

dence, one notes that the vector 1
2(ξ̃ + w) has a part ζ in the plane perpendicular

to ξ̃−w. Let z = w̃+ ζ and then the part of 1
2(ξ̃+w) perpendicular to the plane is

1

2
(ξ̃ + w) · ξ̃ − w

|ξ̃ − w|
=

1

2

|ξ̃|2 − |w|2

|ξ̃ − w|

and so

∫
Π(ξ̃−w)

β

(
|ξ̃ − w|
|ξ̃ − w + w̃|

)
µ1/2

(
√

2w̃ +

√
2

2
(ξ̃ + w)

)
dw̃ =

µ1/2

(
|ξ̃|2 − |w|2√

2|ξ̃ − w|

)∫
Π(ξ̃−w)

µ1/2(
√

2z)β

(
|ξ̃ − w|

|ξ̃ − w|+ |z − ζ|

)
dz

and so the kernel k2 is equal to

k2(w,w?) = |w? − w|−(d−1)µ1/2

(
1√
2

(w? − w)

)
µ1/2

(
|w?|2 − |w|2√

2|w? − w|

)
×

×
∫

Π(w?−w)
µ1/2(

√
2z)β

(
|w? − w|

|w? − w|+ |z − ζ|

)
dz

where the integral is the integral of a Gaussian over a plane multiplied by the angular

collision kernel.

The point of evaluation of β corresponds to the angle between the vectors
ξ̃−w
|ξ̃−w| and z−ζ+ξ̃−w

|z−ζ+ξ̃−w| . Thus one can split up the integration over the plane into

integration over the unit sphere in this plane and an integration over R. Then

∫
Π(ξ̃−w)

µ1/2(
√

2z)β

(
|ξ̃ − w|

|ξ̃ − w|+ |z − ζ|

)
dz =∫

Sd−2(ξ̃−w)
β(σ)dσ

∫
R
µ1/2(

√
2z)|z|d−2d|z|

where Sd−2(w?−w) means the set of points in Sd−1 that are perpendicular to w?−w.
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Then denoting C(d) :=
∫
R µ

1/2(
√

2z)|z|d−2d|z| one obtains that the kernel has the

form

k2(w,w?) = |w? − w|−(d−1)µ1/2

(
1√
2

(w? − w)

)
µ1/2

(
|w?|2 − |w|2√

2|w? − w|

)
×

×
∫
Sd−2(w?−w)

β(σ)dσC(d) (3.4)

which is of a suitable form.

This is summarised in the following lemma:

Lemma 3.3 Assuming Grad’s cut off, namely∫
Sd−1

β(ν)dν <∞

The linearised collision operator for Maxwellian interactions can be split up into a

sum of the form

L = K −K3I

where K has kernel given by

k(w,w?) = |w? − w|−(d−1)µ1/2

(
1√
2

(w? − w)

)
µ1/2

(
|w?|2 − |w|2√

2|w? − w|

)
×

×
∫
Sd−2(w?−w)

β(σ)dσC(d)

− e−(|w|2+|w?|2)/4

∫
Sd−1

β(ν)dν

and

K3 = 2d
∫
Sd−1

β(ν)dν

3.1.2 Regularity of the Decomposition

Properties of this decomposition are now analysed

Lemma 3.4 The kernel of the operator K := K2 −K1 where Ki are defined as in

equation (3.1) is in L1 ∩ L2 and the integrals are bounded independently of w.

Proof It should be clear that k1 is in L1 ∩ L2 and is bounded independently of w

if

‖β‖L1 :=

∫
Sd−1

β(ν)dν <∞
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which is exactly the assumption of Grad’s cut off, since the integral is the integral

of a Gaussian in w?, and it has a Gaussian term in w.

k2 is somewhat more tricky since it is unbounded as w? → w. However,

observing that µ1/2
(
|w?|2−|w|2√

2|w?−w|

)
is bounded above by a constant means that

∫
Rd
k2(w,w?)dw? ≤ C

∫
Rd
|w? − w|−(d−1)µ1/2

(
w? − w√

2
(w? − w)

)
×

×
∫
Sd−2(ξ̃−w)

β(σ)dσC(d)dw

≤ CC(d)2 ‖β‖L1

∫
Rd
|w? − w|−(d−1)µ1/2

(
w? − w√

2

)
dw?

where the 2 in front of the integral of the collision kernel comes from the integral of

β̃ being equal to the integral of β.

Converting to polar coordinates about the point w results in this being a

constant times the integral of a negative exponent Gaussian over Rd, which is finite,

and can be bounded independent of w.

Now one considers the difference K = K2 −K1. The kernel of this operator

is k2 − k1 and∫
Rd
|k(w,w?)|dw? ≤

∫
Rd
|k2(w,w?)|dw? +

∫
Rd
|k1(w,w?)|dw?

and so k ∈ L1. To prove that k is in L2 is essentially the same calculation, except

all terms are squared. The bound of the integral independent of w follows from the

fact that the integral of both k1 and k2 are able to be bounded independently of w.

�

Lemma 3.5 For any r ≥ 0 one has∫
Rd
k(w,w?)(1 + |w?|2)−rdw? ≤

C

(1 + |w|2)r+1/2

Proof Clearly
∫
k1(w,w?)(1+|w?|2)−rdw? is bounded in the requisite manner since

k1 has a factor e−|w|
2/4 involved, which decays faster than any polynomial. Thus

it is left to prove that the term involving k2 is bounded in this manner. This is

performed as follows. One shows that

I := C(d)(1 + |w|2)r+1/2

∫
Rd
k2(w,w?)(1 + |w?|−r)dw?

is bounded independently of w.
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A change of variables whereby one sets γ = w? − w is used so that this

becomes

I = C(d)(1 + |w|2)r+1/2

∫
Rd

(1 + |w + γ|2)−r|γ|−(d−1)e
− 1

8

(
(2w·γ+|γ|2)2

|γ|2
+|γ|2

)
×

×
∫

Sd−2(γ)

β(σ)dσC(d)dγ

and now splitting this integration into I = I1 + I2 where I1 is integration over the

set {γ : |γ| > |w|/4} and I2 is integration over the set {γ : |γ| < |w|/4} one can see

that

I1 = C(d)(1 + |w|2)r+1/2

∫
{|γ|>|w|/4}

(1 + |w + γ|2)−r|γ|−(d−1)e
− 1

8

(
(2w·γ+|γ|2)2

|γ|2
+|γ|2

)
×

×
∫

Sd−2(γ)

β(σ)dσC(d)dγ

< CC(d)(1 + |w|2)r+1/2

∫
{|γ|>|w|/4}

|γ|−(d−1)e−
1
8
|γ|2dγ2 ‖β‖L1

since when on this set one has that

e
− 1

8

(
(2w·γ+|γ|2)2

|γ|2
+|γ|2

)
(1 + |w + γ|2)−r|γ|−(d−1)

< C

Then this function is bounded independently of w since the integral is of the order

of an exponential, decreasing for increasing |w|.
Now one considers the integration over the second set {γ : |γ| < |w|/4}. This

is

I2 := C(d)(1+|w|2)r+1/2

∫
{|γ|<|w|/4}

(1+|w+γ|2)−r|γ|−(d−1)e
− 1

8

(
(2w·γ+|γ|2)2

|γ|2
+|γ|2

)
×

×
∫

Sd−2(γ)

β(σ)dσdγ

One would like to change to polar coordinates, but the term |w + γ| is somewhat

problematic. However, if |w| ≥ 1 then one has 1 + |w + γ|2 > 1 + 9
16 |w|

2 and so,

incorporating the angular integration outside of the plane spanned by w and γ into
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the constant C, the bound becomes by

I2 < CC(d)2 ‖β‖L1

(1 + |w|2)r+1/2

(1 + 9|w|2
16 )r

∫ ∞
0

∫ π

0
|γ|−(d−1)e

− 1
8

(
(2|w| cos θ+|γ|2)

2
+|γ|2

)
×

× sin θ|γ|d−1d|γ|dθ

= CC(d)2 ‖β‖L1

(1 + |w|2)r+1/2

(1 + 9|w|2
16 )r

∫ ∞
0

∫ π

0
e
− 1

8

(
(2|w| cos θ+|γ|2)

2
+|γ|2

)
sin θd|γ|dθ

≤ CC(d)2 ‖β‖L1

(1 + |w|2)r+1/2

(1 + 9|w|2
16 )r

∫ ∞
0

e−
|γ|2
8 d|γ|(2π)1/2|w|−1

= CC(d)2 ‖β‖L1

(1 + |w|2)r+1/2

|w|(1 + 9|w|2
16 )r

and for |w| ≥ 1 this is of the order of a constant, and so can be bounded indepen-

dently of w.

It is left to bound this for |w| < 1. In this case one replaces |w| by 1 and then

observes that the integral is independent of w and finite, and so the whole term is

independent of w, as required. �

Theorem 3.6 The operator K is linear, bounded and compact on L2, the latter

meaning that the image of any closed set is relatively compact.

Proof By Lemma 3.4 one has that the operator is bounded, and it is clearly linear.

Thus it is left to prove that it is compact.

We first claim that

‖(1− χR)K‖ ≤ (1 +R2)−1/4

‖K(1− χR)‖ ≤ (1 +R2)−1/4

where χR is the characteristic function of the set {w : |w| ≤ R}.
Then the fact that χRK is a Hilbert Schmidt operator, and so bounded and

compact (Lemma 8.20 and Theorem 8.83 in [RR04]), and this convergence gives the

fact that K is compact, since the set of compact operators is closed and linear in

B(L2) by Proposition 4.2 in [Con85].

We now prove the claim. We have that

‖(1− χr)K‖2 = sup
‖h‖L2=1

[∫
(1− χR)

[∫
k(w, η)h(η)

]2

dw

]
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≤ sup
‖h‖L2=1

[∫
(1− χR)

[∫
k(w, ξ)dξ

] [∫
k(w, η)h(η)2

]
dw

]
≤ sup
‖h‖L2=1

[∫
(1− χR)(1 + |w|2)−1/2

[∫
k(w, η)h(η)2

]
dw

]
≤ C(1 +R2)−1/2 sup

‖h‖L2=1

[∫ ∫
k(w, η)h2(η)dηdw

]
≤ C(1 +R2)−1/2 sup

‖h‖L2=1

[∫ ∫
k(w, η)dwh2(η)dη

]
≤ C(1 +R2)−1/2

where we first use Hölder’s inequality, then Lemma 3.5 and then finally Lemma 3.4.

Then for the other inequality one has

‖K(1− χR)‖2 = sup
‖h‖L2=1

∫
K ((1− χR)h) (w)dw

= sup
‖h‖L2=1

[∫ [∫
k(w, η)(1− χR(η))h(η)dη

]2

dw

]

≤ sup
‖h‖L2=1


∫ [∫

k(w, ξ)(1− χR(η))dξ

] [∫
k(w, η)h2(η)dη

]
︸ ︷︷ ︸

≤C‖h‖2
L2

dw


≤ C

∫ ∫
k(w, η)(1− χR(η))dηdw

≤ C
∫

(1 + |η|2)−1/2(1− χR(η))dη

≤ C(1 +R2)−1/2

�

It should be noted that all this analysis can be repeated for the operator LB,

although it is not performed here. We now discuss the spectrum of LB for dimension

d = 3.

Lemma 3.7 Suppose that the dimension d = 3. Then the spectrum of the operator

LB is discrete and can be described, for n, l = 0, 1, 2, . . . , by

λnl = 2πρ0m
−1

∫ π/2

0

[
Pl(sin θ) sin2n+l θ

[
β(θ) + β

(π
2
− θ
)]
− (δn0δl0 + 1)β(θ)

]
dθ

where Pl denotes the l-th Legendre polynomial.
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Furthermore the eigenfunctions are given by

gnlm =

[
2n!

Γ(n+ l + 3/2)

]1/2( ξ

2RT0

)l
L(l+1/2)
n

(
ξ2

2RT0

)
Y m
l (θ, φ)

where ξ, θ, φ are polar coordinates in velocity space, Γ denotes the gamma function,

L are the associated Laguerre polynomials and Y m
i are the spherical harmonics,

which can be found in [AS65]. Furthermore these satisfy the orthogonality condition

(2RT0)−3/2

∫
R3

gnlm(w)gn′l′m′(w)je−|w|
2/2RT0dw = δnn′δll′δmm′

Observe that for n = 0, l = 0, n = 1, l = 0 and n = 0, l = 1 we have that

λnl = 0 and furthermore the eigenfunctions are linear combinations of the collision

invariants.

3.2 Preliminary Functional Analysis

First, a few functional analytic tools are introduced which will be used to consider

the existence of a solution to the Boltzmann equation with the simplified time

dependence. They are introduced without motivation.

Lemma 3.8 [Con85, p35 Thm 2.19] Suppose that H is a Hilbert space and A is a

bounded linear operator H → H. Then

kerA = (Im(A?))⊥

where A? is the adjoint of A.

3.2.1 Fredholm operators

The following introduction, with proofs, to Fredholm operators can be found in

[Zei95, Ch 5]

Definition 3.9 A linear Fredholm operator T : X → Y for X,Y normed spaces,

is a bounded linear operator with

dim ker(T ) <∞ codimR(T ) <∞

The index of a linear Fredholm operator is

ind(T ) = dim ker(T )− codimR(T )

47



Theorem 3.10 (Riesz Schauder) Suppose that X,Y are Banach spaces. Fur-

thermore suppose that B : X → Y is a bounded linear and bijective operator and

that C : X → Y is a linear and compact operator. Then

B + C : X → Y

is a linear Fredholm operator of index zero.

The usefulness of the index being zero is given by the following theorem

Theorem 3.11 (Fredholm Alternative) Suppose that A : X → Y is a linear

Fredholm operator and that X,Y are normed linear spaces. Then

1. A is surjective if and only if indA = dim ker(A)

2. A is injective if and only if dim ker(A) = 0

3. A is bijective if and only if indA = dim ker(A) = 0

4. Suppose that X,Y are Banach spaces. Then

Au = b u ∈ X

is well posed if and only if indA = dim ker(A) = 0

3.2.2 Fréchet Derivatives and the Implicit Function Theorem

The theoretical part of this chapter is from [Zei95, Ch 4].

Definition 3.12 The Fréchet Derivative of a function f : X → Y at the point

u ∈ X is a linear operator Df(u) : X → Y such that

f(u+ v)− f(u) = (Df(u))(v) + o(‖v‖)

holds for all v in some open neighbourhood of v = 0 in X.

Note that all the usual things hold, for example the chain rule, sum rule and

product rule.

One can also define the partial Fréchet Derivative in the expected sense.

The partial derivative is denoted by Dvf . One defines a function g(v) := f(u, v)

and then Dvf(u, v)h = Dg(v)h and similarly for the other partial derivatives.
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Lemma 3.13 Suppose that f : U ⊂ X × Y → Z be given on U an open neighbour-

hood of (u0, v0), where the spaces X,Y, Z are Banach. If the derivative Df(u0, v0)

exists then the partial derivatives Duf(u0, v0) and Dvf(u0, v0) exist and

Df(u0, v0)(h, k) = Duf(u0, v0)h+Dvf(u0, v0)k ∀h ∈ X, k ∈ Y

Theorem 3.14 Suppose that X,Y, Z are Banach spaces, and let U ⊂ X × Y with

(u0, v0) ∈ U . Furthermore suppose that

F : U → Z

where F is a Cn map with F (u0, v0) = 0. Suppose that the operator

DvF (u0, v0) : Y → Z

is bijective. Then

1. There exist numbers r > 0 and ρ > 0 such that, for each given u ∈ B(u0, ρ) ⊂
X, the equation F (u, v) = 0 has a unique solution v ∈ Y with v ∈ B(v0, r).

Denote this v by v(u).

2. The function u 7→ v(u) is Cn on U . In particular

v′(u) = −DvF (u, v(u))−1DuF (u, v(u)) ∀u ∈ U

3.3 Applied Functional Analysis in the case of O.M.D.

We first prove a result about the linearised collision operator.

Lemma 3.15 The linearised collision operator L is a Fredholm operator from L2 →
L2, with ind(L) = 0.

Proof From the previous section, one can split L = K −K3I. By lemma 3.6 K

is a linear and compact operator, and K3I is a bounded linear operator, and so by

Theorem 3.10 one has that L is a Fredholm operator of index zero. �

3.3.1 Application to Simple Shearing

In order to use the linearised collision operator, one expands the function G about

the Maxwellian µ in the form G = µ(1 + h) for some h. Then one wishes to solve,
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using the simplification of notation that −C :=
(
T̃ (0) : Ã(t)

)
I + AB−1

t , since it

doesn’t depend on time, the equation

∇v · [(µ+ µh)(v)Cv] = Q[µ+ µh, µ+ µh](v)

which is equation (2.31), with the above substitution for G. Then this simplifies to

∇v · [µ(v)Cv] + h(v)∇v · [µ(v)Cv] + µ(v)∇v · [h(v)Cv] = µLB(h) + µΓB(µh, µh)

where ΓB is the corresponding non linear part to the linear LB.

Then the aim would be in some manner to solve this equation using the

Implicit Function Theorem. There is significant difficulty in this however. This in

part comes from the fact that a linearisation of this about A = 0, which is the value

where one knows the distribution to be Maxwellian (here h = 0), results in having

a Fréchet derivative of −LB, which is fine if one defines the map from L2 → L2.

However, this space is just too large, since one requires at least regularity of H1

to make any sense of the derivative of a function. Thus this discrepancy of spaces

creates problems, which cannot be resolved easily.

The method of characteristics has been attempted in [MJ] with limited suc-

cess. This is not repeated here.

Instead, we first analyse the equation

LB(h) = ∇v · [µ(v)Cv] =
1

(2π)d/2
(trC − Cv · v)e−|v|

2/2 (3.5)

to gauge whether there is any hope of solutions to the full equation, since if this

cannot be solved, there would be no chance to solve the whole equation.

In dimension d = 3, the operator LB has eigenfunctions given by, up to a

constant,

ξlL(l+1/2)
n (ξ2)Y m

l (θ, φ)

for l, n = 0, 1, . . . and −l ≤ m ≤ l, this coming from Lemma 3.7.

The eigenfunctions in the kernel are those for l, n = 0, n = 0, l = 1 and

n = 1, l = 0 and there are 5 of these, in d = 3. These are linear combinations of

the collision invariants. Thus if the right hand side of (3.5) has a part in the kernel,

since LB is a self adjoint operator one has no solutions. The following theorem

proves the lack of existence of a solution.

Theorem 3.16 Suppose that L is a linearised collision operator with collision kernel

S such that L is self adjoint on L2. Furthermore suppose that the collision invariants
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belong to the kernel of L.

Suppose that A ∈Md×d and B ∈Md×d with the same sign entries as A, and

such that B : A 6= 0. Define C = − (B : A) I −A
Then the equation

L(h) = (trC − Cv · v)µ

has no solution h ∈ L2.

Proof Since L is self adjoint on L2, one can write L2 = ker(L) ⊕ Im(L). Thus if

(trC−Cv · v)µ has a part in ker(L) then it is not in the image of L and so there are

no solutions. Observe that the constant function and |v|2 are both in the kernel.

First assuming that C has the same term on the diagonal, one can write

Cv · v = α|v|2 +
∑d

i,j=1i 6=j Cijvivj . Then one can see that

trC − Cv · v = αd− α|v|2 −
d∑

i,j=1i 6=j
cijvivj

and so since the first two are in the kernel, this itself must have a component in the

kernel. Then since trC − α|v|2 is in the kernel, we take

∫
Rd

(trC − Cv · v)(trC − α|v|2)µ(v)dv = −
∫
Rd

(αd− α|v|2)

 d∑
i,j=1
i 6=j

Cijvivj

µ(v)dv

+
1
√

2π
d

∫
Rd

(αd− α|v|2)2e−|v|
2/2dv

=
1
√

2π
d

∫
Rd

(αd− α|v|2)2e−|v|
2/2dv

6= 0

where we have used that
∫
Rd vivj |v|

2e−|v|
2/2dv = 0 =

∫
Rd vivje

−|v|2/2dv for any i 6= j,

and using the fact that we are integrating a positive function, the last term must

be non zero.

The above can also be repeated if C has terms with the same sign, but not

necessarily constant, on all the diagonal terms, since choosing the coefficient of |v|2

to have that same sign is enough to give a non zero integral.

Due to the special form of C, one can never have diagonal terms that are exact

opposite values of each other and so one can never have cancellations in different

directions to give a value of zero. Thus, over all such cases of C, one can choose

an element of the kernel such that the function (trC − Cv · v)e−|v|
2/2 has non zero
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projection onto the space spanned by that element, and so it always has a part in

the kernel.

Thus there is a part of this function in the kernel, for any choice of C as

specified, and so by Lemma 3.8 the function always has a part outside of the range

of the operator L, and so the equation has no solution. �

An alternative and shorter way to prove the non-existence of solutions to

this problem is to first choose a basis for the system such that the matrix B = I.

Then C has the form where it is a constant on the diagonal, with some off diagonal

terms. Thus the first consideration in the above proof is enough to say there are no

solutions.

Thus, since this simple equation fails to have a solution, we question whether

the full equation

∇v · [µ(v)Cv] + h(v)∇v · [µ(v)Cv] + µ(v)∇v · [h(v)Cv] = µLB(h) + µΓB(µh, µh)

can have a solution or not. Considerations are made using the order of each term,

in terms of the asymptotics with C → 0. If h is a solution, then the order of h

must be h = o(1). This is due to the fact that as C → 0, the solution µ+ µh must

converge to the Maxwellian µ, as one knows that this is the only solution in this

case. This though results in the fact that as C → 0, one also has that h→ 0, and so

this order of h is the minimum one to ensure this. It must decay just a little more

than a bounded function.

Then one has the following orders for the other terms

∇v · [µ(v)Cv] ∼ O(C)

h(v)∇v · [µ(v)Cv] ∼ o(C)

µ(v)∇v · [h(v)Cv] ∼ o(C)

µLB(h) ∼ o(1)

µΓB(µh, µh) ∼ O(h2)

which can be seen immediately, since all terms, except ΓB, are linear in C and h.

The non linear ΓB is at least quadratic in h.

Since we are analysing the case where C → 0, the dominant order on both

sides of the equation is the slowest one. The slowest on the left hand side is O(C)

and so the order on the right hand side must match this for solutions to exist. There

are two possible ways for these orders to be equal.

The first is that LB(h) ∼ O(C) at which point the linear collision operator
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is the dominant term on the right hand side. However, if this is the case, then the

dominating equation is

LB(h) = ∇v · [µ(v)Cv]

and as we have shown above, there are no solutions to this equation in L2.

The other case is that the non linear term is of order O(C), at which point

h ∼
√
C. While one cannot directly show that there are no solutions in this case,

this case is unlikely to be true. The analysis required to prove a solution existed

here would also be considerably difficult. One does not expect this scaling due to

the following. The linearisation taken was one about the Maxwellian µ, in such a

way that the dominant term is the linear one, especially for small h. The linear

term can be bounded by the norm of h, and the non-linear one by the norm of h

squared. As such, when h → 0 one would have the square of the norm converging

to zero much faster than the norm itself, and so the non-linear term would not be

the dominant term. We thus must discount this case from possibility.

We are thus lead to conclude that the expectation is for there not to be a

solution to this equation.

We now give a suggestion as to the reason why such a scaling does not work

in this case.

The scaling

ξ(t)G(η(t)w)

works well in the case of uniform dilation because it assumes that energy is dissipated

uniformly in every direction, since the scaling is the same for every velocity direction.

As should be expected, this is the case for uniform dilation, hence the ease in finding

a solution of this form.

However, in the case of shearing, one has a specific direction in which the

velocity increases, and thus one has a specific direction in velocity space over which

the contribution to the energy moves in. This is far from dissipation uniformly in

every direction, and so a scaling where one assumes such a fact wouldn’t be expected

to work.

The scaling used conserves mass, since it is of the form

g(t, w) =
1

εd
G
(w
ε

)
but for the energy one has

E =

∫
w2ε−dG(w/ε)dw = ε2

∫
w2gdw
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and so in dilation, where the energy scales of the form of the velocity squared, this

renormalising to the factor of ε2 is suitable.

However, in shearing, this relation does not work, since the energy scales of

the form of the velocity, since only one direction contributes heavily. Thus this form

of scaling does not result in energy being conserved, and hence the lack of solutions

for the case of shearing.
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Chapter 4

Concluding Remarks

Firstly, general equations and their properties have been shown for a forced gas of

atoms on the torus, and this has been linked to a periodically distributed gas in Rd.
The simplest rescaling of velocity space has been considered to account for

the lack of conservation of energy in the models, to derive an equation for the motion.

Under these simplifications, it has been shown that a Maxwellian is the

stationary solution for the case of dilation. In the case of shearing, it has been

justified that solutions of this particular form will be unlikely to be found.

Since in the case of shearing the energy is transported along a particular

direction in velocity space, anisotropic scalings should be considered. It is thus

future work to consider anisotropic scalings to try to prove the existence of solutions.
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