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THE EFFECT OF CRYSTAL SYMMETRIES ON THE LOCALITY
OF SCREW DISLOCATION CORES\ast 

JULIAN BRAUN\dagger , MACIEJ BUZE\dagger , AND CHRISTOPH ORTNER\dagger 

Abstract. In linearized continuum elasticity, the elastic strain due to a straight dislocation
line decays as O(r - 1), where r denotes the distance to the defect core. It is shown in [V. Ehrlacher,
C. Ortner, and A. V. Shapeev, Arch. Ration. Mech. Anal., 222 (2016), pp. 1217--1268] that the core
correction due to nonlinear and discrete (atomistic) effects decays like O(r - 2). In the present work,
we focus on screw dislocations under pure antiplane shear kinematics. In this setting we demonstrate
that an improved decay O(r - p), p > 2, of the core correction is obtained when crystalline symmetries
are fully exploited and possibly a simple and explicit correction of the continuum far-field prediction
is made. This result is interesting in its own right as it demonstrates that, in some cases, continuum
elasticity gives a much better prediction of the elastic field surrounding a dislocation than expected
and moreover has practical implications for atomistic simulation of dislocations cores, which we
discuss as well.
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1. Introduction. Crystalline solids consist of regions of periodic atom arrange-
ments, which are broken by various types of defects. Crystalline defects can be sepa-
rated into an elastic far-field which can normally be described by continuum linearized
elasticity (CLE) and a defect core which is inherently atomistic and determines, for
example, mobility, formation energy (and hence concentration), and so forth.

To make this idea concrete, let \Lambda \subset \BbbR d be a crystalline lattice reference configura-
tion and let u : \Lambda \rightarrow \BbbR d be an equilibrium displacement field under some interaction
law (see section 2.1). The point of view advanced in [8] is to decompose u = uff+ucore
where uff is a far-field predictor solving a CLE equation enforcing the presence of the
defect of interest and ucore is a core corrector. For example, it is shown in [8] that
for dislocations | Duff(x)| \sim | x|  - 1 while | Ducore(x)| \lesssim | x|  - 2 log | x| where D denotes a
discrete gradient operator. The fast decay of the corrector ucore encodes the ``locality""
of the defect core (relative to the far-field).

The present work is the first in a series that introduces and developes techniques
to substantially improve on the CLE far-field description. The overarching goal is
to derive ``higher-order"" models for the far-field predictor uff , which yield the same
asymptotic behavior as the CLE predictor (i.e., the same far-field boundary condition)
but a more localized corrector. For example, in the case of a dislocation we seek uff
such that u = uff + ucore with | Ducore(x)| \lesssim | x|  - p and p > 2. Constructions of this
kind have a multitude of applications. They are interesting in their own right in
that they give improved estimates on the region of validity of continuum mechanics.
They may also be employed to more effectively construct models for multiple defects
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along the lines of [12]. A key motivation for us is that they yield a new class of
boundary conditions for atomistic simulations that capture the far-field behavior more
accurately; this gives rise to improved algorithms for atomistic simulation defects (see
section 3 for more detail).

In the present work, to demonstrate the potential of our approach and outline
some of the key ideas required to carry out this program, we focus on screw disloca-
tions under antiplane shear kinematics, in the cubic, hexagonal, and body-centered-
cubic (BCC) lattices. The scalar setting, and the ability to exploit specific lattice
symmetries, simplifies several constructions and proofs.

In forthcoming papers, in particular [2], we will discuss generalizations to vectorial
deformations of general straight dislocations without any symmetry assumptions on
the host crystal. In particular the absence of the symmetries we employ in the present
work introduces a nontrival coupling between the core and the far-field predictor. The
general idea that persists is that there is a development u = u0+u1+ \cdot \cdot \cdot +un+urem of
the solution, where the terms u0, u1, . . . , un are given by simpler theories (e.g., linear
PDEs) and the remainder urem has a higher decay rate.

Aside from providing a simplified introduction to [2], the present work contains
results that are interesting in their own right due to the fact that antiplane models
of screw dislocations are particular popular in the mathematical analysis literature
[1, 10, 12, 18] as a model problem for the more complex edge, mixed, and curved
dislocations. Of particular note about our results here are as follows:

(1) Rotational and antiplane reflection symmetries for both the model and the
equilibrium u yield surprisingly high decay of the core corrector to the CLE predictor;
see Theorem 2.5. This was numerically observed but unexplained in [12]. The key
observation to obtain this result is that the CLE predictor satisfies additional PDEs,
in particular the minimal surface equation, which naturally occurs in higher-order
expansions of the atomistic forces.

(2) In a BCC crystal, due to the lack of antiplane reflection symmetry, a nonlin-
ear correction to the far-field predictor is required to improve the decay of the core
corrector. One then expects that the dominant error contribution is the Cauchy--Born
antidiscretization error. The results of [3, 6, 16] suggest that the resultant corrector
should decay as O(| x|  - 3); however, exploiting crystal symmetries reveals that the
Cauchy--Born error is of higher order than expected and one even obtains a corrector
decay of O(| x|  - 4).

In both (1) and (2), due to the high degree of nonconvexity in the potential
energy landscape, the required symmetry on the solution u must be an assumption
but cannot in general be proven. However, at least for potential energy minimizers it
is entirely natural as we argue in Remark 2.4.

Finally, we remark that our analysis is carried out for short-ranged interatomic
many-body potentials; however, the resulting algorithms are applicable to electronic
structure models rendering them an efficient and attractive alternative to complex
and computationally expensive multiscale schemes, e.g., of atomistic/continuum or
QM/MM type; see [5, 15] and references therein.

Outline. In section 2 we describe in detail our models and we assumptions, and
we state our main results. Here, section 2.2 is dedicated to the cubic and hexag-
onal lattice, while section 2.3 discusses the BCC lattice. In section 3 we present
the resulting new numerical scheme including a convergence analysis. Our conclu-
sions can be found in section 4. Finally section 5 contains the proofs of the main
results.
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2. Main results.

2.1. Atomistic model for a screw dislocation. The atomistic reference con-
figuration for a straight screw dislocation is given by a two-dimensional Bravais lattice
\Lambda = A\Lambda \BbbZ 2, A\Lambda \in \BbbR 2\times 2 with det(A\Lambda ) \not = 0. In the present work we will only consider
the triangular lattice and the square lattice, respectively given by

A\Lambda = Atri :=

\biggl( 
1 1

2

0
\surd 
3
2

\biggr) 
, A\Lambda = Aquad :=

\biggl( 
1 0
0 1

\biggr) 
.

The two-dimensional lattice \Lambda should be thought of as the projection of a three-
dimensional lattice: in case of an infinite straight dislocation in a three-dimensional
lattice, the displacements do not depend on the dislocation line direction. Therefore,
it suffices to consider the projected two-dimensional lattice.

Our atomistic model, which we specify momentarily, allows for general finite range
interactions. All lattice directions included in the interaction range are encoded in
a finite neighborhood set \scrR \subset \Lambda \setminus \{ 0\} , which is fixed throughout. We always assume
span\BbbZ \scrR = \Lambda and will specify further symmetry assumptions later on.

We consider an antiplane displacement field u : \Lambda \rightarrow \BbbR and define D\rho u(x) :=
u(x+ \rho ) - u(x), Du(x) := (D\rho u(x))\rho \in \scrR , as well as the discrete divergence operator,

Div g(x) :=  - 
\sum 
\rho \in \scrR 

g\rho (x - \rho ) - g\rho (x) for any g : \Lambda \rightarrow \BbbR \scrR .

In contrast to that we will always write \nabla and div if we talk about the standard
(continuum) gradient and divergence of differentiable maps.

A suitable function space for (relative) displacements is

\.\scrH 1 := \{ u : \Lambda \rightarrow \BbbR | Du \in \ell 2(\Lambda )\} /\BbbR 

with norm

\| u\| \.\scrH 1 :=
\Bigl( \sum 

x\in \Lambda 

\bigm| \bigm| Du(x)\bigm| \bigm| 2\Bigr) 1/2.
While we have factored out constants to make this a Banach space, we will often use
the displacement u and its equivalence class [u] interchangeably when there is no risk
of confusion.

For analytical purposes, we will also consider the space of compactly supported
displacements

\scrH c := \{ u : \Lambda \rightarrow \BbbR | spt(u) is bounded\} .
Displacement fields containing dislocations do not belong to \.\scrH 1 and the energy,

naively written as a sum of local contributions, will be infinite. Following [8, 12] we
therefore consider energy differences

\scrE (u) =
\sum 
x\in \Lambda 

\Bigl( 
V (D\^u(x) +Du(x)) - V (D\^u(x))

\Bigr) 
,(1)

where \^u is a chosen far-field predictor that encodes the far-field boundary condition,
while u \in \.\scrH 1 is a core corrector to the given predictor so that \^u+ u gives the overall
displacement. We will minimize \scrE (u) to equilibrate the defective crystal, but this
requires some preparation first.

We assume throughout that V \in C6(\BbbR \scrR ,\BbbR ) is a many-body potential encoding
the local interactions. Examples of typical site potentials V include Lennard-Jones
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type pair potentials (with cut-off) and EAM potentials; see also sections 2.3 and
3. With significant additional effort it would be possible to include simple quantum
chemistry models (e.g., tight binding) within the framework [4]. As discussed in detail
in [4] this leads to a model as discribed above with potentials V that have infinite
range and strong decay estimates. To keep the presentation and calculations as simple
as possible and focus on the topic of symmetry we will not pursue this in the current
work.

As \Lambda is either the square or the triangular lattice, which are both invariant under
certain symmetries, one is tempted to directly translate these symmetries to \scrR and V .
However, as mentioned above, \Lambda should be seen as a projection of a three-dimensional
lattice. Such a projection can add symmetries for the lattice that are not reflected
in the interaction, since they are not symmetries of the underlying three-dimensional
model. We will discuss such a case in detail in section 2.3.

Because of this, we will only make the following reduced symmetry assumptions
on \scrR and V throughout. Let Q\Lambda be the rotation by \pi /2 if \Lambda = \BbbZ 2 and the rotation
by 2\pi /3 if \Lambda = Atri\BbbZ 2. Then we assume that

Q\Lambda \scrR = \scrR and V (A) = V ((AQ\Lambda \rho )\rho \in \scrR ) \forall A \in \BbbR \scrR .(2)

Since we only consider a plane orthogonal to the direction of the dislocation line,
it is natural that the energy does not change if the displacement shifts an atom to
its equivalent position in the plane above or below. Indeed we assume that there is a
minimal periodicity p > 0 such that

V (A) = V (A+ p(\delta \rho \sigma )\sigma \in \scrR ) \forall A \in \BbbR \scrR , \rho \in \scrR ,

where \delta is the Kronecker delta. The Burgers vector of a screw dislocation is then
either b = p or b =  - p.

A key conceptual assumption that we require throughout this work is lattice
stability (or phonon stability): there exists c0 > 0 such that

\langle Hu, u\rangle \geq c0\| u\| 2\.\scrH 1 \forall u \in \.\scrH 1,(3)

where H denotes the Hessian of the potential energy evaluated at the homogeneous
lattice (note that this is different from \delta 2\scrE (0)),

\langle Hu, v\rangle =
\sum 
x\in \Lambda 

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma D\rho u(x)D\sigma v(x) for u, v \in \.\scrH 1.

The choice of the predictor \^u in (1) for a specific problem is part of the modeling
since it determines the far-field behavior, e.g., it could encode an applied strain.
Intuitively one can obtain a suitable \^u by solving a ``simpler"" model such as CLE,
which one expects to be approximately valid in the far-field; see [8] for a formalization
of this procedure.

Assume, for the time being, that \^u : \BbbR 2 \rightarrow \BbbR is smooth away from a defect core
\^x \in \BbbR 2 \setminus \Lambda . Then, by employing Taylor expansions of both \^u and of V , we can
approximate the atomistic force,

\partial \scrE 
\partial u(x)

\bigm| \bigm| \bigm| 
u=0

=
\Bigl( 
 - Div\nabla V (D\^u)

\Bigr) 
(x)

=  - cdiv\nabla W (\nabla \^u) +O(\nabla 4\^u(x)) + h.o.t.s(4)

=  - cdiv(\nabla 2W (0)[\nabla \^u]) +O(\nabla 4\^u) +O(\nabla 2\^u\nabla \^u) + h.o.t.s,
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where c = detA\Lambda and W : \BbbR 2 \rightarrow \BbbR is the Cauchy--Born energy per unit undeformed
volume, defined by

W (F ) :=
1

detA\Lambda 
V (F \cdot \scrR ),(5)

with the notation (F \cdot \scrR )\rho = F \cdot \rho . Moreover, O(\nabla 4\^u) represents the antidiscretization
error (note that the continuum model is now the approximation), O(\nabla 2\^u\nabla \^u) denotes
the linearization error, and ``h.o.t.s"" denotes additional terms that will be negligible
in comparison.

It is therefore natural to solve a CLE model to obtain a far-field predictor for the
atomistic defect equilibration problem for an antiplane screw dislocation. Let \^x \in \BbbR 2

denote the dislocation core; then we define the branch cut (slip plane)

\Gamma :=
\bigl\{ 
(x1, \^x2) \in \BbbR 2 | x1 \geq \^x1

\bigr\} 
and solve (we will see in Corollary 5.4 that under our general assumptions on \scrR and
V we have \nabla 2W (0) \propto Id)

 - \Delta \^u = 0 in \BbbR 2 \setminus \Gamma ,(6a)

\^u(x+) - \^u(x - ) =  - b on \Gamma \setminus \^x,(6b)

\partial x2
\^u(x+) - \partial x2

\^u(x - ) = 0 on \Gamma \setminus \^x.(6c)

The system (6a)--(6c) has the well-known solution (cf. [9])

\^u(x) =
b

2\pi 
arg(x - \^x),(7)

where we identify \BbbR 2 \sim = \BbbC and use \Gamma  - \^x as the branch cut for arg. Note for later use
that \nabla \^u \in C\infty (\BbbR 2\setminus \{ 0\} ) and | \nabla j \^u| \lesssim | x|  - j for all j \geq 0 and x \not = 0.

As we want to study the effects of symmetry, we will assume throughout that the
dislocation core \^x is, respectively, at the center of a triangle or square.

Having specified the far-field predictor we can now recall properties of the resulting
variational problem.

Proposition 2.1. Let \^u be given by (7); then \scrE defined by (1) on \scrH c has a unique
continuous extension \scrE : \.\scrH 1 \rightarrow \BbbR . Furthermore, \scrE \in C6( \.\scrH 1).

Proof. This is proven in [8, Lemma 3 and Remark 6].

Having established that \scrE is well-defined, it is now meaningful to discuss the
equilibration problem, either energy minimizers

\=u \in argmin
\.\scrH 1

\scrE (8)

or, more generally, critical points

\delta \scrE (\=u) = 0.

Critical points of the energy satisfy the following regularity and decay estimate.

Theorem 2.2. If [\=u] \in \.\scrH 1 is a critical point of \scrE , then there exists \=u\infty \in \BbbR such
that

| Dj(\=u(x) - \=u\infty )| \lesssim | x|  - j - 1 log| x| 
for all | x| large enough and 0 \leq j \leq 4.

Proof. This result is proven in [8, Theorem 5 and Remark 9].
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2.2. Antiplane screw dislocations with mirror symmetry. The corrector
decay rates in [8] are in general sharp (up to constants and log-factors); however
the case of antiplane screw dislocations appears to be an exception. In [12] it is seen
numerically for a triangular lattice that if the core is placed at the center of a triangle,
one approximately has | Du(x)| \sim | x|  - 4 instead of the expected rate | x|  - 2 log| x| . In
the present section we relate this observation to several symmetry properties of the
triangular lattice. We also discuss the square lattice case which shows a different
behavior to emphasize the importance of the triangular lattice.

These two-dimensional models represent a screw dislocation in a cubic or hexag-
onal three-dimensional lattice only allowing for antiplane displacements. In section
2.3, we will additionally consider a BCC lattice and show how to derive these two-
dimensional systems from the underlying three-dimensional model.

We recall that \Lambda is either the square or the triangular lattice, which are both
invariant under certain rotational symmetries. Crucially, we consider rotations about
the dislocation core (not about a lattice site), which are described by the operators

L\Lambda x := Q\Lambda (x - \^x) + \^x,

where Q\Lambda denotes a rotation through \pi /2 if \Lambda = \BbbZ 2 and a rotation through 2\pi /3
if \Lambda = Atri\BbbZ 2. Since we assumed that \^x lies, respectively, at a center of triangle or
square this implies L\Lambda \Lambda = \Lambda .

In the present section we additionally assume mirror symmetry with respect to the
plane orthogonal to the dislocation line, which is encoded in the site energy through
the assumption

V (A) = V ( - A) \forall A \in \BbbR \scrR .(9)

The mirror symmetry (9) is already implicit in our general assumptions for the
square lattice (as it can be decomposed into a point reflection and an in-plane rotation
by \pi ). But it is an additional assumption for the triangular lattice. Here, it is
equivalent to strengthen the rotational symmetry to rotations by \pi /3 instead of just
2\pi /3.

Since A represents an antiplane displacement gradient Du, the map A \mapsto \rightarrow  - A
does not represent a change in frame as it would in a full three-dimensional setting.
In particular the derivation of V for the BCC case in section 2.3 shows that (9) is a
nontrivial restriction on V .

Indeed, if one derives V from an underlying three-dimensional site potential (see
section 2.3 for such a derivation in the case of a BCC lattice), then (9) means pre-
cisely that the three-dimensional lattice is mirror symmetric with respect to the plane
orthogonal to the dislocation line. This is quite restrictive and effectively true only
if the underlying three-dimensional lattice is given as \Lambda \prime = \Lambda \times \BbbZ \subset \BbbR 3 which is a
hexagonal or a cubic lattice for \Lambda = Atri\BbbZ 2 or \Lambda = \BbbZ 2, respectively.

In the next section, section 2.3, we will then consider a situation where (9) fails,
by discussing a 111 screw dislocation in a BCC lattice.

Recall from (7) that the far-field predictor is given by \^u(x) = b
2\pi arg(x - \^x). Since

we now assume that \^x is at the center of a square or triangle, \^u satisfies

\^u(L\Lambda x) =

\Biggl\{ 
\^u(x) + b

3 (mod b), triangular lattice,

\^u(x) + b
4 (mod b), square lattice.

(10)

Motivated by this observation, we specify an analogous symmetry assumption on
a general displacement.
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Definition 2.3 (inheritance of symmetries). We say that a displacement u in-
herits the rotational symmetry of \^u if

u(L\Lambda x) = u(x) \forall x \in \Lambda .(11)

Remark 2.4. Inheritance of rotational (or other) symmetries would typically fol-
low from the corresponding symmetries of \^u,\Lambda , V and uniqueness of an energy min-
imizer (up to a global translation and lattice slips). However, due to the severe
nonconvexity of the energy landscape uniqueness cannot be expected in general. As
an example, note that the line reflection symmetry in the BCC case, discussed in
section 2.3, is not necessarily inherited as shown in [19].

We can now state the main results of this section. It is particularly noteworthy
that they depend on the lattice under consideration. On a square lattice the symmetry
gives only one additional order of decay compared to the decay rates in [8], while on a
triangular lattice we do indeed show that there are two additional orders of decay as
observed numerically in [12, Remark 3.7]. While the lattice symmetries in both cases
lead to isotropic linear elasticity as a first approximation, we will show that higher-
order terms show anisotropies depending on the underlying lattice (see Lemma 5.2),
which in turn lead to the different decay rates here. We will confirm this discrepancy
in numerical tests in section 3.

Theorem 2.5 (decay with mirror symmetry). Let \Lambda \in \{ \BbbZ 2, Atri\BbbZ 2\} and suppose
\Lambda , \^x,\scrR , V satisfy all the assumptions from section 2.1. Furthermore, assume V satis-
fies the mirror symmetry (9). If \=u is a critical point of \scrE which inherits the rotational
symmetry of \^u, then we have for j = 1, 2 and all | x| large enough

| Dj \=u(x)| \lesssim | x|  - 2 - j log| x| ,(12)

if \Lambda = \BbbZ 2, and

| Dj \=u(x)| \lesssim | x|  - 3 - j(13)

for the triangular lattice \Lambda = Atri\BbbZ 2.

Remark 2.6. The result is also expected to hold for j \geq 3 and j = 0 (up to
subtracting a constant) following ideas in [8]. As we want to focus on other aspects
and do not want to overburden the proof, this is omitted here.

Remark 2.7. In the case of a triangular lattice the existence of a critical point u
has been proven in [12] under restrictions on V . Under further restrictions it is even
known to be a stable global minimizer. However, it is unclear whether the minimizer
is unique or inherits the symmetry. In section 3.2, we will give numerical evidence for
the decay rates in (12) and (13), thus supporting the conjecture that there are energy
minimizers inheriting the symmetry in these specific models.

Remark 2.8. We also want to emphasize that the distinction between the hexag-
onal and BCC lattices, that is, the loss of mirror symmetry in the BCC lattice, was
missed in [12]. Therefore, the results of [12] do not apply to the BCC case without
further work.

Idea of the proof of Theorem 2.5. The full proof can be found in section 5; here
we give only a brief idea of the strategy.

Far from the defect core the equilibrium configuration is close to a homogeneous
lattice, hence, the linearized problem becomes a good approximation. Therefore, a
natural quantity to consider is the linear residual
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fu =  - Div(\nabla 2V (0)[Du]).(14)

On the one hand, one can recover \=u as a lattice convolution \=u = G \ast \Lambda f\=u where G is
the fundamental solution, or Green's function, of the linear atomistic equations. On
the other hand, the decay of f\=u can be estimated by Taylor expansion with the help of
the nonlinear atomistic equations for \^u+ \=u and the continuum linear system for \^u. In
this expansion, \nabla 3V (0) = 0 vanishes due to antiplane symmetry, while the rotational
symmetry leads to simple generic forms of higher-order terms.

But even if f\=u decays rapidly, this does not automatically translate to decay for
\=u = G \ast f\=u. Even if f\=u has compact support \=u typically only inherits the decay of G.
However, we show that, due to rotational symmetry, the first moment of f\=u vanishes,
while the second has a very special form. Improved estimates for the decay of f\=u
together with vanishing moments then lead to an improved rate of decay of \=u.

The difference between the triangular lattice and the quadratic lattice lies in the
form of the higher-order terms in the expansion of f\=u. The terms in question are
given by the atomistic-continuum error of the linear equation and by the nonlinearity
\nabla 4V (0). For the triangular lattice one finds the leading-order expression c1\Delta 

2\^u for the
linear and c2(g(x)\Delta \^u+H(\^u)) for the nonlinear part, where only the constants c1, c2
depend on the potentials. Here H is the mean curvature of the graph (x1, x2, \^u(x))

T .
And the mean curvature vanishes as the graph is a helicoid, a minimal surface. Since
\Delta 2\^u = 0, \Delta \^u = 0, and H(\^u) = 0 all the leading-order terms vanish. On the other
hand, for the quadratic lattice, these terms are nontrivial and do not cancel.

2.3. Antiplane screw dislocation in BCC. We turn toward the physically
more important setting of a straight screw dislocation along the 111 direction in a
BCC crystal. The three-dimensional BCC lattice can be defined by \Lambda \prime \prime = \BbbZ 3 + \{ 0, p\} ,
with shift p = 1

2 (1, 1, 1)
T . A screw dislocation along the 111 direction is obtained by

taking both dislocation line and Burgers vector parallel to the vector (1, 1, 1)T . If we
rotate \Lambda \prime \prime by

Q =
1\surd 
6

\left(   - 1  - 1 2\surd 
3  - 

\surd 
3 0\surd 

2
\surd 
2

\surd 
2

\right)  
and then rescale the lattice by

\sqrt{} 
3/2, we obtain the three-dimensional Bravais lattice

\Lambda \prime =
\sqrt{} 
3/2Q\Lambda \prime \prime =

\left(   1 1
2 0

0
\surd 
3
2 0

1
2
\surd 
2

 - 1
2
\surd 
2

3
2
\surd 
2

\right)   \BbbZ 3.

The 111 direction becomes the e3 direction under this transformation, which is con-
venient for the subsequent discussion.

Since p = 3
2
\surd 
2
, the Burgers vector is now given by b = \pm 3

2
\surd 
2
(corresponding to

the actual Burgers vector in three dimensions being (0, 0, b)T ). We project the BCC
lattice \Lambda \prime along the dislocation direction e3 to obtain the triangular lattice

\Lambda =
\bigl\{ 
(x1, x2)

T
\bigm| \bigm| x \in \Lambda \prime \bigr\} = Atri\BbbZ 2.

Note though that these projections correspond to different ``heights,"" i.e., different
z-coordinates in \Lambda \prime . Indeed, it is helpful to split \Lambda into the three lattices, \Lambda =
\Lambda 1 \cup \Lambda 2 \cup \Lambda 3, where

\Lambda i = vi +

\biggl( 3
2

3
2\surd 

3
2  - 

\surd 
3
2

\biggr) 
\BbbZ 2,
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with v1 = 0, v2 = e1, v3 = ( 12 ,
\surd 
3
2 )T . In this notation, one can recover the three-

dimensional lattice as

\Lambda \prime =
\bigcup 
i

\Bigl( 
\Lambda i \times 

\Bigl\{ \Bigl( 
k +

i

3

\Bigr) 3

2
\surd 
2
: k \in \BbbZ 

\Bigr\} \Bigr) 
,

compare Figure 1.

Fig. 1. Consider the middle green atom in the BCC unit cube (left picture). After projecting
along the 111 direction (the green diagonal), the three green atoms are represented as one, which
has six other-colored atoms in the unit cube as its nearest-neighbors (middle picture). The different
heights of atomic planes associated with each color are best seen by projecting the same lattice along
the 112 direction (right picture).

Next, we formally derive an antiplane interatomic potential as a projection from a
three-dimensional model. The derivation is only formal as many of the sums appearing
are infinite if summed over the entire lattice. Indeed, for a deformation y consider
formally

\scrE 3d(y) =
\sum 
x\in \Lambda \prime 

V \prime (D\prime y(x)),

where D\prime y(x) = (D\rho y(x))\rho \in \Lambda \prime and V \prime : \BbbR 3\times \Lambda \prime \rightarrow \BbbR . Note that, to achieve the pe-
riodicity of V (slip invariance) V \prime must depend on the entire crystal. However, it
is convenient to assume that it has a finite cut-off d > 0 such that V \prime (A) = V \prime (B)
whenever A,B satisfy A\rho = B\rho for all \rho with | A\rho | < d or | B\rho | < d.

In contrast to \scrE , \scrE 3d acts on deformations instead of displacements. To derive an
energy on antiplane displacements, we consider deformations of the form

yu : \Lambda \prime \rightarrow \BbbR 3, yu(x) :=
\bigl( 
x1, x2, x3 + u(x1, x2)

\bigr) T
for antiplane displacements u : \Lambda \rightarrow \BbbR . As differences of yu do not depend on x3, the
same is true for the local energy contributions. Therefore, we can formally renormalize
the (possibly infinite) energy to

\scrE 3d
norm(u) =

\sum 
x\in \Lambda \prime \cap (\BbbR 2\times [0,p))

V \prime (D\prime yu(x)),

the energy per periodic layer of thickness p. Since | D\rho y
u(x)| \geq | (\rho 1, \rho 2)| , the local

energy at any x can only depend on the projected directions \scrR := \Lambda \cap Bd(0)\setminus \{ 0\} . We
can therefore define

V (Du(x1, x2)) := V \prime (D\prime yu(x)),

for x \in \Lambda \prime , to obtain \scrE (u) = \scrE 3d
norm(y

u).
Of course we assume that V \prime is frame-indifferent, V \prime (QA) = V \prime (A) for all A

and Q \in O(3). Furthermore, we assume that V \prime is invariant under relabeling of
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atoms (permutation invariance). In particular, this means that V \prime is compatible with
the lattice symmetries of \Lambda \prime : V \prime (A) = V \prime ((A - \rho )\rho \in \Lambda \prime ) and V \prime (A) = V \prime ((AQ\prime \rho )\rho \in \Lambda \prime ),
where Q\prime is the rotation through 2\pi /3 with axis e3. \Lambda \prime is also invariant under line

reflection symmetry with respect to the line spanned by a\prime = (
\surd 
3
2 ,

1
2 , 0)

T . Denoting
the reflection map by S\prime we thus have V \prime (A) = V \prime ((AS\prime \rho )\rho \in \Lambda \prime ).

We can now translate these properties to symmetries of V . Clearly, \scrR =  - \scrR and
Q\Lambda \scrR = \scrR . The symmetry properties of V \prime directly imply V (A) = V ((AQ\Lambda \rho )\rho \in \scrR )
and V (A) = V (( - A - \rho )\rho \in \scrR ) for all A \in \BbbR \scrR . The slip invariance V (A) = V (A +
p(\delta \rho \sigma )\sigma \in \scrR ) also follows from permutation invariance of V \prime . We have thus obtained
all the general assumptions that we imposed on V in section 2.1.

Additionally, we will exploit the line reflection symmetry. Let a = (
\surd 
3
2 ,

1
2 )

T . A
reflection at the line spanned by a in \BbbR 2 is given by

S = a\otimes a - a\bot \otimes a\bot =

\Biggl( 
1
2

\surd 
3
2\surd 

3
2  - 1

2

\Biggr) 
.

Due to the line reflection symmetry described by S\prime as well as frame-indifference with
Q = S\prime , we deduce

S\scrR = \scrR and V (A) = V (( - AS\rho )\rho \in \scrR ) .(15)

We emphasize that \Lambda \prime is not invariant under a rotation by only \pi /3 around the
axis e3. This is easily seen, as this rotation maps \Lambda 2 to \Lambda 3 and vice versa. Equivalently,
it is not invariant under the mirror symmetry x \mapsto \rightarrow (x1, x2, - x3)T expressed by (9).
Therefore, the more specific results from the previous section, section 2.2, do not
apply.

While in the setting of section 2.2 screw dislocations with Burgers vector b = p
and b =  - p are equivalent, the loss of mirror symmetry in the BCC crystal also creates
two distinctively different screw dislocations, the so-called easy and hard cores. In
particular, they have a different core structure; see, e.g., [13].

The improved decay rates we obtained in section 2.2 no longer hold up either.
Indeed, one can see in numerical calculations (see section 3) that the | x|  - 2 bound on
the decay of the strains is sharp (up to logarithmic terms and constants).

Our aim now, as announced in the introduction, is to develop a new far-field
predictor so that the corresponding corrector recovers the higher | x|  - 4 accuracy of
the more symmetric case. A natural first idea is to replace CLE with the Cauchy--
Born nonlinear elasticity equation; however, these are not easy to solve analytically.
Instead, we expand the solution u = \^u+u1+u2+. . . hoping for\nabla ju2 \ll \nabla ju1 \ll \nabla j \^u,
which yields

div\nabla W (\nabla u) \sim div\nabla 2W (0)\nabla \^u

+ div
\Bigl( 
\nabla 2W (0)\nabla u1 +

1

2
\nabla 3W (0)[\nabla \^u,\nabla \^u]

\Bigr) 
+ div

\Bigl( 
\nabla 2W (0)\nabla u2 +\nabla 3W (0)[\nabla \^u,\nabla u1] +\nabla 4W (0)[\nabla \^u,\nabla \^u,\nabla \^u]

\Bigr) 
+ . . . .

The atomistic-continuum error is typically expected to be of comparable size as
the last terms. But, as the projected lattice is still a triangular lattice, many of the
arguments discussed in section 2.2 still apply and the highest order of this error as
well as the term \nabla 4W (0)[\nabla \^u,\nabla \^u,\nabla \^u] vanish. However, we now have \nabla 3W (0) \not = 0
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making the remaining terms nontrivial. We can thus obtain the first two corrections
to \^u by solving the linear PDEs

 - div\nabla 2W (0)\nabla u1 =
1

2
div
\Bigl( 
\nabla 3W (0)[\nabla \^u,\nabla \^u]

\Bigr) 
,(16a)

 - div\nabla 2W (0)\nabla u2 = div
\Bigl( 
\nabla 3W (0)[\nabla \^u,\nabla u1]

\Bigr) 
(16b)

on \BbbR 2\setminus \{ 0\} .
Due to Corollaries 5.4 and 5.5 below, exploiting the rotational crystalline sym-

metry, we can simplify them as

 - clin\Delta u1 = cquad

\biggl( 
\partial 11\^u - \partial 22\^u
 - 2\partial 12\^u

\biggr) 
\cdot \nabla \^u,(17a)

 - clin\Delta u2 = cquad

\biggl( \biggl( 
\partial 11u1  - \partial 22u1

 - 2\partial 12u1

\biggr) 
\cdot \nabla \^u+

\biggl( 
\partial 11\^u - \partial 22\^u
 - 2\partial 12\^u

\biggr) 
\cdot \nabla u1

\biggr) 
.(17b)

where

clin =
1

2
tr\nabla 2W (0) and

cquad =
1

4
(\nabla 3W (0)111  - 3\nabla 3W (0)122).

In polar coordinates, x = \^x+ r(cos\varphi , sin\varphi )T , using the fact that \^u = b
2\pi arg(x - 

\^x) = b
2\pi \varphi , (17a) becomes

 - \Delta u1 =
cquadb

2

clin2\pi 2

cos(3\varphi )

r3
,

from which we readily infer that one possible solution is

u1(x+ \^x) =
cquadb

2

clin16\pi 2

cos(3\varphi )

r
=

cquadb
2

clin16\pi 2

x31  - 3x1x
2
2

| x| 4 .(18)

Similarly, inserting \^u and u1 into (17b) yields

 - \Delta u2 =
c2quadb

3

c2lin4\pi 
3

sin(6\varphi )

r4
,

for which a solution is given by

u2(x+ \^x) =
c2quadb

3

c2lin128\pi 
3

sin(6\varphi )

r2
=

c2quadb
3

c2lin128\pi 
3

6x51x2  - 20x31x
3
2 + 6x1x

5
2

| x| 8 .(19)

While there are many more solutions for both problems, we will choose these
specific ones as they satisfy the decay estimates

| \nabla jui| \lesssim | x|  - i - j(20)

and the rotational symmetry ui(LQx) = ui(x). With the solutions u1 and u2 obtained,
respectively, in (18) and (19) we obtain the following result.
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Theorem 2.9 (BCC). Let \Lambda = Atri\BbbZ 2 and suppose \Lambda , \^x,\scrR , V satisfy all the as-
sumptions from section 2.1. Furthermore, assume \scrR and V satisfy the line reflection
symmetry (15). Consider a critical point \=u of (1) that inherits the rotational symme-
try of \^u. Then we can write \=u = u1 + u2 + \=urem, where u1 and u2 are given by (18)
and (19) and the remainder \=urem satisfies the decay estimates

| Dj \=urem(x)| \lesssim | x|  - j - 3 log| x| (21)

for j = 1, 2 and all | x| large enough.

Remark 2.10. As discussed in the introduction, our new predictor \^u + u1 + u2
does not just result in O(| x|  - 3) accuracy for the strain which one might expect from
the general expansion idea or from well-established results about the Cauchy--Born
antidiscretization error. The actual accuracy is one order higher, i.e., O(| x|  - 4).

Remark 2.11. Since | Dju1(x)| \lesssim | x|  - j - 1, without log-factors, Theorem 2.9 im-
proves the result of Theorem 2.2 to\bigm| \bigm| Dj \=u(x)

\bigm| \bigm| \lesssim | x|  - j - 1, j = 1, 2.

3. Numerical approximation.

3.1. Supercell approximation. A central motivation for the present work is
the poor convergence rates of standard supercell approximations for the defect equi-
libration problem (8) established in [8]. We can now exploit the theoretical results
from section 2 to construct boundary conditions that give rise to new supercell ap-
proximations. These have improved rates of convergence without any corresponding
increase in computational complexity.

We begin by defining a generalized energy-difference functional in a predictor-
corrector form

\scrE (upred;u) :=
\sum 
x\in \Lambda 

V
\bigl( 
Dupred(x) +Du(x)

\bigr) 
 - V

\bigl( 
Dupred(x)

\bigr) 
for upred \in \^u+ \.\scrH 1, u \in \.\scrH 1.

Then, the generalized variational problem

\~u \in argmin
\bigl\{ 
\scrE (upred;u) | u \in \.\scrH 1

\bigr\} 
(22)

is equivalent to (8), via the identity upred + \~u = \^u+ \=u.
We now note as in [8] that the supercell approximation on a domain BR \cap \Lambda \subset 

\Omega R \subset \Lambda with boundary condition upred on \Lambda \setminus \Omega R can be written as a Galerkin
approximation

\~uR \in argmin
\bigl\{ 
\scrE (upred;u) | u \in \scrH 0(\Omega R)

\bigr\} 
,(23)

where \scrH 0(\Omega R) := \{ v \in \scrH c | v = 0 in \Lambda \setminus \Omega R\} .

Using generic properties of Galerkin approximations we obtain the following ap-
proximation error estimate.

Theorem 3.1. Let \~u be a strongly stable solution (cf. [8]) to (22), i.e., satisfying

\delta 2u\scrE (upred; \~u)[v, v] \geq \lambda \| v\| 2\.\scrH 1
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for all v \in \scrH c and a \lambda > 0. If \~u further satisfies

| D\~u(x)| \lesssim | x|  - s logr | x| 

for some s > 1, r \in \{ 0, 1\} , then there exist C,R0 > 0 such that for all R > R0 there
exists a stable solution \~uR to (23) satisfying

\| \~uR  - \~u\| \.\scrH 1 \leq CR - s+1 logr(R).(24)

Proof. The existence of a solution \~uR, for R sufficiently large, can be proven as in
[7, Theorem 2.4] (the case upred = \^u) and the equivalence of (22) with (8). Moreover,
following the proof of [8, Theorem 6] verbatim we obtain

\| \~uR  - \~u\| \.\scrH 1 \lesssim \| \~u\| \.\scrH 1(\Lambda \setminus BR/2)
.

We then apply the assumption that | D\~u(x)| \lesssim | x|  - s logr | x| to arrive at the desired
error estimate,

\| \~uR  - \~u\| \.\scrH 1 \lesssim 

\biggl( \sum 
x\in \Lambda \setminus BR/2

| D\~u(x)| 2
\biggr) 1/2

\lesssim 
\Bigl( \int \infty 

R
3

t1 - 2s log2r(t) dt
\Bigr) 1

2

\lesssim R1 - s logr(R).

3.2. Numerical examples with mirror symmetry. To test the results from
section 2.2 we consider a toy model involving nearest-neighbor pair interaction,

V (Du(x)) =
\sum 
\rho \in \scrR 

\psi (D\rho u(x)), \psi (r) = sin2(\pi r),

which is 1-periodic, i.e., p = 1. We investigate the following three cases:
(i) symmetric square,

\Lambda = \BbbZ 2, \scrR = \{ \pm e1,\pm e2\} , \^x =

\biggl( 
1
2
1
2

\biggr) 
;

(ii) symmetric triangular,

\Lambda = Atri\BbbZ 2, \scrR =

\biggl\{ 
\pm 
\biggl( 
1
0

\biggr) 
,\pm 
\biggl( 1

2\surd 
3
2

\biggr) 
,\pm 
\biggl(  - 1

2\surd 
3
2

\biggr) \biggr\} 
, \^x =

\biggl( 1
2\surd 
3
6

\biggr) 
;

(iii) asymmetric triangular, as in (ii), but with \^x =

\biggl( 
1
4
1
8

\biggr) 
.

The cases (i) and (ii) satisfy all conditions of Theorem 2.5, while (iii) fails the crucial
symmetry assumptions. In particular, at least up to logarithmic terms, our theory
predicts | D\=u(x)| \lesssim | x|  - 3 for (i), | D\=u(x)| \lesssim | x|  - 4 for (ii), and | D\=u(x)| \lesssim | x|  - 2 for (iii).
Due to Theorem 3.1 this corresponds to \| \~uR  - \~u\| \.\scrH 1 being O(R - 2), O(R - 3), and
O(R - 1), respectively. To compute equilibria we employ a standard Newton scheme,
terminated at an \ell \infty -residual of 10 - 8. In Figure 2 we plot both the decay of the
correctors, confirming the predictions of Theorem 2.5, and the approximation error
in the supercell approximation against the domain size R, confirming the prediction
of Theorem 3.1.

Remark 3.2. An asymmetric square case (that is, as in (i) but with \^x =
\bigl( 
1
3 ,

1
3

\bigr) 
)

has also been considered and the results are as expected by our theory and thus
are qualitatively equivalent to (iii). Therefore we do not include them in the figures
to retain clarity. It does, however, further emphasize the role of symmetry in the
problem.
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ū
−
D
ū
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Fig. 2. Left: Decay of | D\=u| for the square and triangular lattices, with and without rotational
symmetry. Transparent dots denote data points (| x| , | Du(x)| ), solid curves their envelopes. We
observe the improved decay rates r - 3 and r - 4, proven in Theorem 2.5, when the dislocation core is
chosen as a high symmetry point. Right: Rates of convergence of the supercell approximation (23)
in the three cases specified in section 3.2. We observe the improved rates of convergence in the high
symmetry cases as predicted by Theorem 3.1.

3.3. Numerical example in BCC tungsten. To confirm the result of section
2.3, we consider a Finnis--Sinclair type model (EAM model) for BCC tungsten (W),
where the three-dimensional site energy for a deformation y is of the form

V \prime (D\prime y) =  - 
\Bigl( \sum 

\sigma \in \Lambda \prime 

\rho 
\bigl( 
| D\sigma y| 

\bigr) \Bigr) 1/2
+
\sum 
\sigma \in \Lambda \prime 

\phi 
\bigl( 
| D\sigma y| 

\bigr) 
,

and the electron density \rho and pair repulsion \phi are obtained from [19]. The pro-
jected antiplane model is then constructed as described in section 2.3. The supercell
model (23) is solved to within an \ell \infty residual of 10 - 6 using a preconditioned LBFGS
algorithm [17].

We investigate two test cases, the easy dislocation core (negatively oriented) and
the hard dislocation core (positively oriented); cf. [13]. For each case, following
section 2.3, we consider three different predictors:

(i) standard linearized elasticity predictor (0th-order), i.e., upred = \^u;
(ii) first-order correction, i.e., upred = \^u+ u1;
(iii) second-order correction, i.e., upred = \^u+ u1 + u2,

with \^u given in (7) and u1, u2, respectively, in (18) and (19).
In Figures 3 and 4 on the left-hand side we display the decay of the correctors for,

respectively, the hard (positive) and easy (negative) dislocation cores, confirming the
prediction of Theorem 2.9. On the right-hand side we plot the corresponding approx-
imation errors in the supercell approximation against the domain size R, confirming
the prediction of Theorem 3.1.

4. Conclusion. We have developed a range of results establishing finer proper-
ties of the elastic far-field generated by a screw dislocation in antiplane shear kine-
matics. Of particular note is the role that crystalline symmetries play in obtaining
either cancellation (screw and square lattice) or simple and explicit representations
of the leading-order terms of this elastic far-field. As a key application we showed
how these results can be exploited to obtain boundary conditions with significantly
improved convergence rates in terms of computational cell size.

Crucial to these results is the idea that solutions inherit the symmetries from the
setting of the problem. While the validity of this assumption is likely very difficult to
be proven without prohibitively restrictive assumptions on the interatomic interaction,
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Fig. 3. Left: Decay of | D\=u| for a BCC easy core screw dislocation with standard and improved
far-field predictors; cf. section 3.3. Transparent dots denote data points (| x| , | Du(x)| ), solid curves
their envelopes. The numerically observed improved decay for higher-order predictors is consistent
with Theorem 2.9. Right: Rates of convergence of the supercell approximation (23) to the BCC
easy core screw dislocation, employing the standard as well as higher-order far-field predictors. The
improved rates of convergence due to the faster decay of the corrector solutions are consistent with
Theorem 3.1.
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Fig. 4. Left: Decay of | D\=u| for a BCC hard core screw dislocation with standard and improved
far-field predictors; cf. section 3.3. Transparent dots denote data points (| x| , | Du(x)| ), solid curves
their envelopes. The numerically observed improved decay for higher-order predictors is consistent
with Theorem 2.9. Right: Rates of convergence of the supercell approximation (23) to the BCC
hard core screw dislocation, employing the standard as well as higher-order far-field predictors. The
improved rates of convergence due to the faster decay of the corrector solutions are consistent with
Theorem 3.1.

our numerical tests, showcasing the improved rates of decay of the core correctors and
resulting improved convergence rates, indicate that in these cases the inheritance of
symmetry is indeed reasonable. In particular, our results clearly explain the origin of
these improved rates.

The general ideas that we outlined in this paper set the scene for an in-depth
study of the elastic far-field for a large variety of defect types, fully vectorial models,
and more general crystalline solids. The resulting derivation of higher-order boundary
conditions promises to yield simple, efficient, as well as highly accurate new algorithms
to simulate crystalline defects.

5. Proofs.

5.1. Auxiliary results about symmetry. We prove the main results through
a number of lemmas, starting with the following observations about how symmetry
simplifies the tensors appearing in the development of the forces. This includes but
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is not limited to the tensors \nabla 2W (0) \in \BbbR 2\times 2 = (\BbbR 2)\otimes 2, \nabla 3W (0) \in (\BbbR 2)\otimes 3, and
\nabla 4W (0) \in (\BbbR 2)\otimes 4.

Let m \in \BbbN , A \in (\BbbR 2)\otimes m, and B \in \BbbR 2\times 2; then the tensor B\otimes mA \in (\BbbR 2)\otimes m is, as
usual, defined by

(B\otimes mA)l1...lm :=
\sum 

k\in \{ 1,2\} m

Ak1...km

m\prod 
i=1

Bliki
.

As before let Q be a matrix representing either a rotation by \pi /2 (in the case \Lambda = \BbbZ 2)
or a rotation by 2\pi /3 (in the case \Lambda = Atri\BbbZ 2). That is,

Q =

\biggl( 
0  - 1
1 0

\biggr) 
or Q =

\Biggl( 
 - 1

2  - 
\surd 
3
2\surd 

3
2  - 1

2

\Biggr) 
.

More generally, let Q \in \BbbR 2\times 2 with QN = Id for some N \in \BbbN , N \geq 1, and QTQ = Id.
Our specific cases are included as N = 4 and N = 3. We then define

PA =
1

N

N - 1\sum 
M=0

(QM )\otimes mA.

Consider the standard scalar product for tensors,

A : B =

2\sum 
k1,...,km=1

Ak1...km
Bk1...km

.

Then we have the following lemma.

Lemma 5.1. P is the orthogonal projector onto the Q-invariant tensors

\{ A : Q\otimes mA = A\} .
Proof. One readily checks that Q\otimes m((QM )\otimes mA) = (QM+1)\otimes mA. Using also

QN = Id one immediately obtains Q\otimes mPA = PA. Therefore, P 2 = P . Since
(QM )T = Q - M = QN - M , we also see that P is self-adjoint. Hence, P is an orthogonal
projection onto a subspace of \{ A : Q\otimes mA = A\} . But if Q\otimes mA = A, then clearly
PA = A, which concludes the proof.

Lemma 5.1 will prove highly useful. Explicitly calculating P now allows us to
characterize the rotationally invariant tensors.

To simplify that calculation further, we also define the symmetric part by

(symA)l1...lm =
1

m!

\sum 
\varphi \in Sm

A\varphi (l1)...\varphi (lm),

where Sm is the group of all permutations on m numbers. For all A we define

PsymA := P symA = symPA.

Let us calculate these projections and thus the invariant spaces for the cases we
encounter in our proof later.

For a simple notation of three-tensors and four-tensors in the following we will
write Eijk = ei \otimes ej \otimes ek and Eijkl = ei \otimes ej \otimes ek \otimes el, where \{ e1, e2\} represents the
standard base of \BbbR 2.

Lemma 5.2. (a) For m = 2 and N \geq 3,

PsymA = 1
2 tr(A) Id, i.e., \{ A : Q\otimes 2A = A, symA = A\} = span Id .
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(b) For m = 3 and N = 3,

PsymA = 1
4 (E111  - 3 symE122)(A111  - 3 symA122)

+ 1
4 (E222  - 3 symE112)(A222  - 3 symA112),

i.e., \{ A : Q\otimes 3A = A, symA = A\} = span\{ E111  - 3 symE122, E222  - 3 symE112\} .

(c) For m = 4 and N = 3,

(PsymA)abcd = 1
8

\Bigl( 
\delta ab\delta cd + \delta ac\delta bd + \delta ad\delta bc

\Bigr) 
(A1111 + 2 symA1122 +A2222),

i.e., \{ A : Q\otimes 4A = A, symA = A\} = span
\bigl\{ 
E1111 + E2222 + 2 symE1122

\bigr\} 
.

Proof. (a) We have (Q\otimes Q)A = A if and only if QAQT = A. For symmetric A,
we can diagonalize A = RDRT with some rotation R and a diagonal matrix
D. But then QAQT = A is equivalent to QDQT = D. This is the case
precisely if D = c Id or Q \in \{ \pm Id\} . Since we excluded the latter option we
find \{ A : (Q\otimes Q)A = A\} = Id\BbbR as claimed.

(b) This statement is more involved and notably depends on N . Therefore a
general argument as in (a) cannot work. One way of obtaining the result
is to calculate the projector explicitly. By linearity, it suffices to consider
A = \sigma \otimes \rho \otimes \tau . In this case, Q\otimes mA = Q\sigma \otimes Q\rho \otimes Q\tau . We get

3(P (\sigma \otimes \rho \otimes \tau ))111 = \sigma 1\rho 1\tau 1 + ( - 1
2\sigma 1  - 

\surd 
3
2 \sigma 2)( - 1

2\rho 1  - 
\surd 
3
2 \rho 2)( - 1

2\tau 1  - 
\surd 
3
2 \tau 2)

+ ( - 1
2\sigma 1 +

\surd 
3
2 \sigma 2)( - 1

2\rho 1 +
\surd 
3
2 \rho 2)( - 1

2\tau 1 +
\surd 
3
2 \tau 2)

= 3
4

\bigl( 
\sigma 1\rho 1\tau 1  - \sigma 1\rho 2\tau 2  - \sigma 2\rho 1\tau 2  - \sigma 2\rho 2\tau 1

\bigr) 
,

3(P (\sigma \otimes \rho \otimes \tau ))222 = \sigma 2\rho 2\tau 2 + (
\surd 
3
2 \sigma 1  - 1

2\sigma 2)(
\surd 
3
2 \rho 1  - 1

2\rho 2)(
\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 
\surd 
3
2 \sigma 1  - 1

2\sigma 2)( - 
\surd 
3
2 \rho 1  - 1

2\rho 2)( - 
\surd 
3
2 \tau 1  - 1

2\tau 2)

= 3
4

\bigl( 
\sigma 2\rho 2\tau 2  - \sigma 1\rho 1\tau 2  - \sigma 1\rho 2\tau 1  - \sigma 2\rho 1\tau 1

\bigr) 
,

3(P (\sigma \otimes \rho \otimes \tau ))112 = \sigma 1\rho 1\tau 2 + ( - 1
2\sigma 1  - 

\surd 
3
2 \sigma 2)( - 1

2\rho 1  - 
\surd 
3
2 \rho 2)(

\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 1
2\sigma 1 +

\surd 
3
2 \sigma 2)( - 1

2\rho 1 +
\surd 
3
2 \rho 2)( - 

\surd 
3
2 \tau 1  - 1

2\tau 2)

= 3
4

\bigl( 
 - \sigma 2\rho 2\tau 2 + \sigma 1\rho 1\tau 2 + \sigma 1\rho 2\tau 1 + \sigma 2\rho 1\tau 1

\bigr) 
, and

3(P (\sigma \otimes \rho \otimes \tau ))122 = \sigma 1\rho 2\tau 2 + ( - 1
2\sigma 1  - 

\surd 
3
2 \sigma 2)(

\surd 
3
2 \rho 1  - 1

2\rho 2)(
\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 1
2\sigma 1 +

\surd 
3
2 \sigma 2)( - 

\surd 
3
2 \rho 1  - 1

2\rho 2)( - 
\surd 
3
2 \tau 1  - 1

2\tau 2)

= 3
4

\bigl( 
 - \sigma 1\rho 1\tau 1 + \sigma 1\rho 2\tau 2 + \sigma 2\rho 1\tau 2 + \sigma 2\rho 2\tau 1

\bigr) 
.

This concludes (b).
(c) Again, this statement depends on N , so we will calculate the projector ex-

plicitly. Similar as before, it suffices to consider A = \pi \otimes \sigma \otimes \rho \otimes \tau . We
find

3(PA)1111 = \pi 1\sigma 1\rho 1\tau 1

+ ( - 1
2\pi 1  - 

\surd 
3
2 \pi 2)( - 1

2\sigma 1  - 
\surd 
3
2 \sigma 2)( - 1

2\rho 1  - 
\surd 
3
2 \rho 2)( - 1

2\tau 1  - 
\surd 
3
2 \tau 2)

+ ( - 1
2\pi 1 +

\surd 
3
2 \pi 2)( - 1

2\sigma 1 +
\surd 
3
2 \sigma 2)( - 1

2\rho 1 +
\surd 
3
2 \rho 2)( - 1

2\tau 1 +
\surd 
3
2 \tau 2)

= 9
8 (\pi 1\sigma 1\rho 1\tau 1 + \pi 2\sigma 2\rho 2\tau 2) +

3
8

\bigl( 
\pi 1\sigma 1\rho 2\tau 2 + \pi 1\sigma 2\rho 1\tau 2

+ \pi 1\sigma 2\rho 2\tau 1 + \pi 2\sigma 1\rho 1\tau 2 + \pi 2\sigma 1\rho 2\tau 1 + \pi 2\sigma 2\rho 1\tau 1
\bigr) 

and
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3(PA)2222 = \pi 2\sigma 2\rho 2\tau 2

+ (
\surd 
3
2 \pi 1  - 1

2\pi 2)(
\surd 
3
2 \sigma 1  - 1

2\sigma 2)(
\surd 
3
2 \rho 1  - 1

2\rho 2)(
\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 
\surd 
3
2 \pi 1  - 1

2\pi 2)( - 
\surd 
3
2 \sigma 1  - 1

2\sigma 2)( - 
\surd 
3
2 \rho 1  - 1

2\rho 2)( - 
\surd 
3
2 \tau 1  - 1

2\tau 2)

= 9
8 (\pi 1\sigma 1\rho 1\tau 1 + \pi 2\sigma 2\rho 2\tau 2) +

3
8

\bigl( 
\pi 1\sigma 1\rho 2\tau 2 + \pi 1\sigma 2\rho 1\tau 2

+ \pi 1\sigma 2\rho 2\tau 1 + \pi 2\sigma 1\rho 1\tau 2 + \pi 2\sigma 1\rho 2\tau 1 + \pi 2\sigma 2\rho 1\tau 1
\bigr) 
.

By interchanging \pi , \sigma , \rho , \tau , the even mixed terms can be reduced to calculating
just

3(PA)1122 = \pi 1\sigma 1\rho 2\tau 2

+ ( - 1
2\pi 1  - 

\surd 
3
2 \pi 2)( - 1

2\sigma 1  - 
\surd 
3
2 \sigma 2)(

\surd 
3
2 \rho 1  - 1

2\rho 2)(
\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 1
2\pi 1 +

\surd 
3
2 \pi 2)( - 1

2\sigma 1 +
\surd 
3
2 \sigma 2)( - 

\surd 
3
2 \rho 1  - 1

2\rho 2)( - 
\surd 
3
2 \tau 1  - 1

2\tau 2)

= 9
8 (\pi 1\sigma 1\rho 2\tau 2 + \pi 2\sigma 2\rho 1\tau 1) +

3
8

\bigl( 
\pi 1\sigma 1\rho 1\tau 1 + \pi 2\sigma 2\rho 2\tau 2

 - \pi 1\sigma 2\rho 2\tau 1  - \pi 2\sigma 1\rho 1\tau 2  - \pi 2\sigma 1\rho 2\tau 1  - \pi 1\sigma 2\rho 1\tau 2
\bigr) 
.

For the symmetric part, these formulae simplify to

(P symA)1111 = (P symA)2222

= 3(P symA)1122

= 3
8 (\pi 1\sigma 1\rho 1\tau 1 + \pi 2\sigma 2\rho 2\tau 2) +

6
8 sym(\pi \otimes \sigma \otimes \rho \otimes \tau )1122.

Furthermore,

3(PA)1112 = \pi 1\sigma 1\rho 1\tau 2

+ ( - 1
2\pi 1  - 

\surd 
3
2 \pi 2)( - 1

2\sigma 1  - 
\surd 
3
2 \sigma 2)( - 1

2\rho 1  - 
\surd 
3
2 \rho 2)(

\surd 
3
2 \tau 1  - 1

2\tau 2)

+ ( - 1
2\pi 1 +

\surd 
3
2 \pi 2)( - 1

2\sigma 1 +
\surd 
3
2 \sigma 2)( - 1

2\rho 1 +
\surd 
3
2 \rho 2)( - 

\surd 
3
2 \tau 1  - 1

2\tau 2)

= 9
8 (\pi 1\sigma 1\rho 1\tau 2  - \pi 2\sigma 2\rho 2\tau 1) +

3
8

\bigl( 
\pi 2\sigma 2\rho 1\tau 2 + \pi 2\sigma 1\rho 2\tau 2

+ \pi 1\sigma 2\rho 2\tau 2  - \pi 1\sigma 1\rho 2\tau 1  - \pi 2\sigma 1\rho 1\tau 1  - \pi 2\sigma 1\rho 1\tau 1
\bigr) 
,

which implies (P symA)1112 = 0. In the same spirit one finds (P symA)1222 = 0.

Additionally, the result for m = N = 3 simplifies further if we add line reflection

symmetry. As in section 2.3, let a = (
\surd 
3
2 ,

1
2 )

T and

S = a\otimes a - a\bot \otimes a\bot =

\Biggl( 
1
2

\surd 
3
2\surd 

3
2  - 1

2

\Biggr) 
.

Lemma 5.3. For m = 3 and N = 3 one has

\{ A : Q\otimes 3A = A, symA = A,S\otimes 3A =  - A\} = span\{ E111  - 3 symE122\} .
Proof. Let A be a tensor with Q\otimes 3A = A, symA = A, and S\otimes 3A =  - A. Ac-

cording to Lemma 5.2, A = c1(E111  - 3 symE122) + c2(E222  - 3 symE112). Addi-
tionally, S\otimes 3A =  - A implies A[Sa, Sa, Sa] =  - A[a, a, a]. But with Sa = a we have
A[a, a, a] = 0, that is,

0 = c1(
3
\surd 
3

8  - 3
\surd 
3
8 ) + c2(

1
8  - 3 3

8 ),

which implies c2 = 0. With the same calculation one also sees the reverse, i.e., that
E222  - 3 symE112 does indeed satisfy the reflection symmetry.
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Among other applications later on in the analysis, Lemmas 5.2 and 5.3 can be
used for the following two corollaries. As a first corollary, we recover a classical
result about isotropic linear elasticity (compare, e.g., [14] for the analogous three-
dimensional case).

Corollary 5.4. In the setting of section 2.1, for W given by (5), one finds
\nabla 2W (0) = clin Id, for some clin > 0, and therefore

 - div(\nabla 2W (0)[\nabla u]) =  - clin\Delta u.

Proof. According to (5) W (F ) = 1
detA\Lambda 

V (F \cdot \scrR ); hence we have

\nabla 2W (0) =
1

detA\Lambda 

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \rho \otimes \sigma .

We further notice that due to the rotational symmetry of \scrR and V , (2), we have
\nabla 2V (0)\rho \sigma = \nabla 2V (0)Q\rho Q\sigma ; hence we can equivalently write

\nabla 2W (0) =
1

detA\Lambda 

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma Q\rho \otimes Q\sigma .

In particular,
\nabla 2W (0) \in \{ A \in \BbbR 2\times 2 : (Q\otimes Q)A = A\} .

It is also clear that \nabla 2W (0) is symmetric, thus

Psym\nabla 2W (0) = \nabla 2W (0),

and so we invoke Lemma 5.2 to conclude that

\nabla 2W (0) =

\left(  1

2 detA\Lambda 

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \rho \cdot \sigma 

\right)  Id =: clin Id .

Since lattice stability implies Legendre--Hadamard stability of the Cauchy--Born limit
[11, 3], it follows that clin > 0.

As a second corollary, we can even identify the lowest-order nonlinearity.

Corollary 5.5. In the setting of section 2.1 assuming additionally the line re-
flection symmetry (15), for W given by (5), one finds \nabla 3W (0) = cquad(E111  - 
3 symE122), for some cquad \in \BbbR , and therefore

div(\nabla 3W (0)[\nabla u,\nabla v]) = cquad

\biggl( \biggl( 
\partial 11v  - \partial 22v
 - 2\partial 12v

\biggr) 
\cdot \nabla u+

\biggl( 
\partial 11u - \partial 22u
 - 2\partial 12u

\biggr) 
\cdot \nabla v

\biggr) 
.

Proof. As W (F ) = 1
detA\Lambda 

V (F \cdot \scrR ), we have

\nabla 3W (0) =
1

detA\Lambda 

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\rho \sigma \tau \rho \otimes \sigma \otimes \tau .

Further, due to the rotational symmetry of \scrR and V , (2), we have \nabla 3V (0)\rho \sigma \tau =
\nabla 3V (0)Q\rho Q\sigma Q\tau ; hence we can equivalently write

\nabla 3W (0) =
1

detA\Lambda 

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\rho \sigma \tau Q\rho \otimes Q\sigma \otimes Q\tau .
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Furthermore, the line reflection symmetry (15) implies that we have \nabla 3V (0)\rho \sigma \tau =
 - \nabla 3V (0)S\rho S\sigma S\tau , which translates to

\nabla 3W (0) =  - 1

detA\Lambda 

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\rho \sigma \tau S\rho \otimes S\sigma \otimes S\tau .

Combining these observations, we find

\nabla 3W (0) \in 
\bigl\{ 
A : A = symA,Q\otimes 3A = A,S\otimes 3A =  - A

\bigr\} 
,

and invoking Lemma 5.2, we therefore deduce that

\nabla 3W (0) =
\Bigl( 1

4 detA\Lambda 

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\rho \sigma \tau (\rho 1\sigma 1\tau 1  - \rho 1\sigma 2\tau 2  - \rho 2\sigma 1\tau 2  - \rho 2\sigma 2\tau 1)
\Bigr) 

\cdot (E111  - 3 symE122)

=: cquad(E111  - 3 symE122).

Finally, the identity

div((E111  - 3 symE122)[\nabla u,\nabla v]) =
\biggl( 
\partial 11v  - \partial 22v
 - 2\partial 12v

\biggr) 
\cdot \nabla u+

\biggl( 
\partial 11u - \partial 22u
 - 2\partial 12u

\biggr) 
\cdot \nabla v

completes the proof.

5.2. Decay of the linear residual. As discussed in the sketch of the proof (see
(14)), the crucial object is the linear residual

fu =  - Div(\nabla 2V (0)[Du]).

We now establish how crystalline symmetries lead to a faster decay of fu, as would
be expected from linearized elasticity in general.

Theorem 5.6.
(a) In the setting of Theorem 2.5, on a square lattice, we have

| f\=u(x)| \lesssim | x|  - 4

for sufficiently large | x| .
(b) In the setting of Theorem 2.5 on a triangular lattice, we have

| f\=u(x)| \lesssim | x|  - 6 log2| x| + | x|  - 3| D\=u| + | x|  - 2| D2\=u| 
\lesssim | x|  - 5 log| x| 

for sufficiently large | x| .
(c) In the setting of Theorem 2.9, we have

| f\=u(x)| \lesssim | x|  - 3

for sufficiently large | x| . But, writing \=u = u1+u2+\=urem with u1 and u2 given
by (18) and (19), we have

| f\=urem
(x)| \lesssim | D2\=urem| | D\=urem| + | x|  - 2| D\=urem| + | x|  - 1| D2\=urem| + | x|  - 5

\lesssim | x|  - 4 log| x| 

for sufficiently large | x| .
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Remark 5.7. Theorem 5.6 improves on the residual decay estimate | x|  - 3 obtained
in [8] in all three cases we consider. This can be used to gain better estimates on \=u
or \=urem, which in turn improves the rates here. Iteratively, we will see that the terms
involving \=u or \=urem in all of the above estimates turn out to be negligible.

Proof. Recall that \=u is a critical point of the energy difference, satisfying the
equilibrium equation

 - Div(\nabla V (D\^u+D\=u)) = 0.(25)

To obtain an estimate on f\=u(x) we first linearize by Taylor expansion of V around 0
and then connect to CLE by Taylor expansion of D\^u around x. Note that \^u is not
smooth at the branch cut \Gamma and D\rho \^u is not close to \nabla \^u \cdot \rho there either. But this
is not a problem as the jump of \^u is equal to the periodicity p (or  - p) of V and
\nabla \^u \in C\infty (\BbbR 2\setminus \{ 0\} ). Therefore, one can always substitute \^u(x) by \^u(x) \pm p where
necessary. We will use this implicitly in the following arguments.

Taylor expanding V around 0 and ordering by order of decay gives

0 = f\=u + I2 + I3 + I4 + I5 + Irem,

where

I2 =  - Div(\nabla 2V (0)[D\^u]),

I3 =  - 1

2
Div(\nabla 3V (0)[D\^u,D\^u]),

I4 =  - Div(\nabla 3V (0)[D\^u,D\=u]) - 1

6
Div(\nabla 4V (0)[D\^u,D\^u,D\^u]),

I5 =  - 1

2
Div(\nabla 3V (0)[D\=u,D\=u]) - 1

2
Div(\nabla 4V (0)[D\^u,D\^u,D\=u])

 - 1

24
Div(\nabla 5V (0)[D\^u]4),

and the remainder satisfies

| Irem| \leq | x|  - 6log2| x| ,(26)

due to the already known decay estimates on \=u from Theorem 2.2 and the explicit
rates for \^u:

| Dj \^u| \leq | x|  - j and | Dj \=u| \leq | x|  - j - 1 log| x| for j \geq 1.

Estimate for I2. The term I2 depends only on \^u. We can expand \^u

I2 =
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma D - \sigma D\rho \^u(x)

=
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma 

\bigl( 
\^u(x+ \rho  - \sigma ) + \^u(x) - \^u(x+ \rho ) - \^u(x - \sigma )

\bigr) 
= J2 + J3 + J4 + J5 +O(| x|  - 6),

where
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J2 =  - 
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma \nabla 2\^u(x)[\rho , \sigma ]

J3 =
1

2

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \nabla 3\^u(x)
\bigl( 
[\rho , \sigma , \sigma ] - [\rho , \rho , \sigma ]

\bigr) 
J4 =

1

12

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \nabla 4\^u(x)
\bigl( 
 - 2[\rho , \sigma , \sigma , \sigma ] + 3[\rho , \rho , \sigma , \sigma ] - 2[\rho , \rho , \rho , \sigma ]

\bigr) 
J5 =

1

24

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \nabla 5\^u(x)
\bigl( 
[\rho , \sigma , \sigma , \sigma , \sigma ] - 2[\rho , \rho , \sigma , \sigma , \sigma ]

+ 2[\rho , \rho , \rho , \sigma , \sigma ] - [\rho , \rho , \rho , \rho , \sigma ]
\bigr) 
.

Using the symmetry in \rho and \sigma it follows that J3 = J5 = 0. By Lemma 5.2,

J2 =  - 
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma \nabla 2\^u(x)[\rho , \sigma ](27)

=
\bigl( 
 - 
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma \rho \otimes \sigma 

\bigr) 
: \nabla 2\^u(x)

=
\bigl( 
 - 1

2

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \rho \cdot \sigma 
\bigr) 
\Delta \^u(x).

Hence, J2 = 0. Thus we conclude so far that I2 = J4 +O(| x|  - 6). To proceed, we now
distinguish the specific cases we consider.

Proof of (a). Due to mirror reflection symmetry we have \nabla 3V (0) = 0 and
\nabla 5V (0) = 0, hence I3 = 0, | I4| \lesssim | x|  - 4 and | I2| \lesssim | J4| + | x|  - 6 \lesssim | x|  - 4. We therefore
obtain | f\=u| \lesssim | x|  - 4, which concludes the proof of (a).

Estimates for J4, I4 for cases (b), (c). We use Lemma 5.2 to calculate

J4 =
1

12

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma \nabla 4\^u(x)
\bigl( 
 - 2[\rho , \sigma , \sigma , \sigma ] + 3[\rho , \rho , \sigma , \sigma ] - 2[\rho , \rho , \rho , \sigma ]

\bigr) 
(28)

= Psym

\Bigl( 1

12

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma 
\bigl( 
 - 2\rho \otimes \sigma \otimes \sigma \otimes \sigma + 3\rho \otimes \rho \otimes \sigma \otimes \sigma 

 - 2\rho \otimes \rho \otimes \rho \otimes \sigma 
\bigr) \Bigr) 

: \nabla 4\^u(x)

=
\Bigl( 1

32

\sum 
\rho ,\sigma \in \scrR 

\nabla 2V (0)\rho \sigma 
\bigl( 
2(\rho \cdot \sigma )2 + | \rho | 2| \sigma | 2  - 2\rho \cdot \sigma (| \rho | 2 + | \sigma | 2

\bigr) \Bigr) 
\Delta 2\^u(x).

As \Delta 2\^u = 0, we find J4 = 0 and hence obtain | I2| \lesssim | x|  - 6.
Next, we consider

I4 =  - 1

6
Div(\nabla 4V (0)[D\^u,D\^u,D\^u])

=
1

6

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau D - \tau (D\pi \^uD\rho \^uD\sigma \^u)

=  - 1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 2\^u[\pi , \tau ]\nabla \^u \cdot \rho \nabla \^u \cdot \sigma 

 - 1

6

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 3\^u[\pi , \pi , \tau ]\nabla \^u \cdot \rho \nabla \^u \cdot \sigma 
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+
1

6

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 3\^u[\pi , \tau , \tau ]\nabla \^u \cdot \rho \nabla \^u \cdot \sigma 

 - 1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 2\^u[\pi , \tau ]\nabla 2\^u[\rho , \rho ]\nabla \^u \cdot \sigma 

+
1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 2\^u[\pi , \tau ]\nabla 2\^u[\rho , \tau ]\nabla \^u \cdot \sigma .

The second and third terms cancel each other by symmetry in \pi and \tau , while the
fourth and fifth terms both vanish due to \nabla 4V (0)\pi \rho \sigma \tau = \nabla 4V (0)( - \pi )( - \rho )( - \sigma )( - \tau ).

Applying again Lemma 5.2 we can express the first term as

I4 =  - 1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \nabla 2\^u[\pi , \tau ]\nabla \^u \cdot \rho \nabla \^u \cdot \sigma (29)

= Psym

\Bigl( 
 - 1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau \pi \otimes \tau \otimes \rho \otimes \sigma 
\Bigr) 
: (\nabla 2\^u\otimes \nabla \^u\otimes \nabla \^u)

=
1

24

\Bigl( 
 - 1

2

\sum 
\pi ,\rho ,\sigma ,\tau 

\nabla 4V (0)\pi \rho \sigma \tau ((\pi \cdot \tau )(\rho \cdot \sigma ) + (\pi \cdot \rho )(\tau \cdot \sigma ) + (\pi \cdot \sigma )(\rho \cdot \tau ))
\Bigr) 

\cdot (3\partial 21 \^u(\partial 1\^u)2 + 3\partial 22 \^u(\partial 2\^u)
2 + \partial 21 \^u(\partial 2\^u)

2 + \partial 22 \^u(\partial 1\^u)
2 + 4\partial 1\partial 2\^u\partial 1\^u\partial 2\^u)

= c(| \nabla \^u| 2\Delta \^u+ 2\nabla 2\^u[\nabla \^u,\nabla \^u])

= c
\bigl( 
3| \nabla \^u(x)| 2 + 2)\Delta \^u(x) - 4(1 + | \nabla \^u| 2

\bigr) 3
2H,

where

H =
(1 + (\partial 1\^u)

2)\partial 22 \^u+ (1 + (\partial 2\^u)
2)\partial 21 \^u - 2\partial 1\^u\partial 2\^u\partial 1\partial 2\^u

2(1 + | \nabla \^u| 2) 3
2

is the mean curvature of the surface given by x3 = \^u(x1, x2). Since the graph of \^u is
a helicoid, i.e., a minimal surface, H \equiv 0 and therefore we have shown that I4 = 0.

Proof of (b). Due to the mirror symmetry we again obtain\nabla 3V (0) = \nabla 5V (0) = 0,
hence I3 = 0. In addition, again due to mirror symmetry, I5 simplifies to

I5 =  - 1

2
Div(\nabla 4V (0)[D\^u,D\^u,D\=u]).

Therefore,

| I5| \lesssim | x|  - 3| D\=u| + | x|  - 2| D2\=u| 
\lesssim | x|  - 5 log| x| .

Invoking I4 = 0 and | I2| \lesssim | x|  - 6 from the previous step concludes the proof of (b).
Proof of (c). On the BCC lattice, case (c), one typically finds \nabla 3V (0) \not = 0 and

\nabla 5V (0) \not = 0. In particular, I3 does not vanish; hence our arguments so far only yield
| f\=u| \leq | x|  - 3.

To estimate, f\=urem
we replace \^u with \^u+ u1 + u2 and \=u with \=urem in the previous

steps of the proof. Recall from (20) that | \nabla jui| \lesssim | x|  - i - j .
Clearly, (25) and the Taylor expansion of V including (26) still hold. For the

estimates let us start with the higher-order terms. We can estimate directly\bigm| \bigm|  - Div(\nabla 3V (0)[D(\^u+ u1 + u2), D\=urem])
\bigm| \bigm| \leq | x|  - 2| D\=urem| + | x|  - 1| D2\=urem| .
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If we also substitute \^u by \^u+ u1 + u2 in (29), we find overall that

| I4| \lesssim | x|  - 2| D\=urem| + | x|  - 1| D2\=urem| + | x|  - 5

\lesssim | x|  - 4 log| x| .

In the same spirit we estimate

| I5| \lesssim | D2\=urem| | D\=urem| + | x|  - 3| D\=urem| + | x|  - 2| D2\=urem| + | x|  - 5

\lesssim | x|  - 5 log2| x| .

The important difference from before is found in I2 and I3. Let us start with I2. As
before, we find J3 = J5 = 0. Substituting \^u by \^u+ u1 + u2 in (28), we estimate

| J4| \lesssim | \Delta 2(\^u+ u1 + u2)| = | \Delta 2(u1 + u2)| \lesssim | x|  - 5.

Therefore, I2 = J2 +O(| x|  - 5). It is crucial that now J2 does not vanish to be able to
cancel out the first terms in the nonlinearity I3. Following (27), we have

J2 =  - 
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho \sigma \nabla 2(u1 + u2)(x)[\rho , \sigma ]

=  - det(A\Lambda ) div
\bigl( 
\nabla 2W (0)[\nabla (u1 + u2)]

\bigr) 
=  - det(A\Lambda )clin\Delta (u1 + u2).

Now let us come to I3. Clearly,

I3 =  - 1

2
Div(\nabla 3V (0)[D\^u,D\^u])

 - Div(\nabla 3V (0)[D\^u,Du1]) +O(| x|  - 5).

Developing the discrete differences as we did previously for I2, we find

 - Div(\nabla 3V (0)[D\^u,Du1])

=
\sum 

\rho ,\sigma ,\tau \in \scrR 
\nabla 3V (0)\sigma \rho \tau D - \tau (D\rho \^u(x)D\sigma u1(x))

=  - 
\sum 

\rho ,\sigma ,\tau \in \scrR 
\nabla 3V (0)\sigma \rho \tau (\nabla \^u(x)[\rho ]\nabla 2u1(x)[\sigma , \tau ] +\nabla u1(x)[\sigma ]\nabla 2\^u(x)[\rho , \tau ])

+O(| x|  - 5)

=  - detA\Lambda div(\nabla 3W (0)[\nabla \^u,\nabla u1]) +O(| x|  - 5).

For the other term we have to take a few more terms into account. For those we again
use the fact that \nabla 3V (0)\sigma \rho \tau =  - \nabla 3V (0)( - \sigma )( - \rho )( - \tau ).

 - 1

2
Div(\nabla 3V (0)[D\^u,D\^u])

=
1

2

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\sigma \rho \tau D - \tau (D\rho \^u(x)D\sigma \^u(x))

=
1

2

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\sigma \rho \tau 
\bigl( 
D - \tau D\rho \^u(x)D\sigma \^u(x) +D\rho \^u(x - \tau )D - \tau D\sigma \^u(x))

=
1

2

\sum 
\rho ,\sigma ,\tau \in \scrR 

\nabla 3V (0)\sigma \rho \tau 

\Bigl( 
 - 2\nabla \^u(x)[\sigma ]\nabla 2\^u(x)[\rho , \tau ]
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+
\bigl( 
\nabla 3\^u(x)[\rho , \tau , \tau ] - \nabla 3\^u(x)[\rho , \rho , \tau ]

\bigr) 
\nabla \^u(x)[\sigma ] - \nabla 2\^u(x)[\rho , \tau ]\nabla 2\^u(x)[\sigma , \sigma ]

+\nabla 2\^u(x)[\rho , \tau ]\nabla 2\^u(x)[\sigma , \tau ]
\Bigr) 
+O(| x|  - 5)

=  - 
\sum 

\rho ,\sigma ,\tau \in \scrR 
\nabla 3V (0)\sigma \rho \tau \nabla \^u(x)[\sigma ]\nabla 2\^u(x)[\rho , \tau ] +O(| x|  - 5)

=  - detA\Lambda 
1

2
div(\nabla 3W (0)[\nabla \^u,\nabla \^u]) +O(| x|  - 5).

Hence, we can use (16a) and (16b) for u1 and u2 to conclude that J2+ I3 = O(| x|  - 5).
This concludes the proof.

5.3. Proofs of the main theorems. The connection between the decay of fu
and the decay of u is as follows.

Theorem 5.8. Let u \in \.\scrH 1, and j \in \{ 1, 2\} .
(a) If | fu(x)| \lesssim | x|  - 3 and

\sum 
x fu = 0, then for | x| sufficiently large,

| Dju(x)| \lesssim | x|  - 1 - j log| x| .

(b) If | fu(x)| \lesssim | x|  - 4,
\sum 

x fu = 0, and
\sum 

x fux = 0, then for | x| sufficiently large,

| Dju(x)| \lesssim | x|  - 2 - j log| x| .

(c) If | fu(x)| \lesssim | x|  - 5,
\sum 

x fu = 0,
\sum 

x fux = 0, and
\sum 

x fux \otimes x \propto Id, then for
| x| sufficiently large,

| Dju(x)| \lesssim | x|  - 3 - j log| x| .
(d) If the assumptions on the decay rate of fu in (a), (b), or (c) are slightly

stronger, namely, | x|  - 3 - \varepsilon , | x|  - 4 - \varepsilon , or | x|  - 5 - \varepsilon for some \varepsilon > 0, then the
resulting rates for Dju are true without the logarithmic term, i.e., | x|  - 1 - j,
| x|  - 2 - j, and | x|  - 3 - j, respectively.

Proof. Statement (a) is part of the results in [8]. Its extensions (b), (c), and (d)
follow a similar basic strategy. The approach is based on knowledge about the lattice
Green's functionG as one can writeDu as a convolution on the lattice,Du = fu\ast \Lambda DG,
that is,

Du(x) =
\sum 
z\in \Lambda 

fu(z)DG(x - z).

The proof of (b), (c), and (d) is part of a full theory developed in [2]. All the details
as well as further generalizations will be presented there.

Theorem 5.8 shows that to prove the main results in sections 2.2 and 2.3, in
addition to the decay of fu established in section 5.2, we also need to analyze its
moments.

Theorem 5.9. In the setting of section 2.1, let [u] \in \.\scrH 1 inherit the rotational
symmetry (11) and let fu denote the resultant linear residual (14). Then we have\sum 

x fu = 0,
\sum 

x fux = 0, and
\sum 

x fux \otimes x = c Id for some c \in \BbbR , provided the sums
converge absolutely.

Proof. We begin with
\sum 

x fu = 0. A version of this statement is already needed
in Proposition 2.1 since it is directly linked with the net-force of the system. Propo-
sition 2.1 was established in [8]. As there was a gap in the proof, namely, a proof of
the specific claim

\sum 
x fu = 0 in question here, let us give the details in our specific
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case. Let \eta be a smooth cut-off function with \eta (x) = 1 for | x| \leq 1 and \eta (x) = 0 for
| x| \geq 2 and let \eta M (x) = \eta 

\bigl( 
x
M

\bigr) 
. Then we have\sum 

x

fu = lim
M\rightarrow \infty 

\sum 
x

fu\eta M

= lim
M\rightarrow \infty 

\sum 
x

Div
\bigl( 
\nabla V (D\^u+Du) - \nabla V (0) - \nabla 2V (0)[D\^u+Du]

\bigr) 
\eta M

+ lim
M\rightarrow \infty 

\sum 
x

Div\nabla 2V (0)[D\^u]\eta M

=  - lim
M\rightarrow \infty 

\sum 
x

(\nabla V (D\^u+Du) - \nabla V (0) - \nabla 2V (0))[D\^u+Du])[D\eta M ]

 - lim
M\rightarrow \infty 

\sum 
x

\nabla 2V (0)[D\^u,D\eta M ]

=: lim
M\rightarrow \infty 

AM +BM .

Since the support of D\eta M is contained in \{ x : M  - C \leq | x| \leq 2M + C\} , for
some fixed C > 0, the first term, AM , can be estimated as a remainder in a Taylor
expansion by

| AM | =
\bigm| \bigm| \bigm| \sum 

x

(\nabla V (D\^u+Du) - \nabla V (0) - \nabla 2V (0))[D\^u+Du])[D\eta M ]
\bigm| \bigm| \bigm| 

\lesssim 
\sum 
x

| D\^u+Du| 2| D\eta M | 

\lesssim M2M - 3 + \| u\| 2\.\scrH 1M
 - 1

\lesssim M - 1.

For the second term, BM , note that M  - C \leq | x| \leq 2M + C implies D\^u = \nabla \^u \cdot \scrR +
O(M - 2) and D\eta M = \nabla \eta M \cdot \scrR + O(M - 2). Estimating also the ``quadrature error""
(replacing the sum by an integral) we obtain

BM =
1

detA\Lambda 

\int 
\BbbR 2

\nabla 2V (0)[\nabla \^u \cdot \scrR ,\nabla \eta M \cdot \scrR ] +O(M - 1)

=

\int 
\BbbR 2\setminus B1(0)

\nabla 2W (0)[\nabla \^u,\nabla \eta M ] +O(M - 1),

where we used the fact that \nabla \eta M = 0 on B1(0) for M sufficiently large. Applying
Gau{\ss}'s theorem as well as the fact that \nabla \^u(x) is always orthogonal to \nu , we obtain

BM =

\int 
\partial B1(\^x)

\nabla 2W (0)[\nabla \^u] \cdot \nu dS(x) +O(M - 1)

= clin

\int 
\partial B1(\^x)

\nabla \^u \cdot \nu dS(x) +O(M - 1)

= O(M - 1).

Thus, we have shown that\sum 
x

fu = lim
M\rightarrow \infty 

(AM +BM ) = 0.

To prove our claims about the first and second moments, we first show that
rotational symmetry of \=u implies rotational symmetry of fu, i.e., fu(LQx) = fu(x):
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fu(LQx) =
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho ,\sigma (D\sigma u(LQx - \rho ) - D\sigma u(LQx))

=
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)Q\rho ,Q\sigma (DQ\sigma u(LQx - Q\rho ) - DQ\sigma u(LQx))

=
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)Q\rho ,Q\sigma (DQ\sigma u(LQ(x - \rho )) - DQ\sigma u(LQx))

=
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)Q\rho ,Q\sigma (D\sigma u(x - \rho ) - D\sigma u(x))

=
\sum 

\rho ,\sigma \in \scrR 
\nabla 2V (0)\rho ,\sigma (D\sigma u(x - \rho ) - D\sigma u(x))

= fu(x),

where we have used Q\scrR = \scrR , D\sigma u(x) = DQ\sigma u(LQx), as well as the rotational
symmetry of V , (2). Let N = 3 for the triangular lattice and N = 4 for the quadratic
lattice, then \sum 

x

fu(x)x =
\sum 
x

fu(x)(x - \^x)

=
1

N

\sum 
x

N - 1\sum 
j=0

fu(L
j
Qx)Q

j(x - \^x)

=
1

N

\sum 
x

fu(x)

N - 1\sum 
j=0

Qj(x - \^x)

= 0

and similarly for the second moment,\sum 
x

fu(x)x\otimes x =
\sum 
x

fu(x)(x - \^x)\otimes (x - \^x)

=
1

N

\sum 
x

N - 1\sum 
j=0

fu(L
j
Qx)(Q

j(x - \^x))\otimes (Qj(x - \^x))

=
\sum 
x

fu(x)P ((x - \^x)\otimes (x - \^x))

= Id
\Bigl( 1
2

\sum 
x

fu(x)| x - \^x| 2
\Bigr) 
,

where we used Lemma 5.2 in the last step.

Finally, we can combine all the foregoing results to prove our main theorems.

Proof of Theorem 2.5. Let us start with the square lattice. According to Theo-
rem 5.6, we have | f\=u| \lesssim | x|  - 4. In particular,

\sum 
x f\=u and

\sum 
x f\=ux converge. Due to

Theorem 5.9,
\sum 

x f\=u = 0 and
\sum 

x f\=ux = 0. Hence, by Theorem 5.8

| Dj \=u(x)| \lesssim | x|  - 2 - j log| x| .
for j = 1, 2 and | x| large enough.

For the triangular lattice Theorem 5.6 gives us | f\=u| \lesssim | x|  - 5 log| x| \lesssim | x|  - 4 - \varepsilon . In
particular,

\sum 
x f\=u,

\sum 
x f\=u, and

\sum 
x f\=ux\otimes x converge. Due to Theorem 5.9,

\sum 
x f\=u = 0,\sum 

x f\=ux = 0, and
\sum 

x f\=ux\otimes x = c Id. At first, by Theorem 5.8 we conclude that
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| Dj \=u(x)| \lesssim | x|  - 2 - j

for j = 1, 2 and | x| large enough. But then Theorem 5.6 gives the stronger result
| f\=u| \lesssim | x|  - 6 log2| x| \leq | x|  - 5 - \varepsilon , so that by Theorem 5.8 we indeed get

| D\=u(x)| \lesssim | x|  - 3 - j

for j = 1, 2 and | x| large enough.

Proof of Theorem 2.9. As in the triangular lattice case we have to argue in several
steps. As a starting point Theorem 5.6 shows that | f\=urem

| \lesssim | x|  - 4 log| x| \leq | x|  - 3 - \varepsilon .
In particular,

\sum 
x f\=urem and

\sum 
x f\=uremx converge. Due to Theorem 5.9,

\sum 
x f\=urem = 0

and
\sum 

x f\=uremx = 0. With Theorem 5.8 we find

| Dj \=urem(x)| \lesssim | x|  - 1 - j

for j = 1, 2, which in turn gives the improved estimate | f\=urem | \lesssim | x|  - 4 in Theorem 5.6.
Going back to Theorem 5.8 we now get

| Dj \=urem(x)| \lesssim | x|  - 2 - j log| x| .

Another iteration of Theorems 5.6 and 5.8 improves this to

| Dj \=urem(x)| \lesssim | x|  - 2 - j .

Finally, by Theorem 5.6, we now find | f\=urem
| \lesssim | x|  - 5. In particular,

\sum 
x f\=urem

x \otimes x
converges as well and due to Theorem 5.9,

\sum 
x f\=urem

x\otimes x = c Id = c\prime \nabla 2W (0). A last
use of Theorem 5.8 gives the desired result,

| Dj \=urem(x)| \lesssim | x|  - 3 - j log| x| 

for j = 1, 2 and | x| large enough.
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