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Introduction

The study of atypical, rare trajectories of dynamical systems arises in many phys-
ical applications such as planetary systems, molecular dynamics, energy transport
and chemical reactions. Unfortunately, when a process is complex enough it be-
comes no longer feasible to simulate repeatedly the true dynamics to observe a large
deviation event.

A widely used class of numerical procedures for generating rare events efficiently
are the importance sampling methods based on cloning algorithms. Such algorithms
are based on the evolution of a population of copies of the system which are evolved
in parallel and are replicated or killed in such a way as to favour the realisation of the
atypical trajectories. One of these algorithms proposed by Giardinà et al. [10, 11]
is used to evaluate numerically the scaled cumulant generating function (SCGF) of
additive observables in Markov processes. The SCGF plays indeed an essential role
in the investigation of non-equilibrium systems - a role akin to the free energy in
equilibrium ones [19].

This cloning method for estimating the SCGF has been used widely to many
physical systems, including chaotic systems, glassy dynamics and non-equilibrium
lattice gas models. However, there have been fewer studies on the analytical justifi-
cation of the algorithm. In particular, even though it is heuristically believed that
the SCGF estimator converges to the correct result as the size of the population N
increases, there is no proof of this convergence and of how fast the estimator con-
verges. In the last year, Hidalgo et al. [13, 14] proposed a slightly different version of
the cloning algorithm, for which they studied the speed of convergence to the SCGF
in the case of discrete-time models.

In this work, we propose a variant of the cloning algorithm based on Feynman-
Kac models [2, 3, 4, 5, 6, 7, 8]. This novel approach enables us to study analytically
the convergence of the algorithm to the scaled cumulant generating function in the
case of continuous-time models, adapting already established convergence results for
Feynman-Kac models. To our knowledge, the model described in this dissertation
has never been covered in the literature on the subject, even though similar results
were presented by Del Moral and Miclo [6, 8] in the context of Lyapunov exponents
connected to Schrödinger operators.

Feynman-Kac models were originally introduced in the 1940s [15] to express the
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vi INTRODUCTION

semigroup of a quantum particle evolving in a potential in terms of a functional-
path integral formula. The key idea behind these models is to enter the effects of a
potential in the distribution of the paths of a stochastic process. The main advantage
of this interpretation is that it is possible to construct explicitly N -particle systems
which converge to the associated Feynman-Kac model as the size of the system N
tends to infinity.

These considerations have inspired us to find the Feynman-Kac interpretation
of the SCGF and apply the theory behind Feynman-Kac models for constructing a
suitable cloning algorithm and proving its convergence to the desired quantity.

The dissertation is structured as follows. In Chapter 1, we introduce various
mathematical concepts used throughout this work, such as Markov semigroups,
Markov generators and elements of large deviation theory needed to define and study
our class of rare event conditioning. Part of the Chapter is devoted to defining the
class of Pure Jump processes that we consider for conditioning.

In Chapter 2, we consider the problem of studying the atypical trajectories in
the long-time limit of a continuous-time pure jump Markov process and show how
this is connected to the Feynman-Kac theory. In particular, we rewrite the SCGF in
terms of Feynman-Kac measures and provide the time evolution of these measures.

Finally, in Chapter 3, we provide an N -particle interpretation of the Feynman-
Kac measures introduced in Chapter 2, so that we are able to construct a numerical
procedure to estimate the SCGF. We also provide general conditions, below which
we have that the N -particle system converges to the SCGF, as the size of the system
N and the time tend to infinity. Under these conditions, we study the L2-error of the
N -particle approximation. A particularly interesting consequence of these results is
the convergence of the algorithm to the SCGF for any pure jump process defined
on a finite state space and with a recurrent transition matrix.



Chapter 1

Preliminaries

1.1 Feller Processes

The purpose of this section is to provide an introduction to Feller processes and
to motivate their infinitesimal description. In particular, we define Feller processes,
probability semigroups and generators and show that there are one-to-one corre-
spondences among these three probability structures. The definitions and results
presented in this section are based on [12] and Chapter 3 of [17].

The state space E is a Polish space, i.e. metrizable, separable and complete
topological space. The measurable structure on E is given by the Borel σ-algebra
B(E). Moreover, we assume E to be locally compact and we denote C(E) the space
of continuous real-valued functions on E vanishing at infinity, with the uniform norm

||f || := sup
x∈E
|f(x)|,

which makes C(E) a Banach space. We denote by P(E) the set of probability mea-
sures on E.

The path space of the processes considered is

Ω = D([0,∞), E) := {ω : [0,∞)→ E càdlàg},

where càdlàg stands for right-continuous functions with left limits. The right-
continuous filtration (Ft)t≥0 on Ω is such that the σ-algebra Ft is the smallest such
that the mapping ω 7→ ω(t), with ω ∈ Ω, is Ft-measurable for each t ≥ 0.

A continuous-time stochastic process on E is denoted by (Xt)t≥0, i.e. a family of
random variables Xt. The explicit construction of the random variables is Xt(ω) =
ω(t). In general, the process (Xt)t≥0 is characterised by a probability measure P on
(Ω, F) with associated expectation denoted by E. With ω drawn from this measure,
the function t 7→ Xt(ω) is called sample path. In the following we restrict ourselves
to Feller processes, which form a particular class of Markov processes. To be able to
consider different initial conditions for a given Feller process, we use the following
definition.

1



2 CHAPTER 1. PRELIMINARIES

Definition 1.1.1. A Feller process on E consists of a collection of probability mea-
sures (Px)x∈E on (Ω, F) and a right-continuous filtration (Ft)t≥0 on Ω with respect
to which the random variables X(t) are adapted, satisfying

(a) Px(X(0) = x) = 1,

(b) the mapping x 7→ Ex[f(X(t))] is in C(E) for all f ∈ C(E) and t ≥ 0,

(c) Ex[Y ◦ θs | Fs] = EX(s)[Y ], Px-almost surely, for all x ∈ E and all bounded
measurable Y on Ω. Here θsω(t) := ω(t+ s) denotes a time shift.

Remark. The last property in Definition 1.1.1 is the homogeneous Markov property.

The Feller processes can be described using a particular version of semigroup
theory.

Definition 1.1.2. A semigroup is a family of continuous linear operators
(
P (t)

)
t≥0

on C(E) satisfying the following properties:

(i) P (0)f = f for all f ∈ C(E),

(ii) limt→0 P (t)f = f , for all f ∈ C(E),

(iii) P (s+ t)f = P (s)P (t)f , for all f ∈ C(E),

(iv) P (t)f ≥ 0, for all non-negative f ∈ C(E).

Definition 1.1.3. A probability semigroup on C(E) is a semigroup
(
P (t)

)
t≥0 on

C(E) such that there exist fn ∈ C(E), n ∈ N, such that supn ||fn|| <∞ and P (t)fn
converges to 1 pointwise for each t ≥ 0.

Remark. On compact spaces E, one can simply define a probability semigroup(
P (t)

)
t≥0 as a semigroup such that P (t)1 = 1, for each t ≥ 0.

Definition 1.1.4. An infinitesimal generator is a linear operator L on C(E) (possibly
unbounded), with domain DL and range R(L), satisfying the following properties:

1. DL is dense in C(E),

2. if f ∈ DL, λ ≥ 0 and g := f − λLf , then

inf
x∈E

f(x) ≥ inf
x∈E

g(x),

3. R(1 − λL) = C(E), for sufficiently small λ > 0, where 1 denotes the identity
function.

Definition 1.1.5. A probability generator is an infinitesimal generator L such that,
for small λ > 0, there exist fn ∈ DL, n ∈ N, so that gn := fn − λLfn satisfies
||gn|| <∞ and both fn and gn converge to 1 pointwise.
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Remark. On compact spaces E, we can simply say that a probability generator is an
infinitesimal generator L such that L1 = 0.

The following two results underline the connection of a Feller process with its
generator, through its probability semigroup.

Proposition 1.1.6. Given a Feller process, define

P (t)f(x) = Exf(X(t)),

for f ∈ C(E). Then P (t) is a probability semigroup on C(E).

Proof. See [17], Theorem 3.15.

Theorem 1.1.7 (Hille-Yosida). Suppose that P (t) is a probability semigroup and
define L by

Lf := lim
t→0

P (t)f − f
t

(1.1)

on
DL := {f ∈ C(E) | the limit (1.1) exists}.

Then L is a probability generator. Furthermore, the following statements hold:

• if f ∈ DL, then P (t)f ∈ DL for all t ≥ 0, and it is a continuously differentiable
function on t and satisfies

d

dt
P (t)f = P (t)Lf = LP (t)f ;

• for f ∈ C(E) and t > 0,

lim
n→∞

(
1− t

n
L
)−n

f = P (t)f.

Proof. See [17], Theorem 3.16.

Conversely, given a probability generator L, we can construct the associated
probability semigroup and then the corresponding Feller process, which means con-
structing the measures Px in Definition 1.1.1.

Proposition 1.1.8. Let L be a probability generator on C(E), in the sense of Defi-
nition 1.1.5. Then, for sufficiently small ε > 0, the operator

Lε := L(1− εL)−1



4 CHAPTER 1. PRELIMINARIES

is a probability generator and

Tε(t) :=

∞∑
n=0

tnLnε
n!

,

for t ≥ 0, is a well defined probability semigroup. Moreover, for f ∈ C(E),

P (t)f = lim
ε→0

Tε(t)f

exists uniformly on bounded t intervals. It defines a probability semigroup whose
generator is L in the sense of Theorem 1.1.7.

Proof. See [17], Theorem 3.24.

Proposition 1.1.9. If P (t) is a probability semigroup, then there is a Feller process
X(t) satisfying

Ex[f(X(t))] = P (t)f(x),

for x ∈ E, t ≥ 0 and f ∈ C(E).

Proof. See [17], Theorem 3.26.

1.2 Pure Jump Markov Processes

In this section, we introduce a particular class of Markov processes, the Pure
Jump Processes, which will be the main object of our study.

Definition 1.2.1. A pure jump process is a right-continuous Markov process such
that there exists a sequence of strictly increasing stopping times (Tn)n≥0 such that
T0 = 0, Xt is constant on the interval [Tn, Tn+1) and XT−n

6= XTn for every n ≥ 0.

To describe these jumps, it is usual to introduce the escape rate function λ(x),
such that λ(x)dt+o(dt) is the probability that Xt undergoes a jump during [t, t+dt]
starting from the state Xt = x. When a jump occurs, Xt+dt is then distributed with
the kernel p(x, dy), so that the overall transition rate is

W (x, dy) := λ(x)p(x, dy)

for (x, y) ∈ E2. Over a time interval [0, T ], the path of a pure jump process can thus
be represented by the sequence of visited states in E, together with the sequence of
waiting times in those states, so that the space of paths is equivalent to [E×(0,∞)]N.

Assumption 1.2.2. From now on, we assume:

• λ(·) : E → [0,∞) to be a non-negative, bounded and continuous function;



1.3. THE LARGE DEVIATION PRINCIPLE 5

• x 7→ p(x,A) is a continuous function for every A ∈ B(E).

Remark. Under Assumption 1.2.2, the pure jump process is a Feller process and
possesses a probability generator, given by

(Lf)(x) =

∫
E
W (x, dy)[f(y)− f(x)], ∀f ∈ C(E), x ∈ E.

In particular, the domain of L is DL = C(E).

1.3 The Large Deviation Principle

In Chapter 2 we will consider the problem of conditioning a pure jump Markov
process on a rare event and we will be interested in studying the long-time limit
behaviour of the conditioned process. In particular, we will provide a numerical
procedure for evaluating the scaled cumulant generating function (SCGF), which
plays an essential role in the study of large deviations.

The purpose of this section is to define, in a rigorous way, the large deviation
events we are going to consider and to motivate the importance of the SCGF in
the study of the large deviation conditioning problem. The main reference for this
section is [9].

Throughout this section, E is a Hilbert space, with inner product denoted by
“ · ”. The large deviation principle (LDP) characterises the limiting behaviour as
n→∞ of a family of probability measures (µn) on E in terms of a rate function.

Definition 1.3.1. The function I : E → [0,∞] is called a good rate function if:

(D1) I 6≡ ∞.

(D2) I is lower semi-continuous.

(D3) I has compact level sets, that is {x ∈ E | I(x) ≤ c} is compact for all c ∈ [0,∞).

We define the corresponding set function by

I(S) = inf
x∈S

I(x), S ⊂ E.

Definition 1.3.2. Let an be a sequence of positive real numbers such that limn→∞ an =
∞. The sequence of probability measures (Pn) on E is said to satisfy the large de-
viation principle (LDP) with speed an and with rate function I if:

(D1’) I is a rate function in the sense of Definition 1.3.1.

(D2’) lim supn→∞
1
an

log Pn(C) ≤ −I(C) ∀C ⊂ E closed.

(D3’) lim infn→∞
1
an

log Pn(O) ≥ −I(O) ∀O ⊂ E open.
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Definition 1.3.3. Let Pn, n ∈ N, be a family of probability measures on E. The
cumulant generating functions Λn : E → (−∞, +∞] of Pn are defined to be

Λn(k) = log

∫
E
ek·xPn(dx), k ∈ E.

Also, let

Λ(k) := lim sup
n→∞

1

n
Λn(nk),

using the notation Λ(k) whenever the limit exists. In accordance with the statistical
mechanics notation, we call Λ(k) the scaled cumulant generating function (SCGF).

Remark. In statistical mechanics, −Λ(k) can be seen as the canonical free energy
[18].

Theorem 1.3.4. Let E be a Hilbert space and assume that Pn satisfies the LDP with
a good rate function I and that

Λ(k) <∞, k ∈ E.

Then, the following statements hold:

• for each k ∈ E, the limit Λ(k) exists, is finite and satisfies

Λ(k) = sup
x∈E
{k · x− I(x)};

• if I is convex, then

I(x) = sup
k∈E
{k · x− Λ(k)} =: Λ∗(x);

• if I is not convex, then Λ∗ is the affine regularisation (or lower convex hull) of
I, i.e. Λ∗ ≤ I and f ≤ Λ∗, for any convex rate function f such that f ≤ I.

Proof. The proof can be found in [9], Theorem 4.5.10. The first statement follows
directly from Varadhan’s Lemma (see [9], Theorem 4.3.1), whereas the last two
results are an application of the Duality Lemma (see [9], Lemma 4.5.8).

Theorem 1.3.4 allows us to identify convex rate functions as Λ∗, that is as func-
tions of the SCGF Λ.



Chapter 2

Feynamn-Kac Models for
Conditioned Jump Processes

2.1 The Large Deviation Conditioning Problem

In this section we provide a brief overview of the large-deviation conditioning
problem [1].

We consider a homogeneous continuous-time pure jump Markov process (Xt)t≥0
with infinitesimal generator L and taking values on a compact and separable Hilbert
space E (in particular, E is also Polish), so that all the results stated in Chapter 1
hold. We also recall that C(E) denotes the space of continuous real-valued functions
on E.

Let Ω := D([0,∞), E) and the right-continuous filtration (Ft)t≥0 on Ω is such
that the σ-algebra Ft is the smallest such that the mapping ω 7→ ω(t), with ω ∈ Ω,
is Ft-measurable for each t ≥ 0. Given a generator L, we denote by Pµ0,L the
corresponding probability measure on (Ω, F) with initial distribution µ0, and by
Eµ0,L the associated expectation.

Let AT : Ω → R be a FT -measurable random variable or observable, taken to
be a real measurable function of the paths of Xt over the time interval [0, T ], and
condition Xt on a general measurable event of the form AT = {AT ∈ B} with B ⊆ R
measurable subset, that is, we condition Xt on the subset

AT = {ω ∈ ΩT |AT (ω) ∈ B} = A−1T (B)

of sample paths satisfying the constraint that AT ∈ B.

Assumption 2.1.1. The observable AT is assumed to satisfy a large deviation
principle with respect to Pµ0,L (i.e. the sequence of measures Pµ0,L ◦ A−1T satisfy
an LDP in the sense of Definition 1.3.2), and we assume that the rate function I
exists and takes values different from 0 or ∞. Moreover, we demand that AT is of

7



8CHAPTER 2. FEYNAMN-KAC MODELS FOR CONDITIONED JUMP PROCESSES

the form
AT (ω) =

1

T

∑
s≤T

ω(s−)6=ω(s)

g
(
ω(s−), ω(s)

)
ds, (2.1)

where g ∈ C(E2) and ω ∈ Ω realisation of (Xt)t≥0. Note that AT is well defined
since we have assumed that the pure jump process doesn’t explode.

Example. The considered class of observables AT includes many random variables
of mathematical and physical interest, such that:

• the position of the final state XT with respect to the initial position X0 on a
compact state space S ⊂ Rd, which can be obtained by considering g(x, y) =
y − x;

• the particle current on a finite state space S ⊂ Zd across a particular bond
(i, j), with ||i − j|| = 1, obtained with g(x, y) = 1{i}(x) · 1{j}(y) − 1{j}(x) ·
1{i}(y);

• the action functional [16] on finite state spaces with jump rates W (i, j), ob-
tained by setting g(x, y) = log W (x,y)

W (y,x) .

In the study of the long-time limit behaviour of the probability path measure of
the conditioned process, i.e.

Pµ0,L(dω |AT ∈ B), (2.2)

a key role is played by the scaled cumulant generating function of the observable AT

Λµ0(k) = lim
T→∞

1

T
log Eµ0,L

[
ekTAT

]
, (2.3)

with k ∈ R, as illustrated in Section 1.3. Recalling Theorem 1.3.4, we know that
Λµ0(k) exists and is finite provided that

lim sup
T→∞

1

T
log Eµ0,L

[
ekTAT

]
<∞.

In what follows, we are interested in providing a numerical procedure for evalu-
ating the SCGF. For this purpose, we start by introducing an auxiliary infinitesimal
generator.

Proposition 2.1.2. For pure jump processes, the family of operators

Pk(t)f(x) := Ex,L
[
f
(
Xt

)
ektAt

]
,

with f ∈ C(E), is well defined and it is a semigroup in the sense of Definition 1.1.2.



2.2. THE FEYNMAN-KAC INTERPRETATION 9

Moreover, the infinitesimal generator associated with Pk(t), t ≥ 0, in the sense
of Theorem 1.1.7, can be written in the form

(Lkf)(x) =

∫
E
W (x, dy)[ekg(x,y)f(y)− f(x)] , (2.4)

for f ∈ C(E) and all x ∈ E, with g defined in (2.1). In particular, the semigroup
Pk(t) satisfies the differential equation

d

dt
Pk(t)f = Pk(t)Lf, (2.5)

for all f ∈ C(E) and t > 0.

Proof. See [1], Appendix A.1.

Remark. The condition supx,y∈E g(x, y) < ∞ guarantees the domain of Lk to be
all C(E). Also, observe that Pk(t) is not a probability semigroup and Lk is not a
probability generator, since they do not preserve the probability.

2.2 The Feynman-Kac Interpretation

In this section, we are interested in interpreting the SCGF Λµ0(k) through
Feynman-Kac models, so that we will be able to apply already established results
from Feynman-Kac theory [2, 5, 6].

For this purpose, we introduce the potential function

Ĝ(x) :=

∫
y∈E

p(x, dy)ekg(x,y) > 0, (2.6)

for all x ∈ E. Observe that Ĝ is bounded since supx,y∈E g(x, y) <∞.
Furthermore, we define a new pure jump process given by the escape rate func-

tions λ̂(x) := Ĝ(x) · λ(x), x ∈ E, and kernel

p̂(x, dy) :=
p(x, dy)ekg(x,y)

Ĝ(x)
,

so that the overall transition rate is

Ŵ (x, dy) := λ̂(x) · p̂(x, dy) = W (x, dy)ekg(x,y), (2.7)

and its generator is given by

L̂(f)(x) :=

∫
E
Ŵ (x, dy)[f(y)− f(x)], (2.8)

for all f ∈ C(E) and x ∈ E.
Lastly, we denote

V(x) := λ(x) ·
(
Ĝ(x)− 1

)
. (2.9)
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Remark. Observe that under Assumption 1.2.2 and assuming g ∈ C(E2), then V ∈
C(E).

Proposition 2.2.1. The tilted generator Lk can be written in terms of (L̂, Ĝ) as

Lk(f)(x) = L̂(f)(x) + V(x) · f(x), (2.10)

for all f ∈ C(E) and x ∈ E.

Proof. The proof is given by using some elementary manipulations

Lk(f)(x) =

∫
E
W (x, dy)

[
ekg(x,y)f(y)− f(x)

]
=

∫
E
W (x, dy) · ekg(x,y)[f(y)− f(x)] +

∫
E
W (x, dy)

(
ekg(x,y) − 1

)
· f(x)

= L̂(f)(x) + λ(x)
(
Ĝ(x)− 1

)
· f(x),

for all f ∈ C(E) and x ∈ E.

It is important to underline the connection between the generator (2.10) and the
classical Feynman-Kac theorem.

Theorem 2.2.2 (Feynman-Kac Formula). Suppose that (Xt) is a Feller process on
the state space E with generator L, path measure P and expectation E, and take
h ∈ C(E). Define

ut,x(f) := Ex

[
f(Xt) exp

(∫ t

0
h(Xs)ds

)]
, (2.11)

for all f ∈ DL. Then ut,·(f) ∈ DL for each t ≥ 0 and f ∈ DL. Moreover ut,x solves
the equation

d

dt
ut,x(f) = Lut,x(f) + h(x) · ut,x(f), u0,x(f) = f(x), (2.12)

for all f ∈ DL.

Proof. See [17], Theorem 3.47.

Theorem 2.2.2 states that the solution of the dynamical system

d

dt
ut,x(f) = Lkut,x(f) = L̂ut,x(f) + V(x) · ut,x(f)

is given by

νt,x(f) := E
x, L̂

[
f(X̂t) exp

(∫ t

0
V(X̂s)ds

)]
, (2.13)
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for any f ∈ DL̂ = C(E). Recalling the differential equation (2.5), we also have

νt,x(f) = Pk(t)f(x),

for all t > 0, x ∈ E and f ∈ C(E). We extend the definition of the measure νt,x for
general initial distributions µ0 ∈ P(E) via

νt,µ0(f) := µ0
(
νt,·(f)

)
= E

µ0, L̂

[
f(X̂t) exp

(∫ t

0
V(X̂s)ds

)]
,

for all t > 0 and f ∈ C(E). In the mathematical literature, νt,µ0 is known as the
unnormalised t-marginal Feynman-Kac measure. However, it will be more convenient
to work with the corresponding normalised t-marginal Feynman-Kac measure

µt,µ0(f) :=

E
µ0, L̂

[
f(X̂t) exp

(∫ t
0 V(X̂s)ds

)]
E
µ0, L̂

[
exp

(∫ t
0 V(X̂s)ds

)] =
νt,µ0(f)

νt,µ0(1)
, (2.14)

defined for any t > 0 and f ∈ C(E).
The scaled cumulant generating function Λµ0(k) can be rewritten easily in terms

of the normalised marginal measure µt,µ0 , as shown in the following result. In the next
sections we will show how this interpretation of the SCGF allows us to construct a
numerical procedure for evaluating Λµ0(k) and evaluating rigorously the convergence
of the algorithm to the correct value.

Proposition 2.2.3. For every t > 0, we have that

log Eµ0,L
[
ektAt

]
=

∫ t

0
µs,µ0(V)ds,

where V is defined in (2.9). In particular, the limit

lim
t→∞

1

t

∫ t

0
µs,µ0(V)ds

exists and is finite if and only if the SCGF (2.3) is well defined and finite. Moreover,
it can be written in the form

Λµ0(k) = lim
t→∞

1

t

∫ t

0
µs,µ0(V)ds. (2.15)

Proof. First recall that

νt,µ0(f) = Eµ0,L
[
f(Xt)e

kt·At],
for all f ∈ C(E). In particular,

νt,µ0(1) = Eµ0,L
[
ektAt

]
. (2.16)
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Recalling the Feynman-Kac Formula 2.2.2, we obtain

d

dt
log νt,µ0(1) =

1

νt,µ0(1)
· d
dt
νt,µ0(1) =

νt,µ0(Lk1)

νt,µ0(1)
= µt,µ0(Lk1).

And, thus,

νt,µ0(1) = exp

(∫ t

0
µs,µ0(Lk1) ds

)
,

since ν0(1) = 1. We can conclude by (2.16), observing that Lk(1)(x) = V(x).

Remark. Lemma 2.2.3 states in particular that Λµ0(k) can be evaluated as the time
average of µt,µ0

(
V
)
. Therefore, the basic idea in the proposed cloning algorithm is to

approximate the measure µt,µ0 through the evolution of an N -particle system and,
thus, obtaining also an estimation of Λµ0(k), using Proposition 2.2.3.

2.3 Integro-differential equations

In this section, we are interested in outlining the evolution equation of the time
marginal µt,µ0 in terms of interacting jump-type probability generators and in de-
scribing its evolution. The content presented here is based on the works of Del Moral
and Miclo [2, 5], since, as we have seen in the previous sections, we can interpret
the large-deviation conditioning problem through the Feynman-Kac theory and thus
apply already established results.

In all this section the initial distribution µ0 is fixed and we simplify the notation
by writing µt instead of µt,µ0 .

Theorem 2.3.1. For every f ∈ C(E) and t ≥ 0, the normalised t-marginal µt solves
the evolution equation

d

dt
µt(f) = µt

(
L̂f + L̃µt f

)
, (2.17)

with L̂ given by (2.8) and

L̃µ(f)(x) :=

∫
E

(
f(y)− f(x)

) (
V(y)− V(x)

)
+
µ(dy), (2.18)

depending on µ ∈ P(E), where a+ := a ∨ 0.

Proof. Using the fact that d
dtνt(f) = νt(Lkf), we have

d

dt
µt(f) =

d

dt

νt(f)

νt(1)

=
1

νt(1)
· νt(Lkf)− νt(f)

νt(1)2
νt(Lk1)

= µt(Lkf)− µt(f) · µt(Lk1)

= µt(L̂f) + µt(Vf)− µt(f) · µt(V),
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where the last equality follows by (2.10). Thus, the statement follows by showing

µt(Vf) − µt(V)µt(f) = µt
(
L̃µt(f)

)
=

∫
E2

(
f(y)− f(x)

) (
V(y)− V(x)

)
+
µt(dy)µt(dx).

Observe that

µt(Vf) − µt(V)µt(f) =

∫
E
V(x)f(x)µt(dx) −

∫
E2

V(y)f(x)µt(dy)µt(dx)

=

∫
E2

(
V(x)− V(y)

)
f(x)µt(dy)µt(dx)

=

∫
E2

[(
V(x)− V(y)

)
+
f(x) −

(
V(x)− V(y)

)
− f(x)

]
µt(dy)µt(dx),

where a− := −a ∨ 0 = (−a)+. By a change of variables, we can see that∫
E2

(
V(x)− V(y)

)
− f(x)µt(dy)µt(dx) =

∫
E2

(
V(y)− V(x)

)
− f(y)µt(dy)µt(dx)

=

∫
E2

(
V(x)− V(y)

)
+
f(y)µt(dy)µt(dx).

Thus,

µt(Vf) − µt(V)µt(f) =

∫
E2

(
f(x)− f(y)

)(
V(x)− V(y)

)
+
µt(dy)µt(dx).

This concludes the proof.

Remark. Observe that, for every µ ∈ P(E), the generator L̃µ (2.18) corresponds to
the generator of a jump process with overall transition rates

W̃µ(x, dy) :=
(
V(y)− V(x)

)
+
· µ(dy).

The evolution equation (2.17) can be interpreted as the evolution of the Law(Xt) =
µt of a time-inhomogeneous process Xt with a probability generator Lµt := L̂+ L̃µt .
In this situation, it is essential to observe that Lµt depends on the distribution µt of
the random state Xt.

Definition 2.3.2. The stochastic model Xt, or equivalently the collection of prob-
ability generators (Lµ)µ∈P(E), is called a McKean interpretation of the non-linear
evolution equation in distribution space defined in (2.17).

We conclude the section providing a description of the process Xt. For simplicity,
we call the jumps given by L̂ mutation events and the jumps given by L̃µt selection
events.
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Between the selection events, the process Xt evolves as a copy of the reference
process X̂t with generator L̂. The rate of the selection events is given by the function

λ̃µt(x) := µt
(
(V − V(x))+

)
.

In particular, no selection event occurs when µt
(
(V − V(x))+

)
= 0, that is when

V(x) = µt − ess supV.
More formally, the selection times (Tn)n≥0 are given by the recursive formulae

Tn+1 := inf{t ≥ Tn |
∫ t

Tn

λ̃µs(Xs) ds ≥ en},

where T0 = 0 and (en)n≥0 stands for a sequence of i.i.d. exponential random variables
with unit parameter.

At the jump time Tn, the process XTn− = x jumps to a new site XTn = y
randomly chosen with the distribution

p̃Tn−(x, dy) :=

(
V(y)− V(x)

)
+

µTn−
(
(V − V(x))−

) µTn−(dy).

Definition 2.3.3. Given a non-negative function φ ∈ C(E), the Boltzmann-Gibbs
mapping Ψφ : Pφ(E) → P(E), with Pφ(E) := {µ ∈ P(E) |µ(φ) > 0}, is defined for
any µ ∈ Pφ(E) by

Ψφ(µ)(dx) :=
1

µ(φ)
φ(x)µ(dx), (2.19)

for every x ∈ E.

Observe that the distribution p̃t−(x, ·) can be rewritten as the Boltzmann-Gibbs
mapping Ψφ(µt−) associated to the non-negative bounded measurable function φ(·) :=(
V(·)−V(x)

)
+
. Moreover, by construction µt(φ) is strictly positive when a selection

event occurs, therefore the Boltzmann-Gibbs mapping associated to φ is well defined.

We conclude the chapter providing two simple examples that illustrate the con-
struction of the overall transition rates Ŵ and W̃µ, with µ ∈ P(E), which provides
the construction of the McKean model.

Example 1. Let SM = Zd ∩ [−M, M ]d, with M ∈ N, with periodic boundary
conditions M + 1 = −M and −M − 1 = M . Consider the continuous-time random
walk defined by overall transition rates W (x, y) = λ

2d
with λ > 0, if ||x − y|| = 1,

and W (x, y) = 0 otherwise. We are interested in counting the number of times the
particle current crosses a particular bond (i, j) with ||j − i|| = 1. This is obtained
by considering

g(x, y) := 1{i}(x) · 1{j}(y) + 1{j}(x) · 1{i}(y).
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Therefore, we can write the potentials Ĝ and V in the form

Ĝ(x) =
∑

||y−x||=1

ekg(x,y)

2d
=

{
ek

2d
+ 2d−1

2d
x ∈ {i, j}

1 otherwise,

and

V(x) = λ
(
Ĝ(x)− 1

)
=

{
λ
2d

(ek − 1) x ∈ {i, j}
0 otherwise.

We can thus deduce the overall transition rates Ŵ and W̃µ, µ ∈ P(SM ):

Ŵ (x, y) = W (x, y) · ekg(x,y)


λek

2d
(x, y) ∈ {(i, j), (j, i)}

λ
2d

||x− y|| = 1, (x, y) 6∈ {(i, j), (j, i)}
0 otherwise,

and, assuming k > 0,

W̃µ(x, y) =

{
0 x ∈ {i, j} or y 6∈ {i, j}
λ
2d

(ek − 1)µ(y) x 6∈ {i, j} and y ∈ {i, j},

with µ ∈ P(SM ), for any x, y ∈ SM .

Example 2. As in Example 1, we consider a random walk on SM = Z ∩ [−M, M ]
(now with dimension d = 1) with periodic boundary condition M + 1 = −M and
with transition rates W (x, y) = λ

2 with λ > 0, if ||x − y|| = 1, and W (x, y) = 0
otherwise. This time we are interested in conditioning on the average speed of the
particle. This is obtained by considering g(x, y) := y − x. In this case, we have

Ĝ(x) =
∑

||y−x||=1

ekg(x,y)

2
=

ek + e−k

2
,

for all x ∈ SM . Therefore, V(x) ≡ λ
(
ek+e−k

2 − 1
)
and thus W̃µ(x, y) = 0 for all

x, y ∈ SM and µ ∈ P(SM ). This means that the McKean interpretation Lµ is given
only by the pure jump process L̂ and it is independent of µ ∈ P(SM ). In particular,
the McKean interpretation is defined by the transition rates

Ŵ (x, y) =

{
λ
2 e
k y = x+ 1

λ
2 e
−k y = x− 1.

Indeed, conditioning on the average speed of the particle simply leads to a random
walk on SM with local drift k, which is described by the overall transition rates
Ŵ (x, y), with x, y ∈ SM .
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Chapter 3

The Cloning Algorithm

3.1 Mean Field Particle Interpretation

This section is concerned with the design of the mean field N -particle model
ξt := (ξit)1≤i≤N associated with a given collection of generators

(
Lµ
)
µ∈P(E)

satisfying
the weak evolution equation (2.17). This N -particle model is a Markov process in
EN , with homogeneous infinitesimal generator LNm(x) defined for F ∈ C(EN ) by the
formulae

LNm(x)(F )(x1, . . . , xN ) :=
N∑
i=1

L(i)m(x)(F )(x1, . . . , xi, . . . , xN ),

wherem : EN → P(E) is defined bym(x) := 1
N

∑
1≤i≤N δxi , with x = (x1, . . . , xN ) ∈

EN , and L(i)m(x) stands for the operator Lm(x) acting on the function xi 7→ F (x1, . . . , xi, . . . , xN ).

By construction, the generator LNm(x) associated with Lk is divided into a mu-

tation generator Lmut and an interacting selection generator L selm(x), respectively
defined by

Lmut(F )(x1, . . . , xN ) :=
N∑
i=1

L̂(i)(F )(x1, . . . , xi, . . . , xN ),

L selm(x)(F )(x1, . . . , xN ) :=

N∑
i=1

L̃(i)m(x)(F )(x1, . . . , xN ),

where L̂(i) and L̃(i)m(x) stand respectively for the operator L̂ and the operator L̃m(x)

acting on the function xi 7→ F (x1, . . . , xi, . . . , xN ).

Remark. Observe that, for test functions of the form

F (x) = m(x)(f) =
1

N

N∑
i=1

f(xi),

17
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with f ∈ C(E), we have that

Lmut(F )(x) = m(x)
(
L̂(f)

)
and

L selm(x)(F )(x) = m(x)
(
L̃m(x)(f)

)
.

The mutation generator Lmut describes the evolution of the particles between
the selection events. Between two selection events, the particles evolve indepen-
dently with L̂-motions in the sense that they explore the state space as independent
copies of the homogeneous process X̂t with generator L̂.

Recalling the definition of L̃µ (2.18), we can rewrite the selection generator L selm(x)

as

L selm(x)(F )(x) =
∑

1≤i≤N

∫
E

[F (θiu(x))− F (x)]
(
V(u)− V(xi)

)
+
m(x)(du)

=
∑

1≤i≤N
m(x)(φxi)

∫
E

[F (θiu(x))− F (x)]Ψφxi

(
m(x)

)
(du),

where x = (x1, . . . , xN ) ∈ EN , u ∈ E, θiu : x 7→ (x1, . . . , xi−1, u, xi+1, . . . , xN ),
φu(·) :=

(
V(·)− V(u)

)
+
and Ψφ is the Boltzmann-Gibbs mapping (2.19).

In this interpretation, if we denote by T in the n-th jump time of the i-th particle
ξit, we have

T in+1 = inf{t ≥ T in |
∫ t

T in

m(ξs)(φξis)ds ≥ ein },

where (ein)n∈N stands for a sequence of i.i.d. exponential random variables with unit
parameter. In other words, the selection rate of the i-particle is given by the average
potential variation of the particles with higher values, that is

m(x)
(
φxi
)

=
1

N

∑
1≤j≤N

1V(xj)>V(xi)
(
V(xj)− V(xi)

)
.

In particular, no selection jump occurs in case V(xi) = max1≤j≤N V(xj).
At the jump time T in, the process ξi

T in−
= xi jumps to a new state ξi

T in
= u

randomly chosen in the current population with distribution

Ψφxi

(
m(ξT in−)

)
=

∑
1≤j≤N

(
V(ξj

T in−
)− V(xi)

)
+∑

1≤j′≤N
(
V(ξj

′

T in−
)− V(xi)

)
+

δ
ξj
T in−

.

Loosely speaking, it adopts randomly the current state of another particle ξi
T in

=

ξj
T in−

among the ones with strictly higher potential value and with a probability

proportional to V(ξj
T in−

)− V(ξi
T in−

).
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At the level of the whole population, we can write the selection generator L selm(x)

in the standard form

L selm(x)(F )(x) = λsel(x)

∫
psel(x, dy)[F (y)− F (x)],

with the population selection rate

λsel(x) :=
∑

1≤i≤N
m(x)

(
φxi
)

=
1

N

∑
1≤i,j≤N

(
V(xj)− V(xi)

)
+
,

for x ∈ EN , and the population selection transition

psel(x, dy) :=
∑

1≤i,j≤N

(
V(xj)− V(xi)

)
+∑

1≤i′,j′≤N
(
V(xj′)− V(xi′)

)
+

δθi
xj

(x)(dy),

with x = (x1, . . . , xN ) ∈ EN , y ∈ EN and θiu : x 7→ (x1, . . . , xi−1, u, xi+1, . . . , xN ).

3.2 Asymptotic Stability

In this section, we are interested in finding sufficient conditions to have that the
limit (2.15) exists. Under these conditions, we will also estimate the quantity∣∣∣∣1t

∫ t

0
µs,µ0(V)ds − Λµ0(k)

∣∣∣∣,
for t > 0 large enough.

For this purpose, we will make use of the asymptotic stability properties of
continuous-time Feynman-Kac models [7, 4]. We start introducing the basic no-
tation needed for presenting the asymptotic stability results.

Definition 3.2.1. The total variation distance between two probability measures
η1, η2 ∈ P(E) is given by

||η1 − η2||tv :=
1

2
sup

f∈C(E)

|η1(f)− η2(f)|
||f ||

.

Definition 3.2.2. Let µt,η be the normalised t-marginal Feynman-Kac measure
(2.14) associated to the initial distribution η. We say that (µt,η)t≥0, η∈P(E) is expo-
nentially stable if there exist t0 > 0 and some constants γ, C > 0 such that

||µt,η1 − µt,η2 ||tv ≤ C · e−γt, (3.1)

for t ≥ t0 and any initial distributions η1, η2 ∈ P(E).
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Theorem 3.2.3. Suppose that (µt,η)t≥0, η∈P(E) is exponentially stable in the sense
of definition 3.2.2, for some t0 > 0 and some parameters γ, C > 0. Then for any
fixed η ∈ P(E), the sequence of probability measures µt,η, with t ≥ 0, converges in
total variation, as t→∞.

Proof. Since P(E) is complete with respect to the norm || · ||tv, it is enough to prove
that, for any fixed initial distribution η, the sequence µt,η, with t ≥ 0, is a Cauchy
sequence.

Since (µt,η)t≥0, η∈P(E) is exponentially stable, we have that

||µt+s,η − µt,η||tv = ||µt,µs,η − µt,η||tv ≤ C · e−γ·t,

for any t ≥ t0. Therefore, for any δ > 0 we have that

||µt+s,η − µt,η||tv ≤ δ,

for any s > 0 and t ≥ max{t0, − log(δ/C)
γ }. This concludes the proof.

Remark. Observe that Theorem 3.2.3 gives us also an estimate of the order of con-
vergence

||η∗ − µt,η||tv ≤ C · e−γ·t,

for T large enough and γ given by (3.3), where η∗ is the limit measure of the sequence
{µt,η}t≥0.

Corollary 3.2.4. Suppose that (µt,η)t≥0, η∈P(E) is exponentially stable in the sense
of Definition 3.2.2, for some t0 > 0 and some parameter γ > 0. Then the sequence(
1
t

∫ t
0 µs,µ0(V)ds

)
t≥0 converges and the limit corresponds to the SCGF Λµ0(k), given

by Equation (2.15). Moreover, the following estimate holds∣∣∣∣1t
∫ t

0
µs,µ0(V)ds− Λµ0(k)

∣∣∣∣ ≤ c

t
, (3.2)

for any t ≥ t0 and c =

(
2t0 + C·exp(−t0·γ)

γ

)
· ||V||.

Proof. By Theorem 3.2.3, we know that the sequence
(
µt,µ0(V)

)
t≥0 converges to

some limit ν∗(V) ∈ R. In particular, for t > t0 we have the estimate∣∣µt,µ0(V)− µ∗(V)
∣∣ ≤ C ||V|| · e−γ·t.
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Thus,∣∣∣∣ 1

t

∫ t

0
µs,µ0(V) ds−µ∗(V)

∣∣∣∣ =

∣∣∣∣1t
∫ t0

0
µs,µ0(V)ds +

1

t

∫ t

t0

µs,µ0(V) ds − µ∗(V)

∣∣∣∣
≤
∣∣∣∣1t
∫ t0

0
µs,µ0(V)ds

∣∣∣∣ +

∣∣∣∣1t
∫ t

t0

(
µs,µ0(V)− µ∗(V)

)
ds − t0

t
µ∗(V)

∣∣∣∣
≤ t0

t
||V|| +

1

t

∫ t

t0

∣∣µs,µ0(V)− µ∗(V)
∣∣ ds +

t0
t

∣∣µ∗(V)
∣∣

≤ t0
t
||V|| +

C · ||V||
t

∫ t

t0

e−s·γ ds +
t0
t
||V||.

since |µ∗(V)| ≤ ||V||. Observing that∫ t

t0

e−s·γ ds =
e−t0·γ − e−tγ

γ
≤ e−t0·γ

γ
,

we obtain that the limit

lim
t→∞

1

t

∫ t

0
µs,µ0(V)ds = ν∗(V)

exists and is finite. Recalling Equation (2.15), we also see that ν∗(V) = Λ(k). Finally,
the computations above imply the estimate (3.2).

We conclude the section by providing assumptions that guarantee that (µt,η)t≥0, η∈P(E)

is exponentially stable.

Assumption 3.2.5. We assume that for every t ≥ 0 there exists a positive constant
εt ∈ (0, 1) and a reference probability measure µt ∈ P(E) such that

εt µt(A) ≤ P̂t(x, A) ≤ ε−1t dµt(A),

for all x ∈ E and A ∈ B(E), where P̂ is the semigroup associated to the jump
generator L̂ (2.8).

Proposition 3.2.6. If Assumption 3.2.5 holds for some constant ε > 0, then for
any τ > 0 and p > 1 we have that (µt,η)t≥0, η∈P(E) is exponentially stable in the sense
of definition 3.2.2, with t0 = p · τ and

γ =
(
1− 1

p

)
· zτ · ε

τ
, (3.3)

with zτ := exp(−2τ · ||V||).

Proof. See [7], Theorem 3.2. Observe that Assumption 3.2.5, besides the fact that
V is time-homogeneous and bounded, implies the assumption of Theorem 3.2 in [7],
by using Proposition 4.3 in [7].
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Lemma 3.2.7. Assume the state space E to be finite and the transition matrix
{Ŵx,y}x,y∈E defined in (2.7) to be irreducible. Then Assumption 3.2.5 holds for
the semigroup P̂ associated to the transition matrix {Ŵx,y}x,y∈E and with constant

ε = infx,y,z∈E
P̂t(x, y)

P̂t(z, y)
> 0.

Remark. Lemma 3.2.7 implies that, when the state space E is finite, the normalised
Feynman-Kac measure {µt,ν}t,ν associate to a irreducible transition matrix {Ŵx,y}x,y∈E
is exponentially stable and, in particular, we can apply Corollary 3.2.4 so that the
limit

lim
t→∞

1

t

∫ t

0
µs,µ0(V)ds = L(k)

exists and is finite. The same result can be proven applying Perron-Frobenius The-
orem.

3.3 Estimation of the SCGF

In this section we are interested in approximating the SCGF Λ(k) through the
particle systems introduced in Section 3.1. In particular, we are interested in evalu-
ating the quantity

E

[ ∣∣∣∣Λµ0(k) − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2.
Proposition 3.3.1. Suppose that (µt,η)t≥0, η∈P(E) is exponentially stable in the sense
of definition 3.2.2, for some t0 > 0 and some parameter γ > 0. Then, for any
N ≥ exp

(
2t0(γ + 4||V||)

)
and f ∈ C(E) we have the uniform estimate

sup
t≥0

E
[
|µNt,µ0(f)− µt,µ0(f)|2

]1/2 ≤ 8 ||f ||
Nβ

,

with β := γ/2(γ + 4||V||).

Proof. See [8], Theorem 3.6.

Remark. Recall that the requirement of exponential stability in Proposition 3.3.1 is
satisfied under assumption 3.2.5, which is in general more easy to verify.

Corollary 3.3.2. Suppose that (µt,η)t≥0, η∈P(E) is exponentially stable in the sense
of definition 3.2.2, for some t0 > 0 and some parameter γ > 0. Then, for any
N ≥ exp

(
2t0(γ + 4||V||)

)
and f ∈ C(E) we have

E

[ ∣∣∣∣1t
∫ t

0
µs,µ0

(
V
)
ds − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2 ≤ 8 ||V||
Nβ

,
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and, in particular,

E

[ ∣∣∣∣Λµ0(k) − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2 ≤ 8 ||V||
Nβ

+
c

t
,

with β := γ/2(γ + 4||V||) and c =

(
2t0 + C·exp(−t0·γ)

γ

)
· ||V||.

Proof. The first part of the statement follows from Theorem 3.3.1, observing that

E

[ ∣∣∣∣1t
∫ t

0
µs,µ0

(
V
)
ds − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2
≤ 1

t

∫ t

0
E

[ ∣∣µs,µ0(V)− µNs,µ0
(
V
)∣∣2 ]1/2 ds

≤ 8 ||V||
Nβ

.

The second part of the statement follows by Corollary 3.2.4, noting that

E

[ ∣∣∣∣Λµ0(k) − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2
≤ E

[ ∣∣∣∣Λµ0(k) − 1

t

∫ t

0
µs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2 +

+ E

[ ∣∣∣∣1t
∫ t

0
µs,µ0

(
V
)
ds − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

∣∣∣∣2 ]1/2.

Observe that, in particular, we are able to estimate the approximation error∣∣∣∣E[Λµ0(k) − 1

t

∫ t

0
µNs,µ0

(
V
)
ds

] ∣∣∣∣ ≤ 8 ||V||
Nβ

+
c

t
,

with β := γ/2(γ + 4||V||) and c =

(
2t0 + C·exp(−t0·γ)

γ

)
· ||V||. From this, we can see

that the estimated quantity ∫ t

0
µNs,µ0

(
V
)
ds

converges to the SCGF as N, t → ∞. Moreover, the order of convergence with re-
spect to N is 1/Nβ and β < 1/2 is increasing in the variable γ.

We conclude the Chapter by illustrating how to apply the convergence results,
through a toy example.
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Recall Example 1. We have consider a continuous-time random walk on the
state space SM = Zd ∩ [−M, M ]d, with M ∈ N, with the boundary assumptions
M + 1 = −M and −M − 1 = M . On SM , we consider a random walk defined by the
overall transition rates W (x, y) = λ

2d
, if ||x−y|| = 1 and W (x, t) = 0 otherwise. We

have also introduced the function g(x, y) := 1B(x), for all x, y ∈ S and found that

Ŵ (x, y) =


λ
2d

x 6∈ B, ||y − x|| = 1
λ ek

2d
x ∈ B, ||y − x|| = 1

0 otherwise.

It is easy to see Ŵ is irreducible, so that Assumption 3.2.5 is satisfied for some
parameter ε > 0. We can thus apply Corollary 3.2.4 and obtain that the limit

lim
t→∞

∫ t

0
µs,µ0(V)ds

exists and it represents the SCGF Λµ0(k), as stated in 2.2.3. In particular, we are
able to estimate the L2-error given by applying the cloning algorithm described in
Section 3.1. Indeed, applying Corollary 3.3.2, we have that, for any τ > 0 and p > 1,

E

[ ∣∣∣∣Λµ0(k) − 1

t

∫ t

0
µNs,µ0(V)ds

∣∣∣∣2]1/2 ≤ 8 ||V||
Nβ

+
c

t
,

with β := γ/2(γ + 4||V||) and c =

(
2t0 + C·exp(−t0·γ)

γ

)
· ||V||, where t0 = p · τ and

γ =
(
1− 1

p

)
· ε · exp(−2τ · ||V||)

τ
.
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