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Introduction

In 1976 Ribe [R] proved that uniformly homeomorphic Banach spaces have uni-

formly linearly isomorphic finite-dimensional subspaces: that if there is a uniformly

continuous homeomorphism between two Banach spaces, with uniformly continuous

inverse, then every finite-dimensional subspace of one space, is linearly isomorphic

to a subspace of the other, with an implied constant of isomorphism independent of

the dimension. This remarkable rigidity theorem guarantees that finite-dimensional

properties are determined up to isomorphism by the metric structure of the space.

Thus in principle, any property of a space that depends upon finite collections of

points has an equivalent formulation which makes no reference to the linear structure

of the space and involves only the distances between points.

In view of this, Bourgain [Bo1] proposed an ambitious programme which came

to be known as “The Ribe Programme”: to find explicit metric descriptions of the

most important invariants of normed linear spaces. He himself kick-started the pro-

gramme by characterising superreflexivity. A Banach space X is called superreflexive

if every space whose finite-dimensional spaces embed uniformly well into X, must

automatically be reflexive. Bourgain showed this holds precisely if the space does

not contain copies of arbitrarily large binary trees. Needless to say the general aim

of the Ribe programme is not merely to find metric equivalents of linear properties

but to transfer the subtle and well-developed theory of normed spaces to the non-

linear setting, and in this broader sense the programme had been anticipated in a

prescient paper of Johnson and Lindenstrauss, [JL].

Within a decade or two the Ribe programme acquired an importance that would

have been hard to predict at the outset, as the insights provided by the programme

became powerful tools in the theory of algorithms and more recently in geometric
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group theory. Data sets often come equipped with a metric structure but rarely a

linear one. For a number of central algorithmic problems the most effective proce-

dure is to embed the data-set into a familiar linear geometry, without distorting it

too much, and then use the linear structure to analyse the embedded copy of the

data. Plainly, data that fail to possess a metric property that holds in the linear

geometry cannot be embedded: so it is essential to understand what these properties

are and where they appear. The study of groups as metric spaces and in particu-

lar their embeddability into simpler geometric structures has become a subject of

intense interest in the last 5-10 years because of its connection with several famous

problems such as the Novikov conjecture.

In this article I will describe what is currently by far the most successful family

of achievements within the Ribe programme: the development of metric equivalents

of type and cotype. In order to make the article reasonably self-contained I shall

discuss the linear invariants as well as the non-linear ones and describe three clas-

sical principles (due in various combinations to Kwapien, Maurey and Pisier) that

provided the inspiration for the non-linear development and serve as test cases to

check that the non-linear invariants are useful. The non-linear theory proceeded in

two (or even three) distinct phases that were quite widely separated in time. In the

first phase Bourgain and others introduced metric type and initiated the theory of

non-linear embedding. Formally the theory of embedding does not form part of the

Ribe programme but it goes hand in hand with it. It is hard to imagine that the re-

cent subtle development of the non-linear Dvoretzky Theorem by Mendel and Naor

[MN2] would have emerged without something like the Ribe programme. Indeed,

it still seems extraordinary that there is a subtle structure theory for objects as

diverse as general metric spaces, mirroring the structure theory for normed spaces.

In the second phase, or second half of the first phase, the present author introduced

the Markov type and cotype properties for the specific purpose of studying Lips-

chitz extensions. The article had an effect opposite to the one that mathematicians

always hope for: it seemed to halt the programme instead of encouraging further

development. This was probably because we were unable to prove that the Markov

type property held in any space other than Hilbert space. Ten years later this em-

barrassing open problem was adopted by Naor who solved it in collaboration with

Peres, Schramm and Sheffield and who then produced a series of deep articles with

Mendel that form the current phase of the development. They introduced a metric

form of cotype, showed that for linear spaces it agreed with linear cotype and proved

a non-linear analogue of the Maurey-Pisier Theorem. This is the most technically
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difficult part of the Ribe programme to date.

The story begins with the linear invariants.

1 Linear (or Rademacher) type and cotype

The type and cotype invariants were introduced simultaneously by Maurey in the

study of factorisation of linear maps and by Hoffmann-Jørgensen for the study of

vector-valued central limit theorems. A detailed history of how these ideas grew out

of earlier work of James and others can be found in the article of Maurey, [M2]. A

normed space X has type p if there is a constant T so that for every sequence of

vectors x1, . . . , xn in X

Ave‖ ± x1 ± x2 ± · · · ± xn‖p ≤ T p

n∑
1

‖xi‖p

where the average is taken over all choices of sign in the vector sum. It has cotype

q with constant C if

n∑
1

‖xi‖q ≤ CqAve‖ ± x1 ± x2 ± · · · ± xn‖q

for every such sequence. In Hilbert space, both statements hold with equality if

p = 2 or q = 2 and with constants T = 1 or C = 1. (The identity that results is

the parallelogram identity.) Consideration merely of the real line shows that if the

respective properties are to hold in any space then necessarily p ≤ 2 and q ≥ 2. Using

the Khintchine inequality for the Lp norms of sign averages it is straightforward to

show that if 1 ≤ p ≤ 2 the space Lp has type p and cotype 2, while if 2 ≤ q < ∞, Lq

has type 2 and cotype q. Every space has type 1 and (with the obvious convention)

cotype ∞. Thus there are spaces other than Hilbert space that possess either the

optimal type (type 2) or optimal cotype (cotype 2). For this reason these properties

have a special place in the theory. However, a gorgeous result of Kwapien [K] from

the early days of the theory shows that only Hilbert space can possess both type 2

and cotype 2.

2 Metric type and a non-linear `1 theorem

The first metric analogue of type appeared in the work of Enflo [E1] (actually before

the linear version was introduced). He (in effect) asked: for which spaces X is it
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true that there is a constant T so that for every n and every embedding of the

corners of the cube {−1, 1}n into X, the average squared length of the cube’s 2n

diagonals is at most nT 2 times the average squared length of the cube’s n2n−1 edges?

Such a space clearly has type 2 (with the same constant) since Enflo’s definition

allows folded (non-linear) embeddings of the cube, but asks for the same inequality.

Enflo observed that Hilbert space does have this property: that folding the cube

shortens the diagonals (on average) more than the edges. But the question already

illustrates some of the difficulties that one encounters in the Ribe programme. It is

still unknown whether Enflo’s property holds for linear spaces with type 2 and it is

clear that we cannot hope to find a metric version of cotype just by allowing folded

cubes, since we can fold the diagonals to nothing while keeping the edges of fixed

length.

Following Bourgain’s enunciation of the Ribe programme, Bourgain, Milman

and Wolfson [BMW] wrote an article in which they chose a modification of Enflo’s

property as their definition of metric type (for 1 < p ≤ 2) and showed that a space

with linear type p has metric type r for all r < p. They also proved a metric analogue

of Pisier’s `1 theorem (see [P1]) which states that the finite-dimensional L1-spaces

are the only possible obstruction to type:

Theorem 1 (Pisier). If a normed space X fails to have type p for every p > 1 (the

space has no non-trivial type) then there is a constant C so that for every n, X has

a subspace Y which is C-isomorphic to the n-dimensional L1-space, `n
1 : in other

words there is a linear isomorphism T : Y → `n
1 with ‖T‖ ‖T−1‖ ≤ C.

The theorem of [BMW] guarantees that a metric space which has no non-

trivial metric type contains uniformly Lipschitz-equivalent copies of the discrete

cube {−1, 1}n equipped with the metric it inherits from `n
1 ; the Hamming cube as it

is usually known.

Theorem 2 (Bourgain, Milman, Wolfson). If a metric space X fails to have type p

for every p > 1 (the space has no non-trivial metric type) then there is a constant

C so that for every n, X has a subset which is C-lipschitz equivalent to the metric

space {−1, 1}n with the Hamming metric it inherits from `n
1 .

As in Pisier’s paper, the crucial point is a submultiplicativity property for type

constants in terms of the number of vectors. This means that if the space contains

a cube of large dimension which looks a bit like a Hamming cube it must contain

cubes of smaller dimension which look very like Hamming cubes.
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At about the same time, Bourgain [Bo2] proved that every n-point metric space

can be embedded into Hilbert space with the distances between points of the space

being distorted by at most a constant multiple of log n. It had been known since the

work of Fritz John [J] that two n-dimensional normed spaces are linearly isomorphic

with an isomorphism constant at most
√

n. Bourgain’s Theorem was clearly inspired

by this fact about linear spaces together with a view which emerged at the time

that the number of points of a metric space would play a role something like the

exponential of the dimension of a normed space. This view was prompted by a fact

related to sphere-packing that had by then become a standard tool in the linear

theory: the unit ball of an n-dimensional normed space contains an ε-net with no

more than (5/ε)n elements.

3 Smoothness, convexity and martingale type

One of the oldest principles in functional analysis states that a space is reflexive if it

is uniformly convex: for any two unit vectors u and v with ‖u− v‖ ≥ ε, the average

(u + v)/2 is significantly inside the ball:

∥∥∥∥
u + v

2

∥∥∥∥ ≤ 1− δ(ε) (1)

where δ(ε) > 0 depends upon ε but not on the particular u and v. Classical spaces

like Lp spaces possess strong quantitative forms of this property and the correspond-

ing dual property, uniform smoothness.

A normed space is said to be p-smooth with constant K if for any two points x

and y in the space,

‖x + y‖p + ‖x− y‖p

2
≤ ‖x‖p + Kp‖y‖p

or q-convex with constant K if

‖x‖q +
1

Kq
‖y‖q ≤ ‖x + y‖q + ‖x− y‖q

2
. (2)

If p or q is 2, these properties can be thought of as intrinsic (in the sense that they

use the norm of the space) ways to measure the curvature of the unit ball: the first

says that the curvature is not too tight, the second that the ball is not too flat.

Euclidean spaces possess both properties with K = 1. For 2 < q < ∞ the space

Lq is 2-smooth with constant K =
√

q − 1 while for 1 < p < 2 the space Lp is
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2-convex with constant K = 1√
p−1

. An overview of these properties in the Lp and

non-commutative Lp spaces can be found in the article [BCL].

To see how these properties are related to type and cotype observe that if

x1, x2, . . . , xn are points in a p-smooth space then

Ave‖ ± x1 ± x2 ± · · · ± xn−1 ± xn‖p ≤ Ave‖ ± x1 ± x2 ± · · · ± xn−1‖p + Kp‖xn‖p

and we can peel off the individual vectors one by one at the cost of a factor Kp in

front of each term ‖xi‖p. So the space has type p with the same constant K. In a

similar way, q-convexity implies cotype q. These quantitative forms of smoothness

and convexity can be thought of as precise or “local” forms of type and cotype but

they are quite a bit stronger. Moreover, for example, L1 has cotype 2 but is not

uniformly convex.

Since uniformly convex spaces are reflexive and uniform convexity depends only

upon pairs of points, such spaces are automatically superreflexive. In [E2] Enflo

had shown that a space is superreflexive if and only if it can be equipped with an

equivalent norm that is uniformly convex. A remarkable (in my view absolutely

shocking) result of Pisier [P2] showed that in this case there will necessarily be some

finite q for which the space has an equivalent q-convex norm: it isn’t possible that

the optimal function δ in (1) is of the form e1/ε for all equivalent norms.

Pisier’s argument goes via inequalities for martingales in the space in question.

A sequence (Mk)
n
k=0 of integrable random vectors in a normed space is a martingale

if for each k, the increment Mk −Mk−1 has expectation 0, conditional on the value

of Mk−1. The simplest examples can be built from independent choices of sign as

follows. Suppose U1, U2, . . . , Un are IID random variables each taking the values 1

and −1 each with probability 1/2. Let x1, x2, . . . , xn be random vectors (on the

same probability space) where for each k the value of xk depends only upon the

earlier Ui namely: U1, U2, . . . , Uk−1. Then the sums

Mk =
k∑
1

xiUi

form a martingale. This sequence builds a binary tree in the space as shown in

Figure 1. The leaves of the tree form a non-linear embedding of the cube which has

some features in common with linear embeddings.

The easy part of Pisier’s argument depends upon the fact that in a p-smooth

space the type inequality can be strengthened to hold for all martingales (and sim-

ilarly for the cotype inequality in a q-convex space).
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Figure 1: A martingale in the plane

Lemma 3. If X is a p-smooth space with constant K and (Mk)
m
k=1 is a martingale

in X then

E ‖Mm −M0‖p ≤ f(K)p

m∑

k=1

E ‖Mk −Mk−1‖p

where the function f(K) depends only on K and not on the space (or the martingale).

For a proof of this lemma see [B1].

4 Markov type and cotype and extensions of Lip-

schitz maps

Maurey’s extension theorem (which generalises Kwapien’s Theorem referred to ear-

lier) [M1], states the following.

Theorem 4 (Maurey). If A is a subspace of a normed space X with type 2, Y is

a normed space with cotype 2 and S : A → Y is a bounded linear map, then there

is an bounded linear map S̃ : X → Y which extends S: so S̃(a) = S(a) for each

a ∈ A. (Moreover the least possible norm of such an S̃ can be estimated in terms of

the norm of S and the type and cotype constants of the respective spaces.)
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In their article, [JL] Johnson and Lindenstrauss studied extensions of Lipschitz

maps from metric spaces into Hilbert space and proved the celebrated dimension-

reduction lemma stating that any n points in Euclidean space can be embedded

in an Euclidean space of dimension only about log n, with very little distortion of

the distances between points. This lemma has been used repeatedly in the theory

of algorithms since data embedded in a space of low dimension are much easier to

search than those in a space of higher dimension. In the same article, the authors

asked whether an analogue of Maurey’s extension theorem holds for Lipschitz maps

initially defined on arbitrary subsets of X (as opposed to subspaces), at least if X

is Lq with 2 ≤ q < ∞ and Y is Lp with 1 ≤ p ≤ 2? The purist might object

that if one is going to study Lipschitz maps one should be studying them on general

metric spaces rather than on linear spaces, but one may interpret the question of

Johnson and Lindenstrauss as asking: can you find appropriate metric versions of

type and cotype 2, that imply an analogue of Maurey’s extension theorem, and that

are possessed at least by the correct Lp spaces?

At the time this was a rather bold question. The only real evidence for their

suggestion was an old theorem of Kirszbraun which guarantees that a Lipschitz

map from a subset of one Hilbert space H1 into another H2, can be extended to the

whole of H1. The linear analogue of this statement is an immediate consequence of

the existence of orthogonal projections in Hilbert space. The proof of Kirszbraun’s

theorem is completely unrelated to the linear case and the extension is carried out

one point at a time, so it is essential that there is no increase in the Lipschitz constant

at each step. In contrast it is easy to see that no theorem can hold for other Lp

spaces without such an increase in Lipschitz constant, so a one point extension is

useless.

In the context of the extension problem it was easy to see why metric cotype was

more difficult to invent than metric type. If you want to extend a map into Y then

you must have some hypothesis that prevents Y from being a collection of isolated

points: you need that any collection of points in Y are at least joined by some sort of

tree-like structure onto which you can map the new points. So the cotype property

we are after must involve some existential assertion on points, rather than merely an

inequality on distances. One solution to the problem was introduced in the author’s

paper [B1] where the properties of Markov type and cotype were defined. A metric

space X has Markov type p with constant K if every time-reversible stationary

Markov chain (Mk)
m
k=1 in X, running in steady state, satisfies what amounts to the
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same inequality as in Lemma 3:

E d(Mm,M0)
p ≤ KpmE d(M1,M0)

p.

Thus, a space has Markov type 2 if time-reversible Markov chains only wander about√
m times as far in m steps as they do in one step: if they experience the same sort

of cancellation as appears in the central limit theorem.

The Markov type p condition can be rephrased as follows. A space X has Markov

type p if there is a constant K so that for every symmetric stochastic matrix (aij),

every sequence (xi) of points in X, and each natural number m,

∑
(Am)ijd(xi, xj)

p ≤ Kpm
∑

aijd(xi, xj)
p.

(The matrix A is the transition matrix for the Markov chain.) To check this condition

for Hilbert space (with p = 2 and K = 1) we need only check that for a sequence of

real numbers (xi)

∑
(Am)ij(xi − xj)

2 ≤ m
∑

aij(xi − xj)
2.

This is equivalent to the statement that the matrix (m− 1)I −mA + Am is positive

semi-definite, where I is the identity matrix of the correct dimension. But the matrix

A has all its eigenvalues in the interval [−1, 1] and the function λ 7→ (m−1)−mλ+λm

is non-negative on this interval.

The Markov cotype condition is more complicated because of the existential as-

sertion referred to above but in the linear setting it can be replaced by a simpler

condition involving the Green’s matrices for the solution of difference equations

based on stochastic matrices. As was mentioned earlier, at the time these properties

were introduced it was not known whether the Markov type 2 property held in any

normed space other than Hilbert space. This problem was solved some 10 years later

in [NPSS]: 2-smooth spaces have Markov type 2. Their result combined with those

from [B1] gives the following non-linear analogue of Maurey’s Extension Theorem.

Theorem 5 (Ball, Naor, Peres, Schramm, Sheffield). If 1 < p ≤ 2 ≤ q < ∞, A is

a subset of Lq and S : A → Lp is a Lipschitz map, then there is a Lipschitz map

S̃ : Lq → Lp which extends S: so S̃(a) = S(a) for each a ∈ A.
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5 Metric cotype and the non-linear Maurey-Pisier

Theorem

Although Markov cotype seems to be the correct non-linear analogue of cotype for

the purpose of Lipschitz extensions it evidently does not fulfil the precise demand

of the Ribe programme for a metric version of the linear condition. In their paper

[MN1] Mendel and Naor finally found an appropriate metric analogue, some 40 years

after Enflo came up with the analogue of type. Just as Pisier’s `1 Theorem and Mau-

rey’s Extension Theorem provided a way to test the metric type and Markov type

and cotype properties, the test problem for cotype is the Maurey-Pisier Theorem

for `∞:

Theorem 6 (Maurey, Pisier). If a normed space X fails to have cotype q for every

q < ∞ (the space has no non-trivial cotype) then there is a constant C so that for

every n, X has a subspace Y which is C-isomorphic to the n-dimensional L∞-space,

`n
∞: in other words there is a linear isomorphism T : Y → `n

∞ with ‖T‖ ‖T−1‖ ≤ C.

In view of the fact that the Hamming cube is the only obstruction to metric type,

one might at first guess that the discrete cube lying in `n
∞ would be the analogous

obstruction to non-trivial metric cotype. But a moment’s thought shows that this

is absurd since any two distinct points of this set are distance 2 apart: so the set

can be embedded in Hilbert space. Mendel and Naor not only found the metric

version of cotype and showed that for linear spaces it is equivalent to linear cotype,

they also found the right obstructions. The two parts of the problem should be

thought of as being closely linked: the cotype condition depends on the distances

between points in sets (more complicated than cubes) which mirror the structure of

the obstructions.

The sets in question are grids rather than cubes and the simplest way to describe

the cotype property is by using inequalities for embeddings of the discrete torus Zn
m.

A metric space X has cotype q with constant K if for every n there is an even integer

m so that for every embedding f : Zn
m → X

n∑
j=1

E d (f(x + m/2 ej), f(x))q ≤ KqmqE d (f(x + ε), f(x))q

where the averages are taken over all x in the torus and (in the second case) over

all choices ε ∈ {−1, 0, 1}n. The vectors ej are the standard basis vectors so the

expression on the left is similar to edges of the cube (as in linear cotype) but with
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jumps increased by a factor of m/2. The expression on the right is built from the

diagonals of the cubes that belong to the grid. The main theorem in [MN1] is the

following:

Theorem 7 (Mendel, Naor). A normed space X has metric cotype q if an only if

it has linear cotype q.

Needless to say, the really difficult part of the theorem is to show that linear

cotype implies metric cotype. The metric cotype property makes clearer than the

linear version that the inequality relates two different discretisations of the gradient

of a function. The key difference in using grids rather than simply cubes is that the

expression that comes from diagonals is now impossible to collapse to zero without

doing the same on the left of the inequality: large steps in the coordinate directions

can be built from small diagonals.

Mendel and Naor prove an analogue of the Maurey-Pisier Theorem for a variant

of metric cotype, analogous to the variant used by Bourgain et al. in [BMW]. The

obstruction that they build in the absence of metric cotype is not just a discrete

cube in `∞ but a large grid.

6 The non-linear Dvoretzky Theorem

The famous theorem of Dvoretzky [D] states that for each k, every normed space of

large enough dimension contains a subspace that is nearly isometric to the Euclidean

space of dimension k. In the article [BFM] Bourgain, Figiel and Milman proved an

analogue of this for finite metric spaces: every n-point metric space contains a subset

of at least about log n elements that can be almost perfectly embedded in Euclidean

space. During the 1980’s a great deal was learned about what dimension of Euclidean

subspace could be found in what spaces. One of the simplest facts is that the space

`n
∞ does not have subspaces isomorphic to Euclidean spaces of dimension larger than

log n: (see [B2] for an elementary discussion of the problem). Based on this fact

it was natural to believe that the result of [BFM] gave the correct dependence on

n whatever distortion of the metric we allow on the subset. So it was something

of a shock when Bartal, Linial, Mendel and Naor [BLMN] discovered a remarkable

threshold phenomenon which does not exist in the linear theory.

Theorem 8 (Bartal, Linial, Mendel, Naor). For every ε > 0 there is a constant C(ε)

so that every n point metric space contains a subset of size at least n1−ε which can
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be embedded in Euclidean space with its metric distorted by a factor of no more than

C(ε). Moreover, for every C > 2 there is a constant α(C) > 0 so that every n-point

metric space contains subsets of size at least nα which are C-Lipschitz equivalent to

subsets of Euclidean space.

In this paper the authors show that the threshold C > 2 is sharp: if we insist

that the distortion of the metric on the subset is less than 2, we can find Euclidean

subsets only of logarithmic size, as in the earlier theorem of [BFM]. However, once

we allow the metric to be distorted by a factor of more than 2 the size jumps to a

power of n and by increasing the distortion we can take this power as close to 1 as

we wish. As one might expect, these very much larger subsets are of significance in

applications to the theory of algorithms.

Following the renewed interest in the non-linear Dvoretzky Theorem, Tao asked

the wonderfully provocative question: “Why was the cardinality of a finite metric

space chosen to be the analogue of the dimension of a normed space, instead of the

Hausdorff dimension of the metric space?” In their remarkable recent article [MN2]

Mendel and Naor solved the problem of Tao in the following very strong way:

Theorem 9 (Mendel, Naor). There is a constant C so that for each ε > 0, every

compact metric space X contains a closed subset S whose Hausdorff dimension is

at least 1− ε times that of X and which embeds in Hilbert space with a distortion at

most C/ε. The dependence of the distortion on the dimension is optimal.

When Tao first posed the problem it was tempting to think that it could be

tackled using methods similar to those used for the cardinality version. This now

looks implausible. In an article in preparation [MN3] Mendel and Naor have found a

very considerable generalisation of Theorem 9 which not only implies the cardinality

version as well as the Hausdorff dimension version but also implies the famous ma-

jorising measure theorem of Talagrand, [T]. The statement is roughly the following:

Theorem 10 (Mendel, Naor). There is a constant C and for each ε > 0 a constant

K = K(ε) so that for any metric space X and probability measure µ on X there is

a subset S of X which embeds in Hilbert space with a distortion at most C/ε and a

probability measure ν on S for which

ν (B(x, r)) ≤ µ (B(x,Kr))1−ε

for each metric ball B(x, r) in X.
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