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Abstract

Rare trajectories of stochastic systems are important to understand but dif-

ficult to sample directly. In this work, we introduce a new importance sampling

method based on cloning for evaluating directly large deviation functions (LDFs) as-

sociated to the distribution of additive observables. These large deviation functions

are given in terms of the typical properties of a modified dynamics which rises from

the Feynman-Kac theory and, since the LDFs no longer involve rare events, can be

evaluated efficiently. The method we propose also allows one to study analitically

the order of convergence of the estimator to the correct value of the quantity of

interest, adapting already established results for Feynman-Kac models.
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Introduction

The study of atypical, rare trajectories of dynamical systems arises in many
physical applications such as molecular dynamics, energy transport and chemical
reactions. Unfortunately, when a process is complex enough it becomes no longer
feasible to simulate repeatedly the true dynamics, or for sufficiently many times to
observe a large deviation event.

A widely used class of numerical procedures for generating rare events ef-
ficiently are importance sampling methods based on cloning. Such algorithms are
based on the evolution of a population of copies of the system which are evolved
in parallel and are replicated or killed in such a way as to favour the realisation of
the atypical trajectories. One of these algorithms proposed by Giardinà et al. [1; 2]
is used to evaluate numerically the scaled cumulant generating function (SCGF) of
additive observables in Markov processes. The SCGF plays indeed an essential role
in the investigation of non-equilibrium systems - a role akin to the free energy in
equilibrium ones [3; 4].

This cloning method for estimating the SCGF has been used widely in many
physical systems, including chaotic systems, glassy dynamics and non-equilibrium
lattice gas models. However, there have been fewer studies on the analytical justifi-
cation of the algorithm. In particular, even though it is heuristically believed that
the SCGF estimator converges to the correct result as the size of the population N

increases, there is no proof of this convergence and of how fast the estimator con-
verges. In the last year, Hidalgo et al. [5; 6] proposed a slightly different version of
the cloning algorithm, for which they studied the speed of convergence to the SCGF
not on a fully rigorous level.

In this work, we propose a different cloning algorithm based on Feynman-Kac
models [7]. This new approach enables us to study analytically the convergence of the
algorithm to the scaled cumulant generating function, adapting already established
convergence results for Feynman-Kac models. To our knowledge the model described
in this dissertation has never been covered in the literature on the subject, even
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though similar results were presented by Del Moral and Miclo [8] in the context of
Lyapunov exponents connected to Schrödinger operators.

Feynman-Kac models were originally introduced in the 1940s [9] to express
the semigroup of a quantum particle evolving in a potential in terms of a functional-
path integral formula. The key idea behind these models is to enter the effects
of a potential in the distribution of the paths of a stochastic process. The main
advantage of this interpretation is that it is possible to construct explicitly many-
particle systems which converge to the associated Feynman-Kac model as the size of
the system tends to infinity.

These considerations have inspired us to find the Feynman-Kac interpretation
of the SCGF and apply the theory behind Feynman-Kac models for constructing a
suitable cloning algorithm and proving its convergence to the desired quantity.

The dissertation is structured as follows. In Chapter 1, we present the general
theory of Feynman-Kac models used throughout this work, providing three different
interpretations of these models and illustrating two structural stability properties
essential to the construction of the cloning algorithm.

In Chapter 2 we consider the problem of studying atypical trajectories in the
long-time limit of a discrete-time Markov process, and show how to apply the theory
of Feynman-Kac models for estimating the associated SCGF. We start the chapter
presenting general results of statistical mechanics to motivate the importance of the
SCGF in the study of rare events. In particular we will see that, under certain as-
sumptions, the conditioned Markov process can be represented by a conditioning-free
model obtained by replacing this conditioning with an exponential factor involving a
Lagrange parameter dual to the constraint [3]. From the point of view of statistical
mechanics [4], this new process can be seen as a nonequilibrium generalisation of
the canonical ensemble associated with the Markov process Xn, whereas the condi-
tioned process corresponds to a nonequilibrium generalisation of the microcanonical
ensemble. In this context, the SCGF can be seen as a generalisation of the free
energy. In Section 2.2, we represent the canonical path ensemble and the associated
SCGF via time-homogeneous Feynman-Kac models defined on the state space [7].
We conclude the chapter constructing the cloning algorithm which rises from the
N -particle system interpretation of Feynman-Kac models.

Finally, in Chapter 3, we present new results on the order of convergence of
the considered cloning algorithm to the correct value of the SCGF, under different
conditions.
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Chapter 1

Feynman-Kac Theory

In this chapter, we present the general theory of Feynman-Kac models, in
particular providing three main different descriptions of these models, i.e.

• path-space probability distributions,

• time-marginal flows (seen as solutions of nonlinear equations),

• limits of N -particle system models.

In Chapter 2 we will see how to apply the Feynman-Kac theory presented
here to the study of the large-deviation conditioning problem.

The main reference for this chapter is [7].

1.1 Basic Notation and definitions

In this Section, we provide the basic notation we will use in the presentation
of the Feynman-Kac Theory.

We denote respectively by M(E) and P(E) the set of bounded and signed
measures and the set of probability measures on a given measurable space (E, E).
Also, Bb(E) denotes the set of bounded measurable functions on (E, E).

Definition 1.1.1. Let (E0, E0), (E1, E1) be measurable spaces. A map M : E0 ×
E1 → [0,+∞] is called a transition kernel from (E0, E0) to (E1, E1) if:

1. x0 �→ M(x0, A1) is E0-measurable for any A1 ∈ E1;

2. M(x0, · ) ∈ M(E1) for any x0 ∈ E0.

If M(x0, ·) ∈ P(E1) for any x0 ∈ E0, we say that M is a Markov kernel.
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Any transition kernel M(x0, dx1) from a measure space (E0, E0) to another
measure space (E1, E1) generates two operators, one acting on bounded E1-measurable
functions f1 ∈ Bb(E1) and taking values in Bb(E0)

(Mf1)(x0) =

�

E1

M(x0, dx1)f1(x1), ∀(x0, f1) ∈ E0 × Bb(E1),

and the other one acting on measures µ0 ∈ M(E0) and taking values in M(E1)

(µ0M)(A1) =

�

E0

µ0(dx0)M(x0, A1), ∀(µ0, A1) ∈ P(E0)× E1. (1.1)

We finally define the composite operator of two transition kernels M1 and
M2, respectively from (E0, E0) to (E1, E1) and from (E1, E1) to (E2, E2), by

(M1M2)(x0, dx2) =

�

E1

M1(x0, dx1)M2(x1, dx2).

1.2 The Feynman-Kac Models

The main purpose of this section is to present the Feynman-Kac models,
providing first the traditional path-space definition and, then, the associated time-
marginal flows. We will show in Section 1.3 that these two different representations of
Feynman-Kac models actually possess the same algebraic structure. The flow inter-
pretation of the Feynman-Kac models will be particularly helpful in the construction
of the corresponding N particle models.

Let (En, En), n ∈ N, be a collection of measurable spaces. The Feynman-
Kac models are built with two main ingredients: a sequence of bounded and En-
measurable potential functions Gn : En → [0, ∞) and a (non-homogeneous) Markov
chain �

Ω =
�

n≥0

En, F = (Fn)n∈N, X = (Xn)n∈N, Pν0

�

associated to a collection of Markov kernels Mn from En−1 to En with initial distri-
bution ν0 ∈ P(E0) and where F is a filtration with respect to which X is adapted.

We use the notation Eν0 for the expectations with respect to Pν0 and Pν0,n

for the distribution on E[0,n] :=
�n

p=0Ep given by

Pν0,n(d(x0, . . . , xn)) = ν0(x0)M(x0, dx1) . . .M(xn−1, dxn).
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Thus, for any Fn ∈ Bb(E[0,n]) we have

Eν0

�
Fn(X0, . . . , Xn)

�
=

�

E[0,n]

Fn(x0, . . . , xn)Pν0,n(d(x0, . . . , xn)).

Assumption 1.2.1. We limit ourselves to consider strictly positive potential func-
tions.

The Feynman-Kac models associated with the sequence of pairs (Gn, Mn)n∈N

are traditionally defined as follows.

Definition 1.2.2. The Feynman-Kac prediction and updated path models associated
with the sequence of pairs (Gn, Mn)n∈N, and with initial distribution ν0, are the
sequence of path measures defined respectively by

Qν0, n(dω) :=
1

Zn

� n−1�

p=0

Gp(ωp)

�
Pν0, n(dω),

�Qν0, n(dω) :=
1

�Zn

� n�

p=0

Gp(ωp)

�
Pν0, n(dω),

for any ω = (ω0, . . . ,ωn), n ∈ N, with ωp ∈ Ep, p = 0, . . . , n, and where Zn and �Zn

are the normalising constants

Zn := Eν0

� n−1�

p=0

Gp(ωp)

�
and �Zn := Zn+1 = Eν0

� n�

p=0

Gp(ωp)

�
.

Sometimes, we will make use of a weaker definition of the measures Qν0,n and
�Qν0,n, given for any test function fn ∈ Bb(E[0,n) by the formulae

Qν0,n(fn) =
1

Zn
Eν0

�
fn(X0, . . . , Xn)

n−1�

p=0

Gp(Xp)

�
,

�Qν0,n(fn) =
1

�Zn

Eν0

�
fn(X0, . . . , Xn)

n�

p=0

Gp(Xp)

�
.

The main benefit in using the Feynman-Kac interpretation of the canonical
ensemble is that these models can be seen as the limit of N -particle systems, as N

tends to infinity. To show that, it is convenient to introduce, besides the traditional
path F-K distributions, the flow of the terminal time marginals.

Definition 1.2.3. The unnormalised prediction γn and updated Feynman-Kac model
�γn associated with the sequence of pairs (Gn, Mn)n∈N are the sequences of bounded
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nonnegative measures on En defined weakly for any fn ∈ Bb(En) by

γn(fn) := Eν0

�
fn(Xn)

n−1�

p=0

Gp(Xp)

�
,

�γn(fn) := Eν0

�
fn(Xn)

n�

p=0

Gp(Xp)

�
.

Definition 1.2.4. The normalised prediction ηn and updated Feynman-Kac model
�ηn associated with the sequence of pairs (Gn,Mn)n∈N are sequences of probability
measures on En defined for any fn ∈ Bb(En) by

ηn(fn) :=
γn(fn)

γn(1)
, �ηn(fn) :=

�γn(fn)
�γn(1)

.

Remark. Observe that γn(1) = Zn and �γn(1) = �Zn. Moreover, for any bounded
function fn ∈ Bb(E[0,n]) which depends only on the terminal point of the path, i.e.
fn(ω0, . . . ,ωn) = f(ωn), f ∈ Bb(En), we have

Qν0,n(fn) = ηn(f) and �Qν0,n(fn) = �ηn(f). (1.2)

From the definitions, we can see that the unnormalised flow can be computed
in terms of the normalised distributions. More precisely, we have that

γn(fn) = ηn(fn)
n−1�

p=0

ηp(Gp). (1.3)

In particular, we have γ0 = η0 = ν0, and also �γ0 = �η0 = ν0.

We conclude the section showing that the flow of the normalised time marginal
can be interpreted as the solution of nonlinear equations.

Definition 1.2.5. The Boltzmann-Gibbs transformation associated with a potential
function Gn on (En, En) is the mapping from P(En) into itself defined for any η ∈
P(En) by the Boltzmann-Gibbs measure

Ψn(η)(dxn) :=
Gn(xn)η(dxn)

η(Gn)

Proposition 1.2.6. The normalised prediction and updated Feynman-Kac distribu-
tions ηn and �ηn associated with the pairs (Gn, Mn)n∈N satisfy the nonlinear recursive
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equations

ηn = Φn(ηn−1), (1.4)

�ηn = �Φn(�ηn−1), (1.5)

with the mappings Φn and �Φn from P(En−1) into P(En) defined for any η ∈ P(En−1)

by
Φn(η) := Ψn−1(η)Mn and �Φn(η) = �Ψn(ηMn). (1.6)

Proof. First, note that the Boltzmann-Gibbs transformation is well-defined for Gn

strictly positive and bounded.
Recall that we can write �γn(fn) = γn(fnGn). By the definition of the nor-

malised Feynman-Kac models, we have

�ηn(fn) =
γn(fnGn)/γn(1)

γn(Gn)/γn(1)
=

ηn(fnGn)

ηn(Gn)

Thus, we can see that
�ηn = Ψn(ηn). (1.7)

Moreover,

γn(fn) = Eν0

�
fn(Xn)

n−1�

p=0

Gp(Xp)

�

= Eν0

�
Mn(fn)(Xn−1)

n−1�

p=0

Gp(Xp)

�
= �γn−1(Mn(fn)).

From this we find that

ηn(fn) =
�γn−1(Mn(fn))

�γn−1(1)
= �ηn−1Mn(fn). (1.8)

Combining (1.7) with (1.8), we obtain

ηn(fn) =
(1.8)

�γn−1Mn(fn) =
(1.7)

Ψn−1(ηn−1)Mn(fn) = Φn(ηn−1)(fn),

and
�ηn(fn) =

(1.7)
Ψn(ηn)(fn) =

(1.8)
Ψn(�ηn−1Mn)(fn) = �Φn(�ηn−1)(fn).

This concludes the proof.

Remark. Note that Φn and Ψn, are well-defined on the whole set of distributions
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P(En), since η(Gn) > 0. It is also important to stress that (1.6) is not the only
possible decomposition, for instance a more general class of solutions (Φn, �Φn) for
the nonlinear recursive equations (1.4)-(1.5) is given by the McKean models (see [7],
Section 2.5.3), but also other interpretations are possible.

Decomposition (1.6) shows in particular that the Feynman-Kac flow is a well-
defined two-step updating/prediction model

ηn
Ψn−−→ �ηn := Ψn(ηn)

Mn+1−−−→ ηn+1 := �ηnMn+1 (1.9)

with ηn, �ηn ∈ P(En) and ηn+1 ∈ P(En+1).
This consideration is the basic idea behind the construction of the corre-

sponding N -particle model, as we will see in Section 1.4.

1.3 Structural Stability Properties

Before providing the N -particle interpretation of the Feynman-Kac models,
it is important to underline the interplay between the Feynman-Kac path models
and the time-marginal flows, as also the connection between prediction and updated
models. These two basic structural stability properties of the Feynman-Kac models
will allow us to extend the results for the prediction marginals to the corresponding
prediction and updated path measures.

In what follows, in order to avoid confusion, we make explicit the associated
sequence of potential/transition pairs (Gn, Mn)n∈N in the notation of the Feynman-
Kac distributions and flows considered. For instance, we will write Q(Gn,Mn)

ν0,n instead
of simply Qν0,n.

Consider a Feynman-Kac path model Q(Gn,Mn)
ν0,n and the corresponding time-

marginal flow (η
(Gn,Mn)
n , �η(Gn,Mn)

n ) associated to the sequence of pairs (Gn, Mn)n∈N

and with initial distribution ν0. We are interested in proving that there exist
sequences of potential/kernel pairs, respectively (Gn, Mn)n∈N and ( �Gn, �Mn)n∈N,
which can be construct explicitly and such that

η(Gn,Mn)
n = Q(Gn,Mn)

ν0,n and η(
�Gn, �Mn)

n = �η(Gn,Mn)
n .

We call these two equalities structural stability properties, since they means
that

(1) Feynman-Kac path models have the same structure and can be interpreted as
Feynman-Kac time-marginal flows;
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(2) updated Feynman-Kac flows have the same structure and can be interpreted
as prediction Feynmnan-Kac flows.

These properties will be fundamental in Chapter 2, for interpreting the canonical
path ensemble and the SCGF through Feynman-Kac models associated to convenient
pairs of potential/kernels.

Proposition 1.3.1 (1st Structural Stability Property). Let Q(Gn,Mn)
ν0,n be a Feynman-

Kac path model associated to the sequence of potential/kernel pairs (Gn, Mn)n∈N

defined on Ω :=
�

n∈N En and with initial distribution ν0.
Consider the sequence of potential/kernel pairs (Gn, Mn)n∈N where

Gn(ω
(n)) := Gn(ωn)

is defined for any ω(n) := (ω0, . . . ,ωn) ∈
�n

p=0Ep and Mn, n ∈ N, are the Markov
transitions associated to the non-homogeneous path process Xn := X0:n ∈ �n

p=0Ep

associated to the Markov chain Xn and with initial distribution ν0.
Then, we have that

η(Gn,Mn)
n = Q(Gn,Mn)

ν0,n ,

where η
(Gn,Mn)
n is the prediction Feynman-Kac flow associated to the sequence of

pairs (Gn, Mn)n∈N.

Proof. By the definition of normalised prediction flow 1.2.4, η(Gn,Mn)
n is given by

η(Gn,Mn)
n (dω(n)) =

1

γ
(Gn,Mn)
n (1)

n−1�

p=0

Gp(ω
(p)) · Pν0,n(dω

(n)),

where

γ(Gn,Mn)
n (fn) = Eν0

�
fn(Xn)

n−1�

p=0

Gp(Xp)

�
.

Therefore, the n-time marginal distribution η
(Gn,Mn)
n associated with the

pairs (Gn, Mn)n∈N coincides with the Feynman-Kac path measure Q(Gn,Mn)
ν0,n associ-

ated with the pairs (Gn,Mn)n∈N,

η(Gn,Mn)
n (d(ω0, . . . ,ωn)) = Q(Gn,Mn)

ν0,n (d(ω0, . . . ,ωn)).
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Corollary 1.3.2. Let η
(Gn,Mn)
n be the prediction Feynman-Kac flow associated to

the pairs (Gn,Mn)n∈N, where Mn, n ∈ N, are the Markov transitions of the path
process associated to a Markov chain with transitions Mn from En−1 to En and
initial distribution ν0 and where Gn, n ∈ N, depend only on the terminal point of
the path, i.e. Gn(ω

(n)) = Gn(ωn), for some bounded function Gn ∈ Bb(En), where
ω(n) := (ω0, . . . ,ωn) ∈

�n
p=0Ep.

Then, we have that

η(Gn,Mn)
n = Q(Gn,Mn)

ν0,n ,

where Q(Gn,Mn)
ν0,n is the Feynman-Kac path distribution associated to the sequence of

pairs (Gn, Mn)n∈N.

The second important structural stability property of Feynman-Kac models
is given by the connection of the updated measures with the prediction ones. This
will allow us to transfer the results for prediction models to the updated flows.

Proposition 1.3.3 (2nd Structural Stability Property). Let �η(Gn,Mn)
n be the updated

Feynman-Kac flow associated to the sequence of potential/kernel pairs (Gn, Mn)n∈N

defined on Ω :=
�

n∈N En and with initial distribution ν0.

Consider the sequence of potential/kernel pairs ( �Gn, �Mn)n∈N defined by

�Gn(xn) :=

�

En+1

Gn+1(xn+1)Mn+1(xn, dxn+1), (1.10)

�Mn(xn−1, dxn) :=
Mn(xn−1, dxn)Gn(xn)

�Gn−1(xn−1)
, (1.11)

for any xn−1 ∈ En−1 and xn ∈ En, n ∈ N.

Then, we have
η(

�Gn, �Mn)
n = �η(Gn,Mn)

n ,

where η(
�Gn, �Mn)

n is the prediction Feynman-Kac flow associated to the pairs ( �Gn, �Mn)n∈N

and with initial distribution given by �ν0(dx0) := G0(x0)
ν0(G0)

ν0(dx0), for all x0 ∈ E0.

Proof. First observe that �Mn is a well defined Markov kernel from En−1 to En, since
�Gn(x) > 0.

By definition,

�η(Gn,Mn)
n (fn) =

Eν0

�
fn(Xn)

�n
p=0Gp(Xp)

�

Eν0

��n
p=0Gp(Xp)

� ,
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for any fn ∈ Bb(En). The numerator can be expanded as follows.

Eν0

�
fn(Xn)

n�

p=0

Gp(Xp)

�
=

=

�

E[0,n]

fn(xn)

n�

p=1

Mp(xp−1, dxp)Gp(xp) ·G0(x0) ν0(dx0)

=

�

E[0,n]

fn(xn)
n�

p=1

�Mp(xp−1, dxp) �Gp−1(xp−1) · ν0(G0) �ν0(dx0)

= ν0(G0)

�

E[0,n]

fn(xn)

n−1�

p=0

�Mp+1(xp, dxp+1) �Gp(xp) �ν0(dx0)

= ν0(G0)E�ν0

�
fn( �Xn)

n−1�

p=0

�Gp( �Xp)

�
,

where �Xn is the Markov chain associated to the transition kernels �Mn.

Analogously, we have that

Eν0

� n�

p=0

Gp(Xp)

�
= ν0(G0)E�ν0

� n−1�

p=0

�Gp( �Xp)

�
.

Thus,
�η(Gn,Mn)
n (fn) = η(

�Gn, �Mn)
n (fn).

We conclude the section explaining briefly how these two Structural Stability
Properties will be used in practice in Chapter 2 to characterise the canonical path
ensemble:

• First, we will see that the canonical path ensemble can be interpreted as
the updated Feynman-Kac flow �η(Gn,Mn)

n associated to a sequence of pairs
(Gn,Mn)n∈N and with initial distribution µ0, where Mn, n ∈ N, represent the
transitions of a Markov path process (see Lemma 2.2.1);

• Using the second Structural Stability Property (Proposition 1.3.3), we can in-
terpret the updated time marginal �η(Gn,Mn)

n as the prediction time marginal
associated to (�Gn, �Mn)n∈N with initial distribution �µ0(dx0) :=

G0(x0)
µ0(G0)

µ0(dx0),

x0 ∈ E0, where the pairs ( �Gn, �Mn) are related to (Gn, Mn) through the equa-
tions (2.8)-(2.9) (see Lemma 2.2.2);
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• We will see that �Mn, n ∈ N, are the transitions of a Markov path process asso-
ciated to a Markov chain with transitions �Mn, n ∈ N. Moreover, the potentials
�Gn depend only on the terminal state of the paths, i.e. �Gn(ω0, . . . ,ωn) =

�Gn(ωn), for some bounded function �Gn ∈ Bb(En). Using the first Struc-
tural Stability Property (Corollary 1.3.2), we can interpret the prediction time

marginal η(
�Gn,�Mn)

n with initial distribution �µ0 as the Feynman-Kac path dis-
tribution Q( �Gn,�Mn)

�µ0,n
associated to the pairs ( �Gn, �Mn)n∈N and with initial distri-

bution �µ0 (see Proposition 2.2.3).

These results will be explained in more detail in Section 2.2 and they will be applied
also for characterising the scaled cumulant generating function.

1.4 The N-particle Interpretation

The main purpose of this section is to construct the N -particle system cor-
responding to the Feynman-Kac model (γn, ηn)n∈N associated to the pairs poten-
tial/kernel (Gn, Mn)n∈N on state spaces En and with initial distribution ν0.

For the moment we limit ourselves to providing the heuristic construction of
these particle systems, while rigorous convergence results to ηn will be discussed in
Section 3.1.

Definition 1.4.1 (Feynman-Kac particle model). Let Φn : P(En−1) → P(En) be
the collection of mappings defining the Feynman-Kac model associated to the se-
quence of pairs (Gn, Mn)n∈N and let ν0 ∈ P(E) be the initial distribution. The
corresponding Feynman-Kac interacting particle model is a sequence of nonhomoge-
neous Markov chains

�
EN

n , FN
n , ξ(N) = (ξ(N)

n )n∈N, PN
ν0

�

taking values at each time n ∈ N in the product space EN
n := En × · · · × En. The

initial configuration ξ0 consists of N i.i.d. random variables with common law ν0.
The transitions are given by

PN
ν0(ξ

(N)
n ∈ dxn | ξ(N)

n−1) =

N�

p=1

Φn(m(ξ
(N)
n−1))(dx

p
n), (1.12)

where m(ξ
(N)
n−1)( · ) := 1

N

�N
i=1 δξin−1

( · ) ∈ P(En−1) and dxn = (dx1n, . . . , dx
N
n ) is an

infinitesimal neighbourhood of a point xn ∈ EN
n .

10



In what follows, when there is no possible confusion, we write ξn instead of
ξ
(N)
n .

In case the N -particle system is related to an operator Φn of the form (1.6),
the elementary transitions (1.12) are given by

PN
ν0(ξn+1 ∈ dxn+1 | ξn) =

N�

p=0

�
Ψn(m(ξn))Mn

�
(dxpn+1)

=

�

EN
n

ΨN
n (m(ξn))( dyn) · MN

n+1(yn, dxn+1), (1.13)

where the Boltzmann-Gibbs transformations ΨN
n : P(En) → P(EN

n ) are defined by

ΨN
n (η)(dyn) :=

N�

p=1

Ψn(η)(dy
p
n),

for every η ∈ P(En), and the mutation transitions MN
n : EN

n−1 → EN
n are defined by

MN
n (yn−1, dxn) =

N�

p=1

Mn(y
p
n−1, dx

p
n).

The integral decomposition (1.13) shows that this particle model has the
same updating/prediction nature as that of the limiting Feynman-Kac model. More
precisely, introduce the empirical measures (ηNn , �ηNn ) ∈ P(En)× P(En) given by

ηNn :=
1

N

N�

i=1

δξin and �ηNn :=
1

N

N�

i=1

δ�ξin .

Replacing the normalised Feynman-Kac measures (ηn, �ηn) by the empirical measures
(ηNn , �ηNn ) in the two-step updating/prediction transitions in the distribution spaces
P(En) described in (1.9), we obtain a two-step selection/mutation transitions on
P(En)

ηNn ∈ P(En)
selection−−−−−→ �ηNn ∈ P(En)

mutation−−−−−→ ηNn+1 ∈ P(En+1) ,

which is equivalent to a two-step selection/mutation transitions in product spaces

ξn ∈ EN
n

selection−−−−−→ �ξn ∈ EN
n

mutation−−−−−→ ξn+1 ∈ EN
n+1 . (1.14)

The initial configuration ξ0 consists of N random variables ξi0 ∈ E0 i.i.d. with
common law ν0. The two steps involved in the process can be described as follows:

11



Selection: Given a configuration ξn ∈ EN
n of the system at time n, the selection transition

consists in selecting randomly N states �ξin with respective distributions

�ξin ∼ Ψm(ξn), n.

In other words, we select randomly an index j ∈ {1, . . . , n} with distribution

Ψn(m(ξn)) =

N�

i=1

Gn(ξ
i
n)�N

k=1Gn(ξkn)
δξin (1.15)

and we set �ξin = ξjn.

Mutation: During the mutation stage, each selected particle �ξin evolves randomly accord-
ing to the Markov transition Mn+1. In other words, given the selected con-
figuration �ξn ∈ EN

n , the mutation transition consists in sampling randomly N

independent random states ξin+1 with respective distributions Mn+1(�ξin, · ).

12



Chapter 2

The Large-Deviation Conditioning
Problem

The main purpose of the chapter is to provide a numerical procedure based
on Feynman-Kac models to study the long-time limit behaviour of a discrete-time
Markov process conditioned on rare events. In Section 2.1 we introduce the basic
notation for defining the large-deviation conditioning problem and we also provide
the main statistical mechanics results for the study of the problem, introducing the
canonical path ensemble and the scaled cumulant generating function (SCGF).

Then, in Section 2.2, we will apply the theory of Feynman-Kac models to our
problem of large deviation conditioning and show that the canonical path ensemble
can be seen as a (homogeneous) Feynman-Kac path model.

We conclude the chapter providing the construction of the cloning algorithm
associated to the Feynman-Kac N -particle model that estimates the SCGF. In Chap-
ter 3, we will give rigorous results for estimating the approximation errors and the
order of convergence as the size of the system N tends to ∞.

2.1 Basic Notation and Definitions

In this section we provide a brief overview of the large-deviation condition-
ing problem [3]. The results presented here allow us to study the long-time limit
behaviour of a discrete-time Markov process conditioned on rare events introducing
the associated canonical path ensemble and the scaled cumulant generating function.
In the following sections, we will see how these quantities can be interpreted using
Feynman-Kac models.

Let (S,S) be Rd or a counting space, equipped respectively with the Lebesgue

13



or counting topology. Let Ωn := Sn+1 be the path space of the trajectories until
time n, for every n ∈ N0. We consider a discrete-time Markov process

�
Ω := SN0 , F = (Fn)n∈N, X = (Xn)n∈N0 , Pµ0

�
,

with homogeneous Markov kernel

P(Xn ∈ dxn |Xn−1 = xn−1) =: M(xn−1, dxn),

and with initial distribution µ0 ∈ P(S). As usual, we use the natural filtration
generated by the process, i.e. Fn is the smallest σ-algebra on Ω such that all Xp,
p = 0, . . . , n, are measurable.

We consider observables An : Ωn → R over the time interval [0, n] of the form

An :=
1

n

n�

k=1

g(Xk−1, Xk) + f(Xk−1), (2.1)

where f ∈ Bb(S) and g ∈ Bb(S
2) are bounded measurable functions.

Remark. We require f and g to be bounded so that the potential functions we will
construct from An in Section 2.2 will be bounded. However, this requirement is not
necessary for obtaining bounded potential functions (see, for instance, Example 3).

Example. The class of observables given by (2.1) includes many random variables
of mathematical and physical interest, including:

• the occupation time in some set B, obtained with f = �B and g = 0;

• the particle current across a particular bond (i, i + 1), obtained with f = 0

and g(x, y) = �{i}(x) · �{i+1}(y) − �{i+1}(x) · �{i}(y);

• the action functional [10] obtained by setting f = 0 and g(x, y) = log M(x,y)
M(y,x) ,

provided infx,y M(x, y) > 0.

Assumption 2.1.1. The observable An is assumed to satisfy a large deviation
principle (LDP) with respect to Pµ0,n with rate function I, that is the function
I : S → [0,∞] is lower semi-continuous with compact level sets such that I �≡ ∞
and the following bounds hold:

• lim supn→∞
1
n logPµ0,n(An ∈ C) ≤ − infx∈C I(x) ∀C ⊂ R closed.

• lim infn→∞ 1
n logPµ0,n(An ∈ O) ≥ − infx∈O I(x) ∀O ⊂ R open.

14



We are interested in studying the long-time limit behaviour of Pµ0,n(An) and
of the probability path measure of the conditioned process Xn|An , where An is a
general measurable event

An := {ω ∈ Ωn |An(ω) ∈ da}

of sample paths satisfying the constraint that An ∈ da, a ∈ R.
The probability path measure of the conditioned process can be seen as the

microcanonical path ensemble

Pa
µ0,n(dω) := Pµ0,n(dω|An ∈ da).

Applying general statistical mechanics results [4], we have that, under certain
hypotheses, Pa

µ0,n and the canonical path ensemble

Pµ0,n,k(dω) :=
eknAn(ω)Pµ0,n(dω)

Eµ0 [e
knAn ]

, k ∈ R, (2.2)

are equivalent at three different levels (namely thermodynamical, observable and
measure). In order to state these equivalence results rigorously, we need to introduce
the scaled cumulant generating function (SCGF) of the observable An for every k ∈ R:

Λ(k) := lim
n→∞

1

n
logEµ0 [e

knAn ], (2.3)

which is defined provided the limit exists.

Theorem 2.1.2 (Thermodynamical Equivalence). Assume that, for every k ∈ R,

lim sup
n→∞

1

n
logEµ0 [e

knAn ] < ∞.

Then, for each k ∈ R, the limit Λ(k) exists, is finite and satisfies

Λ(k) = sup
a∈R

{k · a− I(a)}.

Furthermore, if I is strictly convex at a, then

I(a) = sup
k∈R

{k · a− Λ(k)}.

Proof. See [11], Theorem 4.5.10.

Theorem 2.1.3 (Observable Equivalence). Let Bn be an observable which satisfies
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an LDP with respect to the canonical path measure Pµ0,n,k with rate function Ik and
an LDP with respect to the microcanonical path measure Pa

µ0,n with rate function Ia.
Under the assumptions of Theorem 2.1.2, if I is strictly convex at a, then

Ea = Ek for all k ∈ ∂I(a), where

Ea := {b ∈ R | Ia(b) = 0}, Ek := {b ∈ R | Ik(b) = 0},

and ∂I(a) is the subdifferential set of I at a, that is

∂I(a) := {x ∈ R |x · a− I(a) ≤ x · y − I(y), y ∈ R}.

Proof. See [4], Theorem 7.

Theorem 2.1.4 (Measure Equivalence). Under the assumptions of Theorem 2.1.2,
if I is strictly convex at a, then

lim
n→∞

1

n
logPa

µ0,n = lim
n→∞

1

n
logPµ0,n,k ,

almost everywhere with respect to both Pa
µ0,n and Pµ0,n,k.

Proof. See [4], Theorem 12.

In the following sections, we will provide the Feynman-Kac interpretation of
the canonical path ensemble and, in particular, we construct the N -particle system
which allows us to approximate the SCGF.

2.2 The Feynman-Kac Interpretation

In this section, we apply the theory of Feynman-Kac models developed in
Chapter 1 to the problem of large deviation conditioning. In particular, using the
Structural Stability Properties discussed in Section 1.3, we provide a Feynman-Kac
interpretation of the canonical math measure and of the SCGF which is associated
to a time-homogeneous potential/kernel pair ( �G, �M), defined on the state space S.

Lemma 2.2.1. Let Xn := X0:n ∈ Ωn, n ∈ N, be the Markov path process associ-
ated to the Markov chain Xn with initial distribution µ0 and transition kernel M .
We denote by Mn the corresponding Markov kernel and introduce the sequence of
(bounded) potential functions

Gn(Xn) := exp(kg(Xn−1, Xn) + kf(Xn−1)),
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for n ≥ 1, where Xn = (X0, . . . , Xn) ∈ Ωn, assuming G0(X0) ≡ 1.
Then, the canonical path ensemble (2.2) and the scaled cumulant generating

function (2.3) can be written respectively as

Pµ0,n,k = �η(Gn,Mn)
n (2.4)

and
Λ(k) = lim

n→∞
1

n
log �γ(Gn,Mn)

n (1) , (2.5)

where �η(Gn,Mn)
n and �γ(Gn,Mn)

n are the normalised and unnormalised updated flows
associated to the pairs (Gn,Mn)n∈N and with initial distribution µ0.

Proof. The statement follows easily from the definitions (2.2)-(2.3). Indeed, we have
that

Pµ0,n,k(dω
(n)) =

�n
p=0 Gp(ω

(p)) · Pµ0,n(dω
(n))

Eµ0

��n
p=0 Gp(Xp)

� = �η(Gn,Mn)
n (dω(n)),

for any ω(n) := (ω1, . . . ,ωn) ∈ Ωn, and

Eµ0

�
eknAn

�
= Eµ0

� n�

p=0

Gp(Xp)
�
= �γ(Gn,Mn)

n (1).

Lemma 2.2.2. Consider the sequence of pairs ( �Gn, �Mn)n∈N defined by

�Gn(ω
(n)) :=

�

Ωn+1

Mn+1(ω
(n), dω(n+1))Gn+1(ω

(n+1)) ,

�Mn(ω
(n−1), dω(n)) :=

Mn(ω
(n−1), dω(n))Gn(ω

(n))

�Gn−1(ω(n−1))
,

for any ω(n−1) ∈ Ωn−1 and ω(n) ∈ Ωn, n ∈ N, with (Gn, Mn)n∈N given by Lemma
2.2.1.

Then, the canonical path ensemble (2.2) and the scaled cumulant generating
function (2.3) can be written respectively as

Pµ0,n,k = η(
�Gn, �Mn)

n (2.6)

and
Λ(k) = lim

n→∞
1

n
log γ(

�Gn, �Mn)
n (1), (2.7)

where η
(�Gn, �Mn)
n and γ

(�Gn, �Mn)
n are the normalised and unnormalised prediction flows
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associated with the sequence of pairs ( �Gn, �Mn) and with initial distribution �µ0(dx0) :=
G0(x0)
µ0(G0)

µ0(dx0).

Proof. Using the Feynman-Kac interpretation of the canonical path ensemble and
SCGF given by Lemma 2.2.1, we have that the statement follows straightforward
by applying the second Structural Stability Property (Proposition 1.3.3) to the nor-
malised updated flow �η(Gn,Mn)

n associated to the pairs (Gn,Mn)n∈N and with initial
distribution µ0.

This result tells us that the canonical path ensemble and the SCGF can
be estimated through the Feynman-Kac N -particle system described in Section 1.4
associated to (�Gn, �Mn)n∈N. One of the main advantages of considering the prediction

time marginal η(
�Gn, �Mn)

n associated to the pairs ( �Gn, �Mn)n∈N instead of the updated
time marginal �η(Gn,Mn)

n associated to (Gn,Mn)n∈N is that the non-homogeneous
pairs potential/kernel ( �Gn, �Mn)n∈N on the path spaces Ωn can be rewritten more
practically as homogeneous pairs potential/kernel ( �G, �M) on the state space S.

Proposition 2.2.3. Consider the time-homogeneous potential/kernel pair ( �G, �M)

on S given by

�G(xn) :=

�

S
F (xn, z)M(xn, dz) , (2.8)

�M(xn, dyn+1) :=
F (xn, yn+1)M(xn, dyn+1)

�G(xn)
., (2.9)

where
F (Xn−1, Xn) := exp(kg(Xn−1, Xn) + kf(Xn−1)). (2.10)

The canonical path ensemble (2.2) and the SCGF (2.3) can be written respec-
tively as

Pµ0,n,k = Q( �G, �M)
µ0,n (2.11)

and
Λ(k) = lim

n→∞
1

n
log γ(

�G, �M)
n (1) , (2.12)

where Q( �G, �M)
µ0,n and γ

( �G, �M)
n are the Feynman-Kac prediction path model and the corre-

sponding unnormalised prediction flow associated to the sequence of pairs ( �G, �M)n∈N

and with initial distribution µ0.

Proof. First of all, observe that F (and thus also �G) is bounded. Moreover, we can
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see from the definitions that F (Xn−1, Xn) = Gn(Xn). Therefore, we can write

�Gn(θn) =

�

Ωn+1

Gn+1(θn+1)Mn+1(θn, dθn+1)

=

�

S
F (xn, z)M(xn, dz) = �G(xn),

for any θn = (x0, . . . , xn) ∈ Ωn. In particular, �Gn is a potential function of the path
space Ωn depending only on the terminal state of the trajectories.

Moreover, for any θn = (x0, . . . , xn) ∈ Ωn and θn+1 = (y0, . . . , yn+1) ∈ Ωn+1

we have that

�Mn+1(θn, dθn+1) =
F (xn, yn+1)M(xn, dyn+1)

�G(xn)
· δθn(dy0, . . . , dyn)

= �M(xn, dyn+1) · δθn(dy0, . . . , dyn).

This means that �Mn, n ∈ N, are the transitions of the path process associated to the
homogeneous Markov chain on S given by the kernel �M and with initial distribution
�µ0. Recalling the definition of �µ0 given in Lemma 2.2.2, we can see that

�µ0(dx0) =
G0(x0)

µ0(G0)
µ0(dx0) = µ0(dx0),

for all x0 ∈ S, since G0 ≡ 1.

Therefore we can apply Corollary 1.3.2 (first Structural Stability Property of
Feynman-Kac models) to the sequence of pairs ( �Gn, �Mn)n∈N. Combining this result
with Lemma 2.2.2, we obtain Equation (2.11).

Finally, recalling observation (1.2), we can see that for every bounded function
fn ∈ Bb(Ωn) depending only on the terminal point of the paths, i.e. fn(x0, . . . , xn) =
f(xn), f ∈ Bb(S), we can write

η(
�Gn, �Mn)

n (fn) = η(
�G, �M)

n (f). (2.13)

In particular, (2.13) holds for fn = �Gn. Recalling the relation (1.3), we can
see that

γ(
�Gn, �Mn)

n (1) = γ(
�G, �M)

n (1).

This, applied with Lemma 2.2.2, concludes the proof.

Proposition 2.2.3 tells us that the canonical ensemble (2.2) can be seen as
the Feynmnan-Kac prediction path model associated to a time-homogeneous poten-
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tial/kernel pair ( �G, �M) on the state space S. Moreover, thanks to equality (2.12),
we will see that we can estimate the SCGF through simulations of Feynman-Kac
particle systems associated to the pair ( �G, �M).

2.3 The Cloning Algorithm

Cloning algorithms are numerical procedures aimed at simulating rare events
efficiently, using a population dynamic scheme. In such algorithms, copies of the sys-
tem are evolved in parallel and the ones showing the rare behaviour of interest are
multiplied iteratively. This class of algorithms is also used to evaluate numerically
the scaled cumulant generating function (2.3) in several physical applications, in-
cluding chaotic systems, glassy dynamics and non-equilibrium lattice models. Even
if it is heuristically believed that the estimator originated by the cloning algorithm
converges to the correct value of the SCGF, there are only few studies focusing on
the analytical justification of the algorithm [5; 6].

We propose here a different cloning algorithm which makes use of the N -
particle interpretation of Feynman-Kac models. This approach enables us to study
analytically the convergence of the algorithm to the quantity of interest. Novel
rigorous convergence results will be presented in Chapter 3.

Recalling the construction of the process in Section 1.4, the Feynman-Kac in-
teracting particle model associated to ( �G, �M) is a sequence of homogeneous Markov
chains �

SN , FN , ξ(N) =
�
ξ(N)
n

�
n∈N, PN

µ0

�

taking values in the product space SN := S × · · · × S. The initial configuration ξ0

consists of N i.i.d. random variables with common law µ0. The transitions are given
by

PN
µ0
(ξn+1 ∈ dxn+1 | ξn) =

�

SN

ΨN (m(ξn))(dyn) · �MN (yn, dxn+1),

where ΨN : P(S) → P(SN ) is defined by

ΨN (η)(dy) =

N�

p=1

Ψ(η)(dyp) =

N�

p=1

�G(yp)

η( �G)
η(dyp),

for every η ∈ P(S) and y ∈ SN , and the Markov transitions �MN : SN → SN are
defined by

�MN (yn−1, dxn) =
N�

p=1

�M(ypn−1, dx
p
n). (2.14)
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As explained in Section 1.4, the underlying two-step process (ξn, �ξn)n∈N can
be described as follows:

Selection: Given a configuration ξn ∈ SN of the system at time n, the selection transition
consists in randomly selecting, for every i = 1 . . . , N , an index j ∈ {1, . . . , N}
with distribution

Ψ(m(ξn)) :=
N�

i=1

�G(ξin)�N
k=1

�G(ξkn)
δξin ,

and we set �ξin = ξjn.

Mutation: Given a configuration �ξn ∈ ΩN
n , the mutation transition consists in sampling

randomly N independent random states ξin+1 with time-homogeneous kernels
�M(�ξin, · ), i = 1, . . . , N .

The model described above can be thought as the evolution of a popula-
tion whose individuals reproduce and die subject to a natural evolution interaction
mechanism. During the selection stage, the elements with high potential �G are more
likely to be multiplied, while elements with low potential are eliminated. Then, each
individual evolves and mutates according to transition �M .

In order to estimate the scaled cumulant generating function Λ(k) which
satisfies relation (2.12), we need to introduce the approximation measures associated

to the Feynman-Kac flow (γn, ηn) := (γ
( �G, �M)
n , η

( �G, �M)
n ).

Definition 2.3.1. The N -particle approximation measures associated with the Feynman-
Kac flows (γn, ηn) are given by:

ηNn :=
1

N

N�

i=1

δξin ∈ P(S), (2.15)

γNn (·) := ηNn (·)
n−1�

p=1

ηNp ( �G) ∈ M+(S), (2.16)

where M+(S) denotes the set of positive measures on S.

Remark. The following identities hold

γNn (f) = γNn (1) · ηNn (f), (2.17)

γNn+1(1) = γNn (1) · ηNn ( �G), (2.18)

where f ∈ Bb(S).
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Algorithm 1 represents the cloning algorithm for the SCGF estimation and
it is exactly the mean field particle interpretation of the model within Del Moral’s
framework [7].

Algorithm 1 Cloning Algorithm for simulating the SCGF
1: for i ← 1, N do
2: Sample ξi0 ∼ µ0;
3: Compute �G(ξi0);
4: Compute ηN0 ( �G) = 1

N

�N
i=1

�G(ξi0);
5: Set γN1 (1) = ηN0 ( �G);
6: for p ← 1, n− 1 do
7: for i ← 1, N do
8: Sample �ξip−1 ∼ Ψ(m(ξp−1));
9: Sample ξip ∼ �M

��ξip−1, ·
�
;

10: Compute �G(ξip);

11: Compute ηNp ( �G) = 1
N

�N
i=1

�G(ξip);
12: Update γNp+1(1) = γNp (1) · ηNp ( �G);

13: Return 1
n log γNn (1).

In Chapter 3 we will show some rigorous convergence results of the approxi-
mation measures (γNn , ηNn ) with respect to the Feynman-Kac flow (γn, ηn). In partic-
ular, we will discuss the order of convergence of the approximation error associated
to the quantity 1

n log γNn (1) − Λ(k).

2.4 Toy Examples

We conclude the chapter providing some simple examples that illustrate the
construction of the pair ( �G, �M) which provides the implementation of the Algorithm
1. We will reconsider these toy examples also at the end of Chapter 3, for illustrating
how to apply the convergence results we will achieve.

Example 1. Let S = Z and consider the random walk defined by the transition
probabilities M(x, x + 1) = p ∈ (0, 1) and M(x, x − 1) = 1 − p for all x ∈ S. We
also introduce the observable An = (Xn − X0)/n, so that we have the operator F

from (2.10) is given by F (x, y) = exp(ky − kx). Note that the operator F thus
defined is not bounded, but we can overcome the problem considering F (x, y) =

exp((ky − kx)�{x+1,x−1}(y)) instead, since the allowed jumps from x are only on
x− 1 and x+ 1, for all x ∈ S.
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By construction, we can write �G (2.8) as

�G(x) = p · ek(x+1)−kx + (1− p) · ek(x−1)−kx = p · ek + (1− p) · e−k =: K,

and the mutation transitions �M (2.9) as

�M(x, x+ 1) =
p · ek
K

, �M(x, x− 1) =
(1− p) · e−k

K
,

for all x ∈ Z.
Observe that the mutation transition �M corresponds to the original process

transition M with an added drift e±k/K. Moreover, the potential function �G is in-
dependent of x ∈ Z, therefore the selection stage performed in the cloning algorithm
consists in selecting uniformly an index j from the set {1, . . . , N} and set �ξin = ξjn,
for every i = 1, . . . , N .

Therefore, in this simple application we can see that ηNn ( �G) ≡ K, for all
n ∈ N, and thus γNn (1) = Kn. This implies

lim
n→∞

1

n
log γNn (1) = logK.

We want to show that logK = Λ(k). For every n ∈ N, we have that

Eµ0 [e
k(Xn+1−X0)] = p · Eµ0 [e

k(Xn−X0+1)] + (1− p) · Eµ0 [e
k(Xn−X0−1)]

= K · Eµ0 [e
k(Xn−X0)].

By induction, we obtain

Eµ0 [e
k(Xn−X0)] = Kn · Eµ0 [1] = Kn .

Thus,

Λ(K) = lim
n→∞

1

n
log

�
Eµ0 [e

k(Xn−X0)]

�
= logK.

Example 2. Let S = {1, . . . ,m} finite with periodic boundary condition m + 1 =

1. We consider, as above, the random walk defined by the transition probabilities
M(x, x+1) = p ∈ (0, 1) and M(x, x−1) = 1−p for all x ∈ S. We are interested in the
occupation time in {1}, so that the considered observable is An = 1

n

�n
i=1 �{1}(Xi).

In this case, F (x, y) = exp(k · �{1}(y)).
Therefore,

�G(m) = p · ek + (1− p), �G(2) = (1− p) · ek + p,
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and �G(x) = 1 for x �= m, 2. Moreover,

�M(m, 1) =
p · ek
�G(m)

, �M(m,m− 1) =
(1− p) · ek

�G(m)
,

�M(2, 3) =
p · ek
�G(2)

, �M(2, 1) =
(1− p)ek

�G(2)
,

and �M(x, x+ 1) = p or �M(x, x− 1) = 1− p, otherwise.

Example 3. We consider the same observable of Example 1, i.e. An = (Xn−X0)/n,
but this time on state space S = R and with Markov transitions M(x, dy) =
1√
2π
e−(y−x)2/2dy, given by the gaussian distribution centred in x. In this case

F (x, y) := exp(ky − kx) is not bounded (so it doesn’t fall within the cases con-
sidered) however we can see that

�G(x) =
1√
2π

�

R
ek(y−x) · e−(y−x)2/2dy

=
1√
2π

�

R
e

−(y−(x+k))2+k2

2 = ek
2/2,

in particular �G is a bounded potential function, so the convergence results from
Feynman-Kac theory presented in Chapter 3 still apply (provided the hypothesis are
satisfied).

Note also that the mutation transitions are given by

�M(x, dy) = e−k2/2 · 1√
2π

e
−(y−(x+k))2+k2

2 dy =
1√
2π

e
−(y−(x+k))2

2 dy,

for all x, y ∈ R.

As in Example 1, since �G is constant on S = R, we can see that

lim
n→∞

1

n
log γNn (1) = log ek

2/2 =
k2

2
.
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We want to show that Λ(k) = k2

2 . For every n ∈ N, we have that

Eµ0 [e
k(Xn+1−X0)] =

�

R
Eµ0

�
ek(Xn+1−X0+y)M(Xn, Xn + y)

�
dy

=

�

R
eky · Eµ0

�
ek(Xn+1−X0) · e

−y2/2

√
2π

�
dy

= Eµ0 [e
k(Xn−X0)] ·

�

R

1√
2π

· e
−(y−k)2+k2

2 dy

= Eµ0 [e
k(Xn−X0)] ·

�

R

1√
2π

· e
−(y−k)2+k2

2 dy

= ek
2/2 · Eµ0 [e

k(Xn−X0)].

By induction, we obtain Eµ0 [e
k(Xn−X0)] = en·k

2/2. Thus,

Λ(K) = lim
n→∞

1

n
log

�
Eµ0 [e

k(Xn−X0)]

�
=

k2

2
.
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Chapter 3

Convergence Results

We are interested in studying the approximation error and the order of con-
vergence of the Cloning Algorithm 1 presented in Section 2.3 for estimating the
SCGF (2.3), as the size of the system N goes to infinity. More precisely, recalling
the definition of the approximation measures 2.3.1, we are interested in estimating
the Lp-error

Eµ0

� �� 1
n
log γNn (1) − Λ(k)

��p
�1/p

, (3.1)

for n, N ∈ N and p ≥ 0, as well as the probability

P

�
| 1
n
log γNn (1)− Λ(k)| > δ

�
, (3.2)

for δ > 0 and n, N ∈ N.

We start presenting some of the main convergence results for general Feynman-
Kac models, as introduced in [7], Section 7.4.

In Section 3.2 we apply these results for estimating the quantities (3.1) and
(3.2) in the case of finite state space S and, in Section 3.3 we provide sufficient
conditions for having time-homogeneous estimates in case of finite state space S.

3.1 Some Preliminary Results

To simplify the presentation, we first recall the basic notation used in the
previous chapters. As seen in Section 2.2, the scaled cumulant generating function
can be written as

Λ(k) = lim
n→∞

1

n
log γn(1),
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where γn is the unnormalised prediction Feynman-Kac flow on S associated to the
pair ( �G, �M), where �G : S → (0,∞) is the potential function defined in (2.8) and �M
is defined in (2.9) and it is the transition kernel of a (homogeneous) Markov process
on S.

Let ηn be the corresponding normalised Feynman-Kac flow and recall the the
definition of the approximation measures 2.3.1 (ηNn , γNn ).

In this section we present the main relevant convergence results of the ap-
proximation measures (ηNn , γNn ) to the time-marginal prediction measures (ηn, γn),
that will allow us to estimate the quantities (3.1) and (3.2), in the following sections.
The main reference for this section is [7], Section 7.4.

Proposition 3.1.1. For each p ≥ 1 and n, N ∈ N, we have

E[γNn (f)] = γn(f) (3.3)

and

E

�
|γNn (1)− γn(1)|p

�1/p
≤ �p/2�! · α · (n+ 1)√

N
,

where α > 0 constant.

Proof. See [7], first part of Theorem 7.4.2, p. 239.

Proposition 3.1.2. Let δ > 0 and
√
N ≥ 4/δ. For each n ∈ N we have the estimate

P

�
|γNn (1)− γn(1)| > δ

�
≤ 8(n+ 1)e−Nδ2n/2,

with δn := δ/(n+ 1).

Proof. See [7], second part of Theorem 7.4.2, p. 239.

Remark. Observe that Proposition 3.1.2 implies (using Borel-Cantelli) the strong
law of large numbers for γNn (1), that is |γNn (1)− γn(1)| converges almost surely to 0

as N → ∞, for any fixed n ∈ N.

Under certain regularity conditions of the pair ( �G, �M), the Feynman-Kac
model has several regularity and asymptotic stability properties which guarantee the
existence and uniqueness of an invariant measure η∞ and also allow us to obtain time-
uniform estimates of the normalised prediction measure ηn. A detailed discussion
for normalised time marginals ηNn can be found in [7], Section 7.4.3. We present
here only the two main statements, which we will use in section 3.2 for studying the
convergence of the cloning algorithm.
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Assumption 3.1.3. We assume that:

• supx∈S �G(x) < ∞ and infx∈S �G(x) > 0. In this case, we define ε := infx �G(x)

supx
�G(x)

;

• there exist m ≥ 1 and � ∈ (0, 1) such that �Mm(x, · ) ≥ � · �Mm(y, · ), for every
x, y ∈ S.

Remark. Observe that, if S is finite, �G is strictly positive and there exists m ≥ 1

such that �Mm(x, z) > 0 for all x, z ∈ S, then Assumption 3.1.3 holds. It is useful
also to recall that, in case S is finite, there exists m ≥ 1 such that �Mm(x, z) > 0 for
every x, z ∈ S if and only if �M is irreducible and aperiodic.

Remark. The potential function �G used in the definition of the cloning algorithm
and given by Equation (2.8) is always strictly positive, by construction.

Assumption 3.1.3 guarantees the existence and uniqueness of an invariant
measure η∞. More formally, recall the one-step mapping Φ : P(S) → P(S) defined
in Proposition 1.2.6 by

Φ(µ) = Ψ(µ)�M,

where Ψ : P(S) → P(S) is the Boltzmann-Gibbs transformation given by

Ψ(µ)(dx) :=
1

µ( �G)
�G(x)µ(dx).

Definition 3.1.4. Given a mapping Θ : P(S) → P(S), a measure µ ∈ P(S) is said
to be Θ-invariant if µ = Θ(µ).

Proposition 3.1.5. Suppose Assumption 3.1.3 holds for some integer parameter
m ≥ 1 and some real numbers ε, � ∈ (0, 1). Then there exists a unique invariant
measure η = Φ(η) ∈ P(S) and for any n ∈ N and f ∈ Bb(S) we have

Eη

�
f(Xn)

n−1�

p=0

�G(Xp)

�
= η(f)η( �G)n,

where Eη is the expectation with respect to the law of a homogeneous Markov chain
Xn with transitions �M and initial distribution η.

Proof. See [7], Theorem 5.2.1, p.161.

Assumption 3.1.3 also allows us to have time-uniform estimates of the quan-
tities

E

�
|ηNn (f)− ηn(f)|p

�1/p
and P

�
|ηNn (f)− ηn(f)| > δ

�
,
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for every bounded function f : S → R, p ≥ 1 and δ > 0.

Theorem 3.1.6. Let n ≥ 0, p ≥ 1, N ∈ N and f : S → R be a bounded function,
||f ||∞ := C < ∞.

Under Assumption 3.1.3, we have the uniform estimate

Eµ0

���ηNn (f)− ηn(f)
��p
�1/p

≤ 2C · d(p)1/p ·m√
N · ε2m+1 · �3

,

where ε, � and m are given by Assumption 3.1.3 and d(p) is defined for any p ≥ 1

by

d(p) =




(p)k2

−k p = 2k,

(p)k√
p/2

2−p/2 p = 2k − 1,
(3.4)

where (p)k := p!/(p− k)! with k ∈ N.

Proof. See [7], Theorem 7.4.4, p.246.

Corollary 3.1.7. Let n ≥ 0, δ > 0, N ∈ N and f : S → R be a bounded function,
||f ||∞ := C < ∞. Under Assumption 3.1.3, we have

P(|ηNn (f)− ηn(f)| > δ) ≤ (1 +
δ

C

�
N/2) e−Nb(δ)2/2,

where b(δ) := δ · ε2m+1 · �3/(C · 2m), with m, ε, � given in Assumption 3.1.3.

Proof. See [7], Corollary 7.4.3, p.247.

3.2 Estimation of the Scaled Cumulant Generating Func-
tion

In this section, we are interested in estimating the quantities (3.1) and (3.2)
in case S finite and �M irreducible. In particular, the results presented here hold
also for non aperiodic Markov chains. We will discuss the case in which Assumption
3.1.3 holds in Section 3.3.

In order to estimate (3.1) and (3.2), it is useful to evaluate first the quantities

Eµ0

� �� 1
n
log γNn (1) − 1

n
log γn(1)

��p
�1/p

, (3.5)
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for n, N ∈ N and p ≥ 0, and

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
, (3.6)

for δ ∈ (0, 1) and n, N ∈ N.

Proposition 3.2.1. Let the state space S be Rd or a counting space. Consider the
potential/kernel pair ( �G, �M) given by (2.8)-(2.9) and such that c := infx∈S �G(x) > 0.
For each p ≥ 1 and n,N ∈ N we have

Eµ0

�
log γNn (1)

�
≤ log γn(1),

and the equality holds if and only if �G constant. Moreover,

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|p

� 1
p

≤ α �p/2�!√
N

· n+ 1

n · cn ,

for some finite constant α.

Remark. Observe that we don’t make any particular assumption on �M . In partic-
ular, it is not irreducible in general. Observe also that, in the case S is finite, the
assumption c > 0 in Proposition 3.2.1 always holds, since �G is strictly positive, by
construction.

Proof. The proof is a simple application of Proposition 3.1.1. The first part of the
statement follows by Jensen, indeed

E

�
log

γNn (1)

γn(1)

�
≤ logE

�
γNn (1)

γn(1)

�
= 0,

and the equality holds if and only if γNn (1) is deterministic. By definition of γN
n

(2.16), it holds if and only if ηNn ( �G) (2.15) is deterministic and, thus, if and only if
�G is constant on S.

For the second part of the statement, we use the fact that | log x − log y| ≤
|x− y|/min{x, y}, so that

| log γNn (1)− log γn(1)| ≤
|γNn (1)− γn(1)|

min{γNn (1), γn(1)}
≤ |γNn (1)− γn(1)|

cn
. (3.7)

Indeed, by definition of ηn (1.4), we have ηn( �G) ≥ c, thus, using relation (1.3), we
obtain γn(1) ≥ cn. Analogously, we have γNn (1) ≥ cn.
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Using estimate (3.7) in the estimation of the Lp-error and applying Proposi-
tion 3.1.1, we can conclude

1

n
Eµ0

�
| log γNn (1)− log γn(1)|p

� 1
p

≤ 1

n · cn · E

� ��γNn (1)− γn(1)
��p
�1/p

≤ α �p/2�!√
N

· n+ 1

n · cn .

In particular, Proposition 3.2.1 implies that, when �G is not constant on S,
1
n log γNn (1) is not an unbiased estimator for 1

n log γn(1), but its expected value con-
verges to 1

n log γn(1) as the size of the system N goes to infinity, with speed of
convergence 1√

N
.

Proposition 3.2.2. Let the state space S be Rd or a counting space. Consider
the potential/kernel pair ( �G, �M) given by (2.8)-(2.9). For each n ∈ N we have the
estimate

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
≤ 8(n+ 1)e−Nδ2n/2,

where δn := γn(1) · (1− e−nδ)/(n+ 1).

Remark. Observe that we don’t make any particular assumption neither on �G nor �M .
In particular, infx∈S �G(x) is not necessarily strictly positive and �M is not irreducible,
in general.

Proof. Fix δ > 0 and n, N ∈ N. We have that

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
= P

����� log
γNn (1)

γn(1)

���� > nδ

�

≤ P

�
γNn (1)

γn(1)
�∈ [e−nδ, enδ]

�

= P

�
γNn (1)

γn(1)
− 1 �∈ [e−nδ − 1, enδ − 1]

�

= P

�
γNn (1)− γn(1) �∈ [γn(1) · (e−nδ − 1), γn(1) · (enδ − 1)]

�

≤ P

�
|γNn (1)− γn(1)| > γn(1) · (1− e−nδ)

�
,

since enδ − 1 > 1 − e−nδ for every δ > 0. We conclude applying Proposition 3.1.2,
considering γn(1) · (1− e−nδ) instead of δ.
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Remark. Applying Borel-Cantelli, we can see that Proposition 3.2.2 implies the
strong law of large numbers for 1

n log γNn (1) as N → ∞, that is

lim
N→∞

1

n
log γNn (1) =

1

n
log γn(1),

P-almost surely.

Lemma 3.2.3. Let S be finite and �M irreducible, then we have
����
1

n
log γn(1)− Λ(k)

���� ≤
d

n
,

for every n ∈ N, where d is constant and Λ(k) is the SCGF (2.3).

Proof. Consider the non-conservative homogeneous Markov chain on S defined by
the Markov transitions �M(x, y) := �G(x)�M(x, y) and with initial distribution µ0.
Note that we can write γn(1) in terms of the kernel �M , namely

γn(1) = Eµ0

� n−1�

p=0

�G(Xp)

�

=
�

x0∈S
· · ·

�

xn∈S
µ0(dx0)

n−1�

p=0

�G(xp)�M(xp, dxp+1)

=
�

(x,y)∈S2

µ0(x)�Mn(x, y). (3.8)

Like �M , also �M is irreducible, so we can apply the Perron-Frobenius Theorem
(see [11], Theorem 3.1.1) and we have that �M possesses an eigenvalue ρ such that:

(i) ρ real, strictly positive and |λ| ≤ ρ for any eigenvalue λ of �M ,

(ii) there exist left l(·) and right r(·) eigenvectors corresponding to the eigenvalue ρ
that have strictly positive coordinates and are unique up to a constant multiple.

In particular, denoting α := supx∈S r(x) and β := infx∈S r(x), we have that

1

α
�Mn(x, y)r(y) ≤ �Mn(x, y)1 ≤ 1

β
�Mn(x, y)r(y),

for every x, y ∈ S.
Using the fact that

�
x∈S �M(x, y)r(y) = ρ · r(y), we obtain

1

α
ρnr(y) ≤

�

x∈S

�Mn(x, y)1 ≤ 1

β
ρnr(y),
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for every y ∈ S.
Therefore, combining the last result with (3.8), we obtain

ρn

α
≤ γn(1) ≤ ρn

β
.

In particular,

Λ(k) := lim
n→∞

1

n
log γn(1) = ρ,

and
1

n
log

1

α
≤ 1

n
log γn(1) − Λ(k) ≤ 1

n
log

1

α
.

We can conclude by taking d := max{| log 1
α |, | log 1

β |}.

Combining Lemma 3.2.3 respectively with Proposition 3.2.1 and Proposition
3.2.2, we obtain the following convergence results.

Corollary 3.2.4. Let the state space S be finite and consider the potential/kernel
pair ( �G, �M) given by (2.8)-(2.9) and such that �M is irreducible. For every n, N ∈ N

and p ≥ 1, we have

Eµ0

� �� 1
n
log γNn (1) − Λ(k)

��p
�1/p

≤ α �p/2�!√
N

· n+ 1

n · cn +
d

n
,

for some finite constant α and with c := minx∈S �G(x) > 0.

Corollary 3.2.5. Let the state space S be finite and consider the potential/kernel
pair ( �G, �M) given by (2.8)-(2.9) and such that �M is irreducible. Let δ > 0, N ≥
16/δ2 and n > d/δ, where d is the constant given by Lemma 3.2.3. Then, we have
the estimate

P

�
| 1
n
log γNn (1)− Λ(k)| > δ

�
≤ 8(n+ 1) e−Nδ2n/2,

where δn := γn(1) · (1− ed−nδ)/(n+ 1).

Proof. Using Lemma 3.2.3, we can see that
����
1

n
log γNn (1)− Λ(k)

���� ≤
����
1

n
log γNn (1)− 1

n
log γn(1)

���� +
����
1

n
log γn(1)− Λ(k)

����

≤
����
1

n
log γNn (1)− 1

n
log γn(1)

���� +
d

n
.
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Therefore,

P

��� 1
n
log γNn (1)−Λ(k)

�� > δ

�
≤ P

��� 1
n
log γNn (1)− 1

n
log γn(1)

�� > δ − d

n

�
.

When δ− d
n > 0, the conclusion follows applying Proposition 3.2.2 and taking δ− d

n

instead of δ.

3.3 Time-Uniform Estimates

We present in this section time-uniform estimations for the quantities (3.1)
and (3.2), under Assumption 3.1.3. The proofs presented here are based on the time-
uniform estimations for the normalised time marginals ηn, as stated in Proposition
3.1.6 and in Corollary 3.1.7.

Proposition 3.3.1. Under Assumption 3.1.3, for every p, n,N ∈ N we have that

1

n
Eµ0

� �� log γNn (1) − log γn(1)
��p
�1/p

≤ 2 · d(p)1/p ·m√
N · ε2m+2 · �3

,

with m, ε, � given by Assumption 3.1.3 and d(p) defined in (3.4).

Proof. First, recall that

γn(1) =

n−1�

p=0

ηp( �G), γNn (1) =

n−1�

p=0

ηNp ( �G). (3.9)

Let c := infx∈S �G(x) and C := supx �G(x). Note that, for all p ∈ N, we have

| log ηNp ( �G)− log ηp( �G)| ≤
|ηNp ( �G− ηp( �G)|

min{ηNp ( �G), ηp( �G)}
≤

|ηNp ( �G− ηp( �G)|
c

,
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since 0 < c ≤ ηp( �G) and also c ≤ ηNp ( �G). Thus,

1

n
Eµ0

� �� log γNn (1) − log γn(1)
��p
�1/p

=
1

n
E

�����
n−1�

p=0

(log ηNp ( �G)− log ηp( �G))

����
p �1/p

≤ 1

n

n−1�

p=0

E

����� log ηNp ( �G)− log ηp( �G)

����
p�1/p

≤ 1

n

n−1�

p=0

1

c
E

���ηNp ( �G− ηp( �G)
��p
�1/p

.

Using Theorem 3.1.6 and recalling that ε = c/C, we obtain

1

n

n−1�

p=0

1

c
E

���ηNp ( �G− ηp( �G)
��p
�1/p

≤ 1

n

n−1�

p=0

2 · d(p)1/p ·m√
N · ε2m+2 · �3

=
2 · d(p)1/p ·m√
N · ε2m+2 · �3

.

In particular, Proposition 3.3.1 implies
����Eµ0

� 1
n
log γNn (1)

�
− 1

n
log γn(1)

���� ≤
c(1)√
N

+O(
1√
N

).

Therefore, 1
n log γNn (1) is not an unbiased estimator for 1

n log γn(1), but its expected
value converges to 1

n log γn(1) as the size of the system N goes to infinity, with speed
of convergence 1√

N
.

Remark. The main difference between Proposition 3.3.1 and Proposition 3.2.1, is
that under Assumption 3.1.3 we can obtain a time-independent estimation of the
Lp-error (3.5). In particular, we are now able to swap the limits

0 = lim
N→∞

lim
n→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p

= lim
n→∞

lim
N→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p
.

Under the weaker assumptions of Proposition 3.2.1, this is possible only when c :=
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infx∈S �G(x) ≥ 1. In particular,

lim
n→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p
= 0,

if c > 1, and

lim
n→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p
≤ α�p/2�!√

N
,

with α constant, for c = 1. While, when c < 1, the estimation given in Proposition
3.2.1 of the Lp-error diverges as n tends to ∞.

Proposition 3.3.2. Under Assumption 3.1.3, for every δ > 0 and every n,N ∈ N,
we have that

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
≤

�
1 + ε(1− e−nδ)

�
N/2

�
e−N ·b(δ)2/2,

where b(δ) := (1− e−nδ) · ε2m+2 · �3/2m, with m, ε and � given in Assumption 3.1.3.

Proof. Fix δ > 0 and n,N ∈ N. Using the decomposition (3.9), we have

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�

= P

�
1

n

����
n−1�

p=0

log ηNp ( �G)− log ηp( �G)

���� > δ

�

≤ P

� n−1�

p=0

| log ηNp ( �G)− log ηp( �G)| > nδ

�

≤ P

�
| log ηNn ( �G)− log ηn( �G)| > nδ

�
. (3.10)

Moreover, we have that

P

�
| log ηNn ( �G)− log ηn( �G)| ≥ nδ

�
= P

�
ηNn ( �G)

ηn( �G)
�∈ (e−nδ, enδ)

�

= P

�
ηNn ( �G)

ηn( �G)
− 1 �∈ (e−nδ − 1, enδ − 1)

�

= P

�
ηNn ( �G)− ηn( �G) �∈

�
ηn( �G)(e−nδ − 1), ηn( �G)(enδ − 1)

��
.
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Denoting c := minx �G(x) and recalling that 0 < c < ηn( �G), we can see that

P

�
| log ηNn ( �G)− log ηn( �G)| ≥ nδ

�
≤ P

�
ηNn ( �G)− ηn( �G) �∈

�
c(e−nδ − 1), c(enδ − 1)

��

≤ P

�
|ηNn ( �G)− ηn( �G)| > c(1− e−nδ)

�
,

since enδ − 1 > 1− e−nδ for every δ > 0.

Recalling Corollary 3.1.7 and that ε := c/C, with C := supx �G(x), we obtain

P

�
| log ηNn ( �G)− log ηn( �G)| ≥ nδ

�
≤

�
1 + ε(1− e−nδ)

�
N/2

�
e−Nb(δ)2/2, (3.11)

for every δ > 0 and n ∈ N. Combining (3.11) with (3.10), we obtain the statement.

Remark. Proposition 3.3.2 doesn’t give us a time-homogeneous estimate of the quan-
tity (3.6), but thanks to Assumption 3.1.3, we can now get rid of the term γn(1),
which appears in the estimation given by Proposition 3.2.2. Moreover, we can see
that, under the assumptions of Proposition 3.3.2, we have

lim
n→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
≤ (1 + ε

�
N/2) · e−N ·b(N)2/2,

with b(N) := (1 + ε
�
N/2) · ε2m+2 · �3/2m, independent of δ. In particular,

0 = lim
N→∞

lim
n→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�

= lim
n→∞

lim
N→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
,

for all δ > 0. Whereas, Proposition 3.2.2 doesn’t allow us to estimate the quantity 3.6
when n tends to infinity without knowing γ1

n in general, except for some particular
cases. Let c := infx∈S �G(x) and C := supx∈S �G(x). Since cn ≤ γ1n ≤ Cn, we can say,
for instance, that

lim
n→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
= 0,

if c > 1, for all δ > 0, and

lim
n→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
≤ 1,
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if C < 1, for every δ > 0. Unfortunately, we cannot say anything when c < 1 and
C > 1, without estimating γn(1) first or without Assumption 3.1.3 to hold.

For passing to the estimations of the approximation errors (3.1) and (3.2),
we make use of the following result, which holds for generic state spaces S, contrary
to Lemma 3.2.3 used in the non-uniform case.

Proposition 3.3.3. Under Assumption 3.1.3, the SCGF is given by

Λ(k) = log η∞( �G),

where η∞ is the unique Φ-invariant measure. Moreover, we have the estimate
����
1

n
log γn(1) − log η∞( �G)

���� ≤ 4m

n · �3 · ε2m , (3.12)

where m, ε and � are defined as in Assumption 3.1.3.

Proof. The proof of the first part of the statement is given in [7], Proposition 12.4.1,
p.473 (its proof makes use of Proposition 3.1.5).

For proving the estimate (3.12) we consider the estimate
����
1

n
log γn(1) − log η∞( �G)

���� ≤ 2

n
r · β(Φ)

proved in [7], Proposition 12.4.1, where r := supx,y∈S
�G(x)
�G(y)

= 1
ε and

β(Φ) =
�

n≥0

β(Φn),

with Φn the nonlinear evolution semigroup defined iteratively by Φn = Φn−1 ◦Φ and
Φ0 = Id and with β(Φn) the Lipschitz coefficient of Φn, so that

||Φn(µ)− Φn(ν)||tv ≤ β(Φn)||µ− ν||tv,

where || · ||tv is the total variation distance in P(S).

Under Assumption 3.1.3, we are able to apply the estimate

β(Φn) ≤ 2

� · εm
�
1− �2 · εm−1

��n/m�
,

which is proved in [7], Proposition 4.3.5.

Therefore, writing each k ∈ N as k = q ·m+ r, with q := �k/m� (euclidean)
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quotient and r (euclidean) remainder, we obtain

2

n
r · β(Φ) ≤ 2

n · ε
�

k≥0

2

� · εm
�
1− �2 · εm−1

��k/m�

=
4

n · � · εm+1
·
�

q≥0

m−1�

r=0

(1− �2 · εm−1
�q

=
4

n · � · εm+1
·m ·

�

q≥0

(1− �2 · εm−1
�q

=
4m

n · � · εm+1
· 1

�2 · εm−1

=
4m

n · �3 · ε2m .

This concludes the proof.

Combining Proposition 3.3.3 respectively with Proposition 3.3.1 and Propo-
sition 3.3.2, we obtain the following convergence results.

Corollary 3.3.4. Under Assumption 3.1.3, we have

Eµ0

� �� 1
n
log γNn (1) − Λ(k)

��p
�1/p

≤ c(p)√
N

+
4m

n · �3 · ε2m +O(
1√
N

),

for every n,N ≥ 0, with c(p) defined as in Proposition 3.3.1.

Corollary 3.3.5. Let δ > 0, n > 4m
δ·�3·ε2m and N ∈ N. Under Assumption 3.1.3, we

have

P

�
| 1
n
log γNn (1)− Λ(k)| > δ

�
≤

�
1 + ε(1− e

4m
�3·ε2m−nδ)

�
N/2

�
e−Nb(δ)2/2,

with b(δ) := (1 − e
4m

�3·ε2m−nδ) · ε2m+2 · �3/2m, with m, ε and � given in Assumption
3.1.3.

To sum up the results presented in the chapter, we have provided estimations
for the approximation errors (3.1) and (3.2) in the case S is finite and �M irreducible
(Corollary 3.2.4 and Corollary 3.2.5) and in the case ( �G, �M) satisfies Assumption
3.1.3 (Corollary 3.3.4 and Corollary 3.3.5). In both cases, the order of convergence
of the Lp-error (3.1) is O( 1√

N
), while the order of convergence of the probability

measure (3.2) is exponential.
We conclude recalling the examples presented in Section 2.4 for illustrating

how to apply the results discussed above.
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Example 4. Recall Example 1. In Section 2.4, we have shown that the potential �G
is given by

�G(x) = p · ek + (1− p) · e−k := K,

and the mutation transitions �M (2.9) are given by

�M(x, x+ 1) =
p · ek
K

, �M(x, x− 1) =
(1− p) · e−k

K
.

Since �G is constant over S, by Proposition 3.2.1 we have that

Eµ0

�
log γNn (1)

�
= log γn(1).

This agrees with what we showed in Example 1. The same observation holds for
Example 2.

Example 5. Recall Example 2 on finite state space S = {1, . . . ,m}. In Section 2.4,
we have shown that

�G(m) = p · ek + (1− p), �G(2) = (1− p) · ek + p,

and �G(x) = 1 for x �= m, 2. Moreover,

�M(m, 1) =
p · ek
�G(m)

, �M(m,m− 1) =
(1− p) · ek

�G(m)
,

�M(2, 3) =
p · ek
�G(2)

, �M(2, 1) =
(1− p)ek

�G(2)
,

and �M(x, x+ 1) = p or �M(x, x− 1) = 1− p, otherwise. In particular, the mutation
transition �M is irreducible.

If m is an odd number, then �M is aperiodic and thus Assumption 3.1.3 is
satisfied and, in particular, Corollary 3.3.4 and Corollary 3.3.5 hold. Otherwise,
if m is even, Assumption 3.1.3 doesn’t hold anymore but we can still apply the
results presented in 3.2. In particular, Corollary 3.2.4 and Corollary 3.2.5 provide
(non-uniform) estimations for the approximation errors (3.1) and (3.2).

Note also that, if k ≥ 0, c := infx∈S �G(x) = 1, whereas c < 1 when k < 0.
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Thus, recalling the remarks in Section 3.3, we are able to swap the limits

0 = lim
N→∞

lim
n→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p

= lim
n→∞

lim
N→∞

Eµ0

�
| 1
n
log γNn (1)− 1

n
log γn(1)|

�1/p
,

and

0 = lim
N→∞

lim
n→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�

= lim
n→∞

lim
N→∞

P

�
| 1
n
log γNn (1)− 1

n
log γn(1)| > δ

�
,

for all δ > 0, only if m odd or k ≥ 0.
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