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Abstract

This is an introduction to the study of the group Out(Fn) of outer automorphisms of free group via its on
Outer space.
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1 Introduction

Automorphisms of finitely-generated free groups were first systematically studied in the early part of the last century.
Important contributions were made by W. Magnus, J. H. C. Whitehead and J. Nielsen. In the 1970’s J. Stallings
reproved many of those results and established new ones by considering a free group as the fundamental group of a
finite graph and modeling automorphisms of the free group by homotopy equivalences of the graph. Some of these
results are covered in the course [18], available on Open Math Notes. (Those notes also contain more information
about some of the topics in the present notes.)

The present notes begin with the definition of Outer space, which was introduced in the mid 1980’s to study the
group Out(Fn) of outer automorphisms of the free group Fn [8]. Outer space is a contractible space on which
Out(Fn) acts properly. It should be thought of as an analog of the Teichmüller space of a surface Sg, with its action
of the mapping class group Mod(Sg) or of a symmetric space with the action of an arithmetic group. The idea is
to use the geometry and topology of Outer space and its quotient to study the group Out(Fn).

2 Graphs and Outer space

Marc Culler, who was a student of Stallings, was interested in automorphisms of free groups and proved a ’realization
theorem’ which said:

Theorem 2.1. (Culler [6])
Let F ≤ Out(Fn) be a finite subgroup. Then F can be realized on a marked graph.

To make sense of this statement, we make the following definitions:

Definition 2.2. Let Rn be the graph with a single vertex v and n oriented edges labeled a1, . . . an, i.e. a rose with
n petals. A marking of an unlabeled graph G is a homotopy eqivalence g : Rn → G. The pair (G, g) is a marked
graph.

We will permanently identify Fn = 〈a1, . . . an〉 with π1(Rn, v), so that a marking g : Rn → G induces an isomorphism
g∗ : Fn → π1(G, g(v)).

Now suppose that (G, g) is a marked graph, b = g(v) and f : G→ G is a graph automorphism. The map f induces
an isomorphism f∗ : π1(G, b)→ π1(G, f(b)), and we can form the diagram

π1(G, b) π1(G, f(b)) π1(G, b)

Fn Fn
ϕ

g∗ g∗

f∗ ∼=

The second isomorphism on the top line depends on a choice of path from f(b) to b. Different choices of this path
result in automorphisms of π1(G, b) that differ by an inner automorphism, so the automorphism ϕ on the bottom
line is well-defined only up to inner automorphism, i.e. f determines an outer automorphism of Fn.

Definition 2.3. In the diagram above we say that (G, g) realizes ϕ ∈ Out(Fn). We say F ≤ Out(Fn) is realized
on (G, g) if (G, g) realizes all elements of F .

In the figure below we illustrate a marked graph realizing the automorphism of F2 = 〈a, b〉 that sends a→ a−1 and
b→ ba−1. (For the marking choose any homotopy inverse to the collapse map indicated in the figure.)
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Since homotopic maps f ' f ′ : Rn → Rn give the same map on π1, we have a map

π0(HE(Rn)) � Out(π1(Rn)) = Out(Fn)

from the group of homotopy classes of homotopy equivalences of Rn to Out(Fn). This map is surjective: each
automorphism α : Fn → Fn is induced by the map fα : Rn → Rn that sends the oriented loop ai to the loop spelled
by wi = α(ai).

Exercise 1. Show this map is an isomorphism.

We are now ready to define Outer Space. Recall that in the Teichmuller space of a surface Sg we move around by
deforming the metric on Sg. In Outer Space, denoted CVn, we will move around by varying the lengths of edges in
a graph. Here is the formal definition.

Definition 2.4. A metric graph is a graph with the path metric induced by assigning a positive real length le > 0
to each edge e.

Points in Outer Space are equivalence classes of marked metric graphs (G, g) where:

• G is a finite connected graph with no bivalent vertices, no leaves, and edges of positive length

• scaling all edge lengths le by a constant λ gives the same point. Alternatively, we can normalize the edge
lengths so that

∑
le = 1

• g : Rn → G is a marking.

The equivalence relation is given by (G, g) ∼ (G′, g′) if there exists an isometry h : G→ G′ such that h ◦ g ' g′.

G G′

Rn

g
g′

h

Next we need to define a topology on CVn. For each combinatorial marked graph (G, g) with k edges, we assign
an open (k − 1)-simplex σ(G, g), consisting of all metrics on G whose edge-lengths sum to 1. If F ⊂ G is a forest,
then the forest collapse cF : G→ G//F is the map that collapses each edge of F to a point. We say σ(G′, g′) is an
interior face of σ(G, g) if there exists a forest collapse cF such that (G′, g′) ∼ (G//F, cf ◦ g):

G G//F G′

Rn

g

cF ∼=

g′
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Interior faces of σ(G, g) in this sense are naturally identified with (open) faces of the closed simplex σ(G, g). Faces
which are not interior are said to be at infinity. Let σ̂(G, g) be the subspace of σ(G, g) consisting of σ(G, g) and
all of its interior faces. If two different simplices have a common interior face, we glue the two simplices along this
face; we call this a face relation. We now define CVn as

CVn =
(∐

σ̂(G, g)
)
/face relations

with the quotient topology, Below is an an illustration of CV2 with this topology:

The letters and arrows on each graph indicate the markings. The same graph appears infinitely often, with different
markings. Shrinking the red subgraph to a point gives a face which is “at infinity,’ i.e. this face is not in CV2.

Exercise 2. Show dim(CVn) = 3n− 4.

The group Out(Fn) acts on CVn on the right by changing the marking: realize α ∈ Out(Fn) by a homotopy
equivalence fα : Rn → Rn. Then (G, g) · α = (G, g ◦ fα).

Rn G

Rn

fα
g◦fα

g

Exercise 3. Prove Stab(G, g) ∼= Isom(G), the group of isometries of the metric graph G.

Theorem 2.1 can now be re-interpreted as saying that any finite subgroup of Out(Fn) fixes a point of CVn. In fact
a stronger statement is true: the fixed point set of a finite subgroup is contractible.

2.1 Reduced Outer Space

We can define a deformation retraction of Outer Space CVn onto a subspace, denoted CV redn , which we call reduced
Outer Space. The deformation retraction linearly shrinks all separating edges of G to points. The result for n = 2
is illustrated below. Note that CV red2 is a manifold.

Exercise 4. Prove CV redn is not a manifold for n ≥ 3.

4



2.2 Spine of Outer Space

The set of open simplices σ(G, g) in CVn is partially ordered by the face relation. The geometric realization of this
partially ordered set (poset) is called the spine of CVn, which we denote by Kn. There is a natural inclusion map
Kn ↪→ CVn which sends each vertex of Kn to the barycenter of the corresponding simplex in CVn. The entire space
CVn deformation retracts onto Kn; the image of CV redn is denoted Kred

n . Here is an image of K2.

Exercise 5. Show dim(Kn) = 2n− 3.

The original proof that Outer Space is contractible proceeded by showing that the spine is contractible. An picture
of the spine in dimension 2 is given below the following theorem.

Theorem 2.5. (Culler-Vogtmann [8])
Kred
n is contractible, and hence CV redn , CVn and Kn are also contractible.
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3 Trees in Outer space

Let (G, g) ∈ CVn. Then π1(G) acts freely on the universal cover G̃ of G, which is a metric tree, by isometries. The

assummption that G is finite and all vertices are at least trivalent implies that this action is minimal, i.e. G̃ has no
invariant subtrees. Since the marking g identifies π1(G) with Fn, we have a free minimal isometric action of Fn on
a metric simplicial tree.

Let ρ1 : Fn → Isom(T1) and ρ2 : Fn → Isom(T2) be two such actions on trees T1 and T2. We define ρ1 and ρ2 to
be equivalent if there exists an isometry h : T1 → T2 such that the following diagram commutes, for every g ∈ Fn:

T1 T2

T1 T2

ρ1(g)

h

h

ρ2(g)

With this definition, equivalent marked graphs correspond to equivalent actions of Fn, so we have the following
alternate definition of CVn:

Definition 3.1. Outer space CVn is the set of equivalence classes of free, minimal, isometric actions of Fn on
metric simplicial trees.

An automorphism α ∈ Out(Fn) acts on this set by twisting the actions:

Fn Isom(G̃)

Fn

α

ρ

ρ◦α

Exercise 6. Prove that an inner automorphism acts trivially on CVn, i.e. if α is inner, then there exists an isometry
G̃→ G̃ which commutes with the action of π1(G).

We will give two ways to define a topology on this set of actions. The first is the equivariant Gromov-Hausdorff
topology. Actions ρ1 and ρ2 are close in this topology if, for every finite set {gi} of elements of Fn and every finite
set {xj} in Tk, there is a matching set {x′j} of points in T` (k, ` = 1, 2) such that the distances between the gixj
and gix

′
j are within ε for all i and j.

The second way to define a topology depends on the notion of length functions. Given a free action ρ : Fn → Isom(T )
on a metric tree, we can define a length function as follows.

lρ : Fn → R>0

g 7→ inf
x∈T

d(x, gx)

If T is a simplicial tree and the action is free the infimum is realized, and lρ(g) is non-zero for all g 6= 1.

Exercise 7. Show g and hgh−1 have the same length.

We let C denote the set of conjugacy classes of non-trivial elements of Fn (this can be identified with the set of
non-trivial cyclically reduced words). By the above exercise, our length function is actually a map from C to R>0.

Theorem 3.2. (Chiswell, Culler-Morgan, Alperin-Bass)
A free action ρ of Fn on a metric simplicial tree T is determined by its length function

lρ : C → R>0

Since we consider two actions the same if we scale all lengths by a positive constant, this theorem implies that CVn
actually embeds into the infinite-dimensional real projective space PC . Culler and Morgan also proved
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Theorem 3.3. (Culler-Morgan) The closure of the image of CVn in PC is compact.

See [7] for the proof of these theorems and further references for the first one.

We now have 3 ways to think of Outer Space, namely as

1. a space of marked metric graphs, which decomposes into a disjoint union of open simplices σ(G, g)

2. a subspace of PC , where PC has the weak topology

3. a space of free minimal actions on metric trees, with the equivariant Gromov-Hausdorff topology

Paulin proved that all of these topologies on CVn are equivalent. Warning: this is not true for several generalizations
of Outer Space which have appeared since!

3.1 Length function compactification

The idea of embedding CVn into the space of projective length functions on Fn was inspired by Thurston’s embedding
of the Teichmüller space for Sg into the space of projective length functions on π1(Sg). Thurston showed that there
is a finite set of elements of π1(Sg) whose lengths determine the entire length function, so that the image actually
projects onto a finite-dimensional projective space, whose closure is therefore automatically compact. Culler and
Morgan’s theorem that the closure of CVn is compact does not assume the existence of such a finite-dimensional
projection. For n = 2, however, there is one:

Lemma 3.4. Let F2 = 〈a, b〉, and let ρ : F2 → Isom(T ) be an action in CV2. Then the lengths of a, b, ab, ab−1, aba−1b−1

completely determine this action. In particular, CV2 ↪→ P4.

In [9] the embedding CV2 ↪→ P4 was constructed explicitly, so that one can draw the following picture of its closure.
The boundary square and the pink “hairs” sticking in are in the closure, but not in CV2.

It turns out that n = 2 is the only rank for which some projection of PC onto a finite-dimensional subspace Pk
restricts to an embedding of CVn.

Theorem 3.5. (Smillie-Vogtmann [17])
Let n > 2, and let W ⊂ C be a finite set of conjugacy classes in Fn. Then there exist arbitrarily many different
actions with the same lengths on every element of W .

In fact, there exists a (2n− 5)-parameter family of such actions.
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Proof. We will prove this result for the case when n = 3. To think about the length of a conjugacy class, we can
think about the graph (G, g). Recall w ∈ C is a cyclically reduced word.

We let W = w1, . . . , wk be a finite set in C, and let F3 = 〈a, b, c〉. Let m be greater than the largest power of c in
any wi. Define an automorphism

f : Fn → Fn

a 7→ cmacm

b 7→ b

c 7→ c

Now in the reduced words w′i = f(wi), the letter a is always preceded and followed by a power of c:

. . . cac . . .

Now apply a new automorphism

f
′

: a 7→ b−kab−k

b 7→ b

c 7→ c

Now in the words w′′i = f ′(w′i) the letter a is always preceded by cbk and followed by b−kc:

w′ = . . . cac . . .

w′′ = . . . cbkab−kc . . .

Consider the metric graph

where the unmarked edges have the same length. Mark this graph to get a point in CV3 by sending a to the loop
that uses ea and the unmarked edges, b to the loop that uses eb and the unmarked edges. and c to the loop labeled
c,

If a does not appear in wi, then w′′i = wi, and the loop representing w′′i must pass through p. If a does appear in
wi, then the loop representing w′′i also passes through p. Furthermore, the loops representing the w′′i never make
the turns indicated in red below:
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i.e. they must stay on the ’train track’ below:

We can then move s and t towards p by ε to get a different metric graph, in which all of the words w′′i have the
same length. We can even move s and t to the point p (at which point the graph is a rose) or past p (which will
change the marking).

The process may be easier to understand by looking at the covering space obtained by unwrapping b, i.e. look at
the covering space of G corresponding to the subgroup normally generated by a and c. In this covering space b has
an axis Ab, and there are loops labeled a and c in every fundamental domain for b on this axis:

Let α = f ′ ◦ f , so w′′i = α(wi). Since the length of w′′i is the same in all of these marked metric graphs (G, g), the
length of wi = α−1(w′′i ) is the same in all of the graphs (G, g) · α.
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3.2 Points in the closure of CVn

In general, points in the closure of CVn ⊂ PC are limits of length functions of free simplicial actions, and limits
of such limits. A limit of free minimal actions may may develop non-trivial vertex stabilizers, non-trivial edge
stabilizers and dense orbits. The trick for proving the closure is compact is that length functions of free simplicial
actions are determined by certain inequalities, so limits are also given by inequalities, though strict inequalities
may become non-strict. In the limit, one still gets an action on a metric space, but this metric space may not be a
simplicial tree. In general the metric space is an R-tree:

Definition 3.6. An R-tree is a geodesic metric space such that any geodesic triangle is a tripod.

Unlike a simplicial tree, an R-tree may have dense branch points.

In addition, a limit of free actions may not be free, i.e. it may develop non-trivial (and therefore infinite) stabilizers.
However, Cohen and Lustig [4] proved that limits of free minimal simplicial actions are always very small actions,
where

Definition 3.7. An action of Fn on an R-tree is very small if

• all arc stabilizers are cyclic

• For all g ∈ G \ {1}, Fix(g) is an interval, and

• Fix(gn) = Fix(g)

Bestvina and Feign [1] then proved that there are no additional points in the closure CVn, i.e. the closure is precisely
the set of very small actions. Finally, Gaboriau and Levitt [11] filled out the picture by showing that the dimensions
of the closure CVn and its “boundary” ∂CVn = CVn \ CVn are what you expect, namely dim(CVn) = 3n− 4, and
dim(∂CVn) = 3n− 5.

4 Spheres and Outer space

Let us reconsider our first definition of Outer space CVn as a union of open simplices σ(G, g), modulo face relations.
We would like to define its simplicial completion CV ∗n as the union of the closures σ(G, g) of these simplices:

CV ∗n =
∐

σ(G, g)/face relations

The problem with this definition is that it is not clear how to identify two faces that are not in CVn, i.e. faces at
infinity. One way to fix this is to reinterpret points in CVn as systems of 2-spheres in a particularly nice 3-manifold.
This was first explained by Hatcher in [13]. We refer the reader to Hatcher’s paper for details of the following
construction.

Let (G, g) be a point in CVn. We associate a system of 2-spheres in a doubled handlebody to (G, g) by:

• Put a red dot in each edge in G

• Fatten G to make a handlebody. The red dots become red disks

• Double the handblebody, i.e. glue together two copies by the identity on the boundary to get a “Double
Fat G” (DFG). Red disks now become red 2-spheres, and the inclusion G ↪→ DFG identifies π1(G) with
π1(DFG).

• Double the standard rose Rn to obtain Mn ≈ #n(S1 × S2), and identify Fn ≡ π1(Rn) with π1(Mn) via the
inclusion map Rn ↪→Mn.
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Theorem 4.1. Let (G, g) be a point of CVn. Then there is a homeomorphism hg : Mn → DFG making the
following diagram of isomorphisms commute:

π1(Rn) π1(G)

π1(Mn) π1(DFG)

g∗

(hg)∗

where the vertical arrows are induced by inclusion.

Now use the homeomorphism hg to pull the 2-spheres in DFG back to Mn, thus obtaining a collection of disjoint
2-spheres in Mn. Note that none of these 2-spheres bounds a ball. Equivalent marked graphs give isotopic sets of
spheres, so this gives a map from CVn to isotopy classes of collections of non-trivial disjointly embedded 2-spheres
in Mn.

People familiar with the curve complex of a surface will be not be surprised by the next definition.

Definition 4.2. A sphere in a 3-manifold M is trivial if it bounds a ball. A sphere system in M is a set of distinct
isotopy classes of non-trivial 2-spheres in M that have a set of disjoint representatives. The sphere complex S(M)
is the simplicial complex whose k-simplices are sphere systems with k + 1 elements.

11



If the graph G has m edges, then the construction above associates to (G, g) a sphere system in Mn with m spheres.
Recall that we have normalized the metric on G so that the sum of the lengths of its edges is 1. If we assign a
weight to each corresponding sphere equal to the length of the edge, then these weights give barycentric coordinates
on the simplex in S(Mn) corresponding to this sphere system. Thus we have a map from CVn to S(Mn).

Since a homeomorphism sends a set of disjoint spheres to another set of disjoint spheres, there is a natural action of
the group of homeomorphisms of Mn on S(Mn). Since homotopic homeomorphisms of Mn are isotopic, we in fact
get an action of the mapping class group π0(Homeo(Mn)) on S(Mn). By a theorem of Laudebach [15] the natural
map π0(Homeo(Mn)) → Out(π1(Mn)) = Out(Fn) is surjective, and the kernel of this map is a finite product of
Z/2Z’s, generated by Dehn twists in 2-spheres. The effect of a Dehn twist on a 2-sphere in Mn is minimal: the
image of a 2-sphere is isotopic to the 2-sphere we start with. Thus the kernel acts trivially, and we get an action
of Out(Fn) on S(Mn). The map from CVn to S(Mn) that we have constructed is equivariant with respect to this
action.

We call a sphere system complete if each component of its complement in Mn is simply-connected; otherwise it is
incomplete. If you remove some spheres from an incomplete system it is still incomplete, so the incomplete systems
form a subcomplex of S(Mn). On the other hand, if you remove too many spheres from a complete system it
becomes incomplete, so the complete systems do not form a subcomplex. Hatcher identified the image of CVn
under the map to S(Mn) as follows.

Theorem 4.3. (Hatcher [13]) Let S∞(Mn) ⊂ S(Mn) be the subcomplex of incomplete sphere systems. Then
S(Mn) \ S∞(Mn) is homeomorphic to CVn.

The full complex S(Mn) is the simplicial completion CV ∗n that we were looking for. Hatcher also proved that CV ∗n
is contractible, and his contraction restricts to the subspace CVn, giving another proof that CVn is contractible.

A single sphere s in Mn is separating if it cuts Mn into two pieces A and B. By Van-Kampen’s Theorem, we can
deduce that

Fn = π1(A) ∗π1(s) π1(B).

If the complement Mn \s of s has only one component, then by Van Kampen’s Theorem we have an HNN extension

Fn = π1(Mn \ s)) ∗π1(s) .

In either case, a sphere can be viewed as a way to “split” Fn over the trivial group π1(s). This is why S(M) is also
known as the free splitting complex. Bass-Serre theory tells us that a free splitting of Fn is equivalent to an action
on a (simplicial) tree with trivial edge stabilizers. It was from this point of view that Handel and Mosher proved
the following theorem:
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Theorem 4.4. (Handel-Mosher [12]) S(Mn) is Gromov hyperbolic.

Hillion and Horbez [14] gave a proof soon afterwards in the language of sphere complexes.

In geometric group theory we like to have spaces which are quasi-isometric to the group we are studying. The group
Out(Fn) contains free abelian subgroups, so is not hyperbolic; in particular we observe

Corollary 4.5. Out(Fn) is not quasi-isometric to S(Mn).

However, we do have a space quasi-isometric to Out(Fn), namely the spine Kn of CVn. This is because Out(Fn)
acts on Kn with finite stabilizers and compact quotient, so by the Svarc-Milnor lemma Kn is quasi-isometric to
Out(Fn). The simplicial completion CV ∗ = S(Mn) gives a nice way of describing Kn. Namely, let S ′(Mn) be
the barycentric subdivision of S(M). Then Kn is equal to the subcomplex of S ′(Mn) spanned by vertices not in
(S∞)′(Mn).

5 Related groups and spaces

So far we’ve focused on Out(Fn) and Outer space, but similar constructions can be made for related groups. For
example we could ask - what about Aut(Fn)? The group Aut(Fn) can identified with the group of homotopy
classes of homotopy equivalences of a base pointed rose, and we can use the same construction to make a space of
basepointed marked metric graphs, where all maps and homotopies are required to respect basepoints:

This space was christened Autre espace by F. Paulin, and anglicized to “Auter space.”

We can also describe Auter space as a subspace of a sphere complex, where we replace Mn by the manifold obtained
by punching a 3-ball B3 out of Mn. We draw Mn \ B3 schematically by putting a blue patch on the boundary of
the fat rose handlebody; the idea is that when we double this handlebody we should leave the blue patches unglued,
so that they form the boundary sphere of Mn \B3.

We now define a 2-sphere to be trivial if it either bounds a ball or is parallel to the boundary sphere we just
created. Note that spheres that were isotopic before we removed the ball may no longer be isotopic. As before,
we let S(Mn \ B3) be the sphere complex for Mn \ B3 and S∞(Mn \ B3) the subcomplex of incomplete sphere
systems. Then Auter space can be identified with the complement of S∞(Mn \ B3) in S(Mn \ B3), and it has a
cocompact spine that is quasi-isometric to Aut(Fn). Hatcher’s proof that S(Mn) ' pt also works for S(M \ B3),
and Laudenbach’s proof that the mapping class group of Mn modulo Dehn twists is isomorphic to Out(Fn) also
shows that the mapping class group of Mn \B3 modulo Dehn twists is isomorphic to Aut(Fn)

π0(Homeo(Mn \B3))/Dehn twists ∼= Aut(Fn)
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Why stop at punching out one 3-ball? We could punch out any number s ≥ 1 of holes in Mn, and define

Mn,s = Mn \ tsB3

The group
An,s = π0(Homeo(Mn,s, ∂))/Dehn twists

consisting of homotopy classes of homotopy equivalences that fix the boundary, modulo Dehn twists, acts on the
sphere complex sphere complex S(Mn,s), and there is a subcomplex S∞(Mn,s) of incomplete sphere systems, There
is a spine Kn,s, whose vertices correspond to complete sphere systems, that is quasi-isometric to An,s. The spine can
be described as the subcomplex of the barycentric subdivision of S(Mn,s) spanned by incomplete sphere systems.

The manifolds Mn,s can be glued together along boundary components to form new manifolds MN,S of the same
type. Since elements of An,s are represented by homeomorphisms that fix the boundary, they can be combined to
give an element of AN,S . This gives a map from the product of the groups An,s to AN,S called an assembly map.

6 Homology

We have the following spaces with An,s actions, where An,0 = Out(Fn) and An,1 = Aut(Fn).

CV ∗n,s : contractible, action is cocompact but not proper

∪
CVn.s : invariant, contractible, action is proper but not cocompact

∪
Kn.s : invariant, contractible, action is both proper and cocompact

Now we want to use these to learn about the groups An,s.

A classical result of Hurewicz says

Theorem 6.1. Let X be a contractible space on which G acts freely and properly. Then Hi(X/G) is an invariant
of G.

Many of our actions are proper, but none are free. For example, for (G, g) ∈ CVn,s, StabAn,s(G, g) is isomorphic to
the group of isometries of G that fix its leaves. Although this may not be trivial, it is at least a finite group, and
the cohomology of a finite group H with coefficients in a field k of characteristic 0 (such as k = Q,R or C), is trivial

H∗(H;k) = 0 :

This fact can be used to show that
H∗(G;k) ∼= H∗(X/G;k).

From now on we will assume all homology is with trivial rational coefficients. We are interested in the homology of
the quotient spaces CVn,s/An,s.
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6.1 CVn,s as a space of graphs

The space CVn,s and group An,s for s > 0 can also be described in terms of graphs. Let Rn,s be the the “rose
with n petals and s leaves,” and define ∂Rn,s to be the univalent vertices of Rn,s, which we assume are numbered
{1, . . . s}. Then An,s = π0(HE(Rn,s, ∂Rn,s)), the group of homotopy classes of homotopy equivalences of Rn,s that
fix ∂Rn,s; here all maps and homotopies must fix ∂Rn,s. A point in CVn,s is then a pair (G, g) where G is a finite
metric graph with s numbered leaves and no bivalent vertices, and g : Rn,s → G is a homotopy equivalence that
sends the i-th leaf of Rn,s to the i-th leaf of G.

An element of the group An,s can be modeled by a homotopy equivalence of Rn,s, and An,s acts on CVn,s by
changing the marking.

6.2 Tropical moduli spaces

Algebraic geometers call metric graphs “tropical curves” and the quotient space CVn,s/An,s. the moduli space of
tropical curves of genus n with s marked points, denoted MGn,s. Algebraic geometers also prefer to compactify
this space by adding what they call “stable” tropical curves. These are obtained by collapsing each component of
a subgraph a point, and labeling this point by the genus of the subgraph that produced it. It is easy to see that
“stable tropical curves” correspond to points in faces of the sphere complex that are at infinity:

Thus the algebraic geometers’ compactification MGn,s is just the quotient of the sphere complex S(Mn,s), i.e. the
simplicial completion CV ∗n,s, modulo the action of An,s.
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In 2021 Chan, Galatius and Payne [3] observed that

MGg ∼= C(Sg)/Mod(Sg)

where C(Sg) is the curve complex of the closed surface Sg of genus g. They then used this to relate H∗(Mod(Sg))
to Kontsevich’s commutative graph complex, which can be identified with the relative chains

C∗(CV
∗
n /Out(Fn), CV∞n /Out(Fn))

Willwacher proved that the homology of the commutative graph complex contains the Grothendiek-Teichmüller Lie
algebra grt1. Francis Brown showed that grt1 contains a free Lie algebra on infinitely many generators. Combining
these results gives many new cohomology classes in Mod(Sg).

6.3 Finiteness results

In the exercises you proved dim(Kn) = 2n− 3, so in particular dim(Kn/Out(Fn)) = 2n− 3. Since Kn/Out(Fn) has
the same homology as Out(Fn) we have proved

Proposition 6.2. Hi(Out(Fn)) = 0 for i > 2n− 3.

Furthermore, we know that Kn/Out(Fn) is a finite cell complex (the vertices correspond to the isomorphism classes
of admissible graphs of rank n). Thus we can conclude

Proposition 6.3. Hi(Out(Fn)) is finitely-generated for all i and n.

Since the homology is finitely generated the Euler characteristic of Kn/Out(Fn) is defined, and is equal to the
alternating sum of the Betti numbers of Out(Fn). Since Kn is the realization of a partially ordered set of marked
graphs, the Euler characteristic of Kn/Out(Fn) can be computed by essentially counting isomorphism classes of
graphs. However, be warned that the number of isomorphism classes grows extremely fast with n, so this soon
becomes impractical for concrete calculations.

6.4 More on the groups An,s

Even if you are only interested in Out(Fn) it is still useful to understand the groups An,s and the spaces CVn,s and
MGn,s for s > 0. Here are a few places they have shown up in the literature so far.

• Proofs of homology stability use all of these spaces and groups. Homology stability says that the groups
Hi(Out(Fn)) are independent of n for n >> i.

• The spaces CVn,s encode the local structure of CVn.

• The groups An,s occur in proofs that Out(Fn) is a virtual duality group. Virtual duality is a generatlization of
Poincaré duality that works for groups that are not necessarily the fundamental groups of acyclic manifolds.
It gives a relation between homology and cohomology in a complimentary dimension.

• The groups An,s play a role in recent results on the asymptotic behavior of the Euler characteristicof Out(Fn).

Finally, we can use the homology of the groups An,s for small n and s, where it is relatively easy to calculate, to
construct cycles for larger n and s, where almost nothing is known. This uses the assembly maps we defined earlier,
such as

An,s ×Am,t → An+m+k−1,s+t−2k

induced by gluing k boundary spheres of Mn,s to boundary spheres of Mm,t. Since we are using homology with
trivial rational coefficients the induced map on homology is

Hi(An,s)⊗Hj(Am,t)→ Hi+j(An+m+k−1,s+t−2k)
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where we have used the Künneth formula on the domain. For n = 1 and n = 2 the homology of An,s has been
completely calculated (see [5]). For n = 1 and s = 2k + 1 odd, the homology in dimension 2k is one-dimensional,
generated by a class αk. The image of αk ⊗ αk under the map

H2k(A1,2k+1)⊗H2k(A1,2k+1)→ H4k(A2k+2,0) = H4k(Out(F2k+2))

is called the k-th Morita class µk. Morita conjectured that µk non-trivial for all k. This has been proved for k ≤ 4
but the question remains open for k > 4.

From the asymptotic behavior of the Euler characteristic [2] we know that assembling homology from the groups
A1,s cannot give all of the homology of Out(Fn), even if we find a way to prove that the images are non-trivial.
We can use the homology of the groups A2,s, which has also been computed, to get a significantly larger number of
potential classes, but again the problem of proving that they are non-trivial is still still open.

6.5 Outer space and symmetric space

Abelianization Fn → Zn induces a map on automorphism groups Aut(Fn) → Aut(Zn) = Out(Zn) = GL(n,Z).
Since inner automorphisms map to the identity, we get a map

α : Out(Fn)→ GL(n,Z).

This map is mirrored on the level of spaces by a natural map, called the Jacobian from Outer space CVn to the
symmetric space Qn = SL(n,R)/SO(n). Here’s how you define it.

A point in CVn is a marked graph (g,G). A point in Qn is a positive definite quadratic form on Rn. So we need
to get a positive definite quadratic form from a marked graph. To do this, look at the chain complex for G with
coefficients in R:

0→ C1(G)
∂−→ C0(G)

C1(G) is a vector space with basis the edges of G. Equip this with the diagonal form, where the diagonal entries
are the squares of the lengths of the edges. H1(G) is the kernel of the boundary map, i.e. it is a subspace of C1(G),
so we can restrict this quadratic form to H1(G). The marking g : Rn → G identifies Rn ≡ H1(Rn) with H1(G),
giving the desired quadratic form on Rn.

We have Out(Fn) acting on CVn and GL(n,Z) acting on Qn. The Jacobian map Jn : CVn → Qn is compatible
with these actions, i.e. for every ϕ ∈ Out(Fn) the following square commutes:

CVn Qn

CVn Qn

Jn

Jn

ϕ α(φ)

Therefore we get an induced map on the quotient spaces

Tn : MGn → SL(n,Z)\Qn).

Algebraic geometers call Tn the “tropical Torelli map” by analogy with the Torelli map on the moduli space of
curves. Very recent work by Francis Brown shows how to pull back equivariant differential forms from Qn to CVn
and proves a type of “Stokes theorem” for these forms [10]. In particular, the forms that generate the cohomology
of GL(n,Z) can be used to detect classes in the relative homology of CV ∗n modulo CV∞n , which can be identified
with Kontsevich’s commutative graph homology.
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