
Mode conversion in the cochlea?

Robert S. MacKay∗

Mathematics Institute and Centre for Complexity Science,
University of Warwick, Coventry CV4 7AL, U.K.

August 28, 2008

Abstract

It is suggested that the frequency selectivity of the ear may be based
on the phenomenon of mode conversion rather than critical layer reso-
nance. The distinction is explained and supporting evidence discussed.

PACS numbers: 43.64.Kc, 43.66.Ba
Keywords: Cochlea, travelling wave, mode conversion
Running title: Mode conversion in the cochlea

∗Electronic mail: R.S.MacKay@warwick.ac.uk

1



1 Introduction

The cochlea is the part of the ear where mechanical vibrations (forced by
sound waves in the air) are turned into neural signals. There is a huge
literature about it, both experimental and mathematical (for summaries,
see Robles & Ruggero, 2001, or Ch.23 of Keener & Sneyd, 1998). There
are large differences between the cochleae of different species (especially
between mammals, birds and reptiles); in this paper attention is restricted
to mammalian and usually human cochleae.

Most current explanations for the function of the mammalian cochlea
are based on “critical layer resonance”, the build up of wave energy at a
frequency-dependent place where the wavelength goes to zero, e.g. Lighthill
(1981), Nobili, Mammano & Ashmore (1998), de Boer (1996), Hubbard &
Mountain (1996), even if the words and mathematical theory are not always
used and it is disputed by some (e.g. the discussion in section VII of Olson,
2001).

The goal of this paper is to suggest that critical layer resonance is not the
right explanation: rather it might be “mode conversion”, the propagation
of a wave to a frequency-dependent place where it turns round and comes
back out in another wave mode, the energy density forming a peak at the
turning point. Critical layer resonance models fail to fit several experimental
observations, whereas mode conversion produces consistent results.

A notable alternative to both critical layer and mode conversion models
is given by de Boer & Nuttall, 2000, on which I’ll comment at various points.

Critical layer resonance modelling is reviewed in section 2, with partic-
ular reference to the cochlea, first in the frequency domain and then in the
time domain. In section 3 a range of inadequacies of critical layer resonance
models for the cochlea is listed. Section 4 surveys the phenomenon of mode
conversion and section 5 suggests that it could occur in the cochlea. Sec-
tion 6 mentions some precedents. Section 7 gives some ideas about how
mode conversion could arise physiologically. Section 8 discusses stability
constraints.

Despite clear experimental evidence for nonlinear effects (e.g. summaries
in Robles & Ruggero, 2001, and section 8 of de Boer, 1996), and the large
amplitude that occurs near a mode conversion point, this paper is limited
to treatment of the linear regime, as the first step in the analysis.
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2 Critical layer resonance

First the phenomenon of critical layer resonance is recalled, together with
how it arises in a simple model of the cochlea. I’ve given quite a long
treatment of this, starting from elementary considerations, because it is
important to appreciate how mode conversion differs from it, but readers
who are already familiar with critical layer resonance can skip the section.

2.1 Frequency domain

The context for critical layer resonance is waves in a medium whose prop-
erties vary smoothly in space. If the medium can be treated as linear
(i.e. any linear combination of two solutions is another solution) and time-
independent, one can analyse its behaviour by considering solutions with
a single frequency ω, i.e. time-dependence like (the real part of) eiωt (ω is
the “angular frequency”; some may prefer to reserve the word “frequency”
for f = ω/2π). Then one can attempt to write solutions as superpositions
of waves ei(ωt−k.x), or better, WKB (after Wentzell, Kramers and Brillouin;
also attributed to Liouville and Green and contributed to by Jeffreys) so-
lutions A(x, ω)ei(ωt−

R x k(y,ω)dy) with A determined by the evolution of wave
energy density along the rays, where the wave vectors k(x, ω) are solutions
of the local dispersion relation for the medium. For introductions to lin-
ear wave theory in fluid mechanical contexts, see Whitham (1974), Lighthill
(1978). A critical layer is a place x (or line or surface, depending on the
ambient dimension) where the local wave number k(x, ω) goes to infinity for
some mode at the given frequency ω.

The phenomenon of critical layer resonance is as follows. Waves can
propagate on only one side of the critical layer. Waves propagating towards
it slow down and take infinite time to reach it. Their energy density increases
in inverse proportion to their group speed until damping effects take over.
Virtually all the energy is absorbed in a zone near the critical layer and
almost nothing is reflected.

Fluid mechanics attribute the discovery and analysis of the critical layer
phenomenon to Booker & Bretherton (1967), but it had already been done by
Budden (1955) in plasma physics, and it had already been found numerically
in a model of the cochlea by Peterson & Bogert (1950)!

The best way in the cochlear context to illustrate the critical layer phe-
nomenon is provided by the passive 1D cochlear model of Peterson & Bogert
(1950), so it is now recalled. Consider the cochlea to consist of a rigid tube
separated into two by a flexible membrane along its length, called the “basi-
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lar membrane”, and the fluid motion to be incompressible (this is good as
long as the time for acoustic waves in the fluid to equilibrate the pressure to
that corresponding to the boundary conditions at the ends is small compared
with the timescale on which the boundaries move, though there are authors
who claim this fails above 7 kHz, referred to in Lighthill, 1981) and for the
moment only longitudinal (this is inaccurate, cf. Fig. 7 of Olson, 2001, but
the effects of 2D and 3D fluid flow are recalled shortly and make little quali-
tative difference (Lighthill, 1981)). So the volume fluxes in the two tubes are
equal and opposite, denoted by ±j(x, t) at longitudinal position x and time
t, and the pressures are uniform over each part of the cross-section. Denote
the area displaced by the membrane from its equilibrium position in the
two parts of the cross-section by ±a(x, t) and the pressure difference across
the membrane by p(x, t) (Lighthill, 1981, denotes it 2p). If the membrane
deforms in a mode shape ζ(y) with respect to lateral position y (which may
depend on longitudinal position x), then a is related to the displacement z
at a chosen y0 by a = z

ζ(y0)

∫
ζ dy, so some authors convert a to z. Then

fluid mass conservation leads to

∂a

∂t
=

∂j

∂x
, (1)

and horizontal momentum conservation (ignoring viscous effects) to

σ
∂j

∂t
= −∂p

∂x
, (2)

where
σ(x) =

ρ1

A1
+

ρ2

A2
,

with ρi the fluid density in the two tubes and Ai(x) their equilibrium cross-
sectional areas. It would be reasonable to take ρ1 = ρ2, but the analysis is
no different when ρ1 6= ρ2 (and actually the upper channel consists of two
fluids of different ionic composition separated by a very flexible membrane).
Combining equations (1) and (2),

∂2a

∂t2
= − ∂

∂x

1
σ

∂p

∂x
. (3)

The vertical momentum equation is

m
∂2a

∂t2
= −p− λa, (4)

where λ(x) is the stiffness of the membrane (meaning the pressure difference
to produce unit area displacement in the plane at constant x) and m(x) an
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effective “density” of the membrane. If the membrane deforms in mode ζ
as above and has mass µ(x, y) per unit area in (x, y), then (Lighthill, 1981)

m(x) = (
∫

µζ2dy)/(
∫

ζ dy)2. (5)

A more realistic evaluation of m requires incorporation of how the organ
of Corti moves, which in the above treatment is regarded as moving rigidly
with the basilar membrane. In live cochlea it is well established that there
are additional forces generated by the outer hair cells (OHCs), e.g. Robles &
Ruggero, 2001. Effects of active feedback can be added to (4), as could any
other contributions to the transverse force, but for simplicity of illustration
of the phenomenon we continue without them.

Combining (3) and (4), and looking for solutions with time dependence
eiωt, yields (

λ

ω2
−m

)
∂

∂x

1
σ

∂p

∂x
+ p = 0. (6)

Thus if the parameters σ, λ,m are treated as locally independent of x one
obtains p ∝ e±ikx with dispersion relation

(λ−mω2)k2 − σω2 = 0. (7)

The term σω2 proportional to ω2 is sometimes described by saying the re-
sponse of the longitudinal fluid flow to transverse membrane motion acts
like an “added mass” for the membrane, with density σ/k2.

Lighthill (1981) surveyed ways to calculate 2D and 3D corrections to this
added mass, which involve modifying (3) to give a as the convolution of p
with a nonlocal version of the second derivative of a delta-function, so one
no longer obtains a differential equation, but one can still perform WKB
analysis, inserting

p = −ω2I(k)a

into (4) with

I(k) ∼ {
σ
k2 for kh � 1
2ρ

w|k| for kh � 1,
(8)

where w is an effective width of the membrane and h an effective height of
the two channels.

Sticking to the 1D model for ease of exposition, (7) yields

k2 =
σω2

λ−mω2
.
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It is usually stated that σ and m do not vary much along the length of the
cochlea. On the other hand, Fig. 1 of Mammano & Nobili (1993) shows a
significant variation of A1 and A2, hence of σ, and it seems difficult to me
to estimate m; the simplest guess from (5) would be that m is inversely
proportional to the width w of the membrane. Nevertheless, all agree that
λ decreases by a factor of about 104 from base to apex (partly because the
width of the membrane increases by a factor of about 4), so k2 increases.
Taking the direction of increasing x from the base to the apex, k2 goes to
+∞ as x approaches a place where

λ(x) = m(x)ω2 (9)

and is thereafter negative (i.e. k is imaginary, so solutions grow or decay
exponentially with respect to x locally). Thus there is a critical layer at
the solution x(ω) of (9). It moves from base to apex as the frequency ω
decreases from an upper limit to a lower limit.

It is useful to consider the affine impedance model obtained from (6) by
making the straight-line approximation

1
σ(x)

(
λ(x)
ω2

−m(x)
)
≈ β(x(ω)− x)

for x near x(ω), and supposing σ locally constant. In the scaled variable

X =
x− x(ω)

β
, (10)

this yields
Xp′′ = p. (11)

The solutions can be written in terms of Bessel functions of order 1 (de Boer
& MacKay, 1980). Using (3) to convert p to a gives

a =
σp

ω2β2X
,

and one obtains that the solutions on each side of the critical layer look like
linear combinations of those in Fig. 1. In particular a(X) → ∞ like |X|−1

for most solutions as x approaches x(ω) from either side.
The differential equation (6) does not tell one how to connect the solu-

tions on the two sides of the critical layer, because it is singular at x = x(ω)
(the coefficient of the highest derivative goes through 0 there). Nevertheless,
adding a little damping (e.g. a dissipative term −δ ∂a

∂t , δ > 0, to (4)) allows
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Figure 1: Graph of a(x) for some solutions of (6), plotted against X =
x−x(ω)

β .

one to match the solutions on the two sides: for the affine approximation the
answer is that the solution with no growing mode as X → +∞ (a physically
reasonable requirement) has only in-going waves on the other side (Budden,
1955; Stix, 1962; Booker & Bretherton, 1967): at one phase of the oscillation
the solution for a is the dashed curve of Fig. 1 on the left (zero on the right),
and π

2 later it is the solid curve (both have infinite jump discontinuity). The
dotted solution on the right is not excited. Then the amplitude of oscillation
|a| is proportional to a function A(X), drawn in Fig. 2(a). Damping makes
the maximum of |a(x)| finite, albeit still large (inversely proportional to the
damping strength) (de Boer & MacKay, 1980).

Similarly, one can plot the phase φ of the solution (Fig. 2(b)). Note the
jump of −π

2 on crossing the critical layer, which is determined by considering
the effect of small damping. Analysis of the Bessel functions entering the
exact solution shows that the phase deviates from the WKB approximation
φ = −

∫
k dX = 2

√
−X − π

4 (choosing the constant to fit the asymptotics
of the Hankel function) by losing an extra π/4 in the non-WKB regime,
followed by this jump of −π/2.

Somewhere to the left of the critical layer one has to match the solution
of the affine impedance model to the full model. This can be done with
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Figure 2: (a) Amplitude A(X) and (b) scaled phase φ(X)/π for the affine
impedance critical layer model.

ease if the affine approximation is good over a range x(ω)−Cβ < x ≤ x(ω)
for some C significantly larger than 1, because then it can be matched to a
WKB solution coming in from x < x(ω)−Cβ. The condition for validity of
the WKB approximation is k′ � k2 and we assume this holds up to a point
where the affine impedance approximation (11) takes over (for the affine
impedance model, k′/k2 = 1

2 |X|
−1/2, so WKB is good for |X| � 1

4).
When 2D or 3D effects for the motion of the fluid are taken into account,

the local dispersion relation changes from (7) to

I(k) = λ/ω2 −m.

Then the criterion for the WKB approximation is just β � Ā/w, where Ā
is the harmonic mean of A1 and A2, which holds nearly everywhere in the
cochlea (Lighthill, 1981) (if the membrane is assumed to fill the width of
the cochlea then Ā/w ≈ h, so this shorthand will sometimes be used). It
follows that the amplitude |a| grows like |X|−1 again near the critical layer,
but the phase goes to +∞ in proportion to − log |X| as X increases to 0.

2.2 Plausibility of critical layer resonance in the cochlea

Critical layer resonance sounds a perfect explanation for the cochlea. Indeed,
Lighthill (1981) argued that any model of the cochlea must be based on
critical layer resonance. Frequency ω is mapped to place x(ω), so a given
inner hair cell (which transduces movement into neural signals to the brain)
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is stimulated mainly by Fourier components with only a given frequency.
One can work out the frequency selectivity, assuming some reference for
forcing amplitude. Sound pressure level in the ear canal is a common choice
in experiments; to translate this into models one could assume conservation
of wave energy through the ossicles and ear drum; the sound energy flux in
the ear canal is A

ρc |p|
2, where |p| is the amplitude of pressure fluctuation,

A the cross-section of the ear canal, ρ the density of air and c the speed
of sound in air; so constant sound pressure level corresponds to constant
energy flux, independently of frequency. In the model, the energy flux for a
right-going wave in the WKB regime is

Φ = 〈<p <j〉 =
1
2
<(pj̄) =

1
2
σ

(ω

k

)3
|a|2, (12)

by (1) and (2), where 〈〉 denotes the average over a cycle. Thus the amplitude
of oscillation as a function of incoming frequency ω for fixed incoming energy
flux Φ in the WKB regime is (for the 1D model)

|a| =
√

2Φ
σ

(
k

ω

)3/2

=
√

2Φσ1/4

(λ−mω2)3/4
.

Matching this to the energy flux of the solution of (11) gives

|a| = π

√
Φ
2σ

(ωβ)−3/2A(X)

in the regime where (11) holds. Consequently, the frequency response at a
given place looks like Fig. 3(a), computed for the exponential model: λ(x) =
Ce−αx, σ and m constant (de Boer & MacKay, 1980).

The exponential model has a scaling symmetry so it suffices to study a
single place or a single frequency and there is just one free parameter α2m

σ ,
which is about 1

40 in the cochlea (de Boer & MacKay, 1980); actually, the
result in the WKB regime is independent of its value, so it is plotted for
α2m

σ = 1
4 , else the decay above the resonant frequency becomes too steep to

see. Also the extension of the WKB curve to the left half of the affine region
agreed to within one pixel with that for the affine model, so just the WKB
curve and the right-hand half of the affine region are plotted.

A more common protocol in experiments is to measure the forcing am-
plitude required to produce a given amplitude of response at a given point,
which also has the advantage for comparison with theory that the system
is likely to remain in the linear regime. Also the measure of response am-
plitude is usually basilar membrane velocity ż, which on linear theory is
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Figure 3: Exponential model with α2m
σ = 1/4: (a) Amplitude A = |a| of

response at a given place x to forcing of a given energy flux, as a function
of scaled frequency W = ω

ωr(x) , with ωr(x) being the resonant frequency at
x; (b) a tuning curve (log-log graph of basilar membrane velocity amplitude
V = |ȧ| against scaled frequency W ).

proportional to ȧ at a given place. It is then plotted on a log-log scale and
called a “tuning curve” (though sometimes a linear scale is used for the fre-
quency). A tuning curve for the exponential model is shown in Fig. 3(b).
If the effects of damping are incorporated, which rounds off the spike, the
resulting tuning curves look roughly like observed ones, e.g. Fig. 6 of Robles
& Ruggero, 2001. One can also compute the phase at a given position rela-
tive to that at the stapes, as a function of input frequency, and incorporate
modifications for the effects of 2D and 3D fluid flow.

Good fits to the observed frequency response of the cochlea have been
obtained by suitable dependence of parameters on x, including damping
(both positive and negative) (de Boer & Nuttall, 2000), though interestingly
their best fits have no critical layer. I will comment more on this is Section 7.

2.3 Time domain

On the view of the ear as a frequency analyser it is natural to work in
the frequency domain, as this paper has done until now. Some issues are
better discussed in the time-domain, however, such as response to an impulse
(“click”) (Robles et al, 1976; Recio et al, 1998), even though for a time-
invariant linear system this is in principle deducible from the frequency
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response. Almost any treatment of nonlinear effects requires formulation in
the time-domain. Even the stability problem is best treated in the time-
domain. So here the system, with or without 2D or 3D effects and OHC
forces, is formulated as a time-evolution. This point of view was taken by
Mammano & Nobili (1993), for example.

Given the deflection a of the membrane as a function of x along the
membrane and boundary conditions at the base and apex, the pressure field
is determined by the assumptions of incompressible and irrotational flow,
in particular the pressure difference p across the membrane is determined
as a function of x. The simplest case is the one-dimensional fluid flow
approximation and no OHC force. Then the equation determining p is

m
∂

∂x

1
σ

∂p

∂x
− p = λa. (13)

This does not involve time. Physically what happens is that the pressure
equilibrates rapidly to a solution of (13) via acoustic waves in the fluid.
The situation is analogous to water waves (Whitham, 1974; Lighthill, 1978)
where the velocity potential under the surface is determined instantaneously
by a boundary condition at the surface, and it is another surface boundary
condition that determines the evolution.

Equation (13) needs supplementing by boundary conditions at the base
and apex, however, denoted x = 0 and xh respectively. An appropriate
boundary condition at the apex, where there is a hole in the membrane
called the helicotrema which permits fluid to flow from one side to the other,
is that p = ρ

d
∂j
∂t where d is the diameter of the hole (it has area about 0.06

mm2) (Lighthill, 1981). Under the 1D flow approximation, (2) makes the
boundary condition at x = xh

p +
ρ

σhd
p′ = 0, (14)

where σh = σ(xh).
At the base, the channels end in flexible membranes called the oval and

round windows. Actually these are on the sides of the channels near the
base, but let us model as if at their ends. Both can flex in and out of the
middle ear, and the oval window moves the stapes which moves the other
ossicles and hence the ear drum. I’m not aware of a good treatment of this
boundary condition, though much is written about the impedance of the
stapes, so here is a proposed treatment. Denote by v the volume of fluid
displaced by the oval window (positive if displaced into the scala vestibula).
By the assumed compressibility of the fluid and rigidity of the bone around
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the cochlea, an equal and opposite volume is displaced by the round window,
and j(0) = v̇. Using (2) again, this gives

p′(0) = −σ0v̈, (15)

where σ0 = σ(0). Now suppose change of v and associated motion of the
windows, ossicles and eardrum has an effective “mass” M (in g cm−2 because
with respect to a volume-coordinate) and “elasticity” µ, so that

Mv̈ = −µv −Ap + F

where A is an effective mean area of the two windows and F is any external
force due to interaction of the eardrum with sound waves in the outer or
middle ear. Using (15), this gives boundary condition at x = 0

Ap− M

σ0
p′ = −µv + F. (16)

The ratio M
Aσ0

is an effective length of the stapes (if replaced by a cylinder
of material of the density of the fluid with the same volume).

Equation (13), with boundary conditions (14) and (16), determines the
function p in terms of the function a and the numbers v and F . Then a and
v evolve in time according to

∂2a

∂t2
= − ∂

∂x

1
σ

∂p

∂x
(17)

∂2v

∂t2
= − 1

σ0
p′(0) = − 1

M
(µv + Ap(0)− F ),

the first being the result of volume and horizontal momentum conservation
in the 1D approximation (as in (3)), and the second being (15). The analysis
of Mammano and Nobili (1993) leads to a similar formulation.

In reality the evolution equations are more complicated. One has to allow
3D fluid flow (as Mammano & Nobili (1993) point out, that is in principle
straightforward, though in practice requires numerical computation if one
wants to include the real geometry of the cochlea), add damping effects
and OHC forces, and one has to determine the radiation of sound by the
eardrum and corresponding reaction force to include in F , but let us stick
with system (13,14,16,17) for this section.

A first issue about the system is its stability. It is a question of the
spectrum of the operator taking (a, v) to the right hand side of (17) being
entirely negative. Thus, stability is decided not purely by the basilar mem-
brane dynamics: interaction with the stapes plays a role. Since there is a
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critical layer for every frequency of interest, we should expect the spectrum
to consist mainly of a continuum (in contrast to acoustic waves in brass and
woodwind instruments, for example, where the non-zero wave speed and fi-
nite length of the instrument makes the spectrum discrete), but there should
also be at least one eigenvalue, corresponding to the discrete variable v. It
would be interesting to estimate the corresponding frequency.

A second issue is its impulse response. This does not look easy to deter-
mine, but should presumably separate into a wave train with locally defined
(in space and time) frequency and wave number, and energy flow given by
the group velocity. In WKB approximation, a group of waves with given
frequency ω moves with the group velocity cg = ∂ω

∂k . Thus for the 1D critical

layer model one obtains cg = (λ−mω2)3/2

λσ1/2 , which slows to zero at the resonant
location. It slows even more when 2D or 3D effects are included and kh � 1,
to cg = (λ−mω2)2w

4ρλω . This makes the time from the stapes for a group to reach
a given x near the critical layer be t = 2λ

ω3σβ2
√
−X

+ cst for the 1D model

provided X < −1, and 4λρ
ω3σβ3w|X| + cst with 2D or 3D corrections, provided

−(h
β )2 < X < 0.

3 Inadequacies of critical layer models

Critical layer models of the cochlea, however, have several inadequacies.
Firstly, even after modification for 2D and 3D effects, adding damping

processes like −δ ∂a
∂t to (4) and −γj to (2), and many models for active

processes (OHC feedback), it seems agreed that the peak in the response to
periodic forcing does not come out the right shape if based on critical layer
resonance (de Boer, 1996): “either the amplitude of the peak remains too
low or the phase variations in the peak region are too fast”.

Although this has been put right in a class of abstract models allowing
a general basilar membrane impedance function (de Boer & Nuttall, 2000),
it seems to me that realistic electro-mechanical assumptions would place
strong constraints on the joint frequency and position dependence and it is
not clear to me that they are satisfied by the basilar membrane impedance
functions fit from data.

Returning to critical layer models, let us discuss particularly the phase
variation. On a critical layer model, the wavelength should go to zero at the
critical layer. Yet the wavelength (inferred as 2π/φx, where φx is the rate
of change of phase with position) of the travelling wave along the basilar
membrane is observed not to go to 0; indeed it seems to go to a minimum

13



of about 0.5–1mm at the resonance (Table 4 of Robles & Ruggero, 2001),
with the shorter minimum for the higher frequencies. Now the 1D models
can be allowed to escape this criticism because even though the slope of the
phase does go to infinity, it does so in such a way that the phase change
up to the critical layer is finite (Fig. 2), so any smoothing effects (damping,
nonlinearity, other forces, experimental error) will saturate the slope. Note
also that if instead one considers the wavelength to be twice the distance
between nodes then the 1D case escapes even without adding extra effects
because the WKB approximation is not valid for |x(ω)−x| ≤ β so the image
of slowly modulated waves is not correct there, and it can be inferred from
the analysis behind Fig. 1 that there is a c > 0 (of order 1) such that there
is at most one node between x(ω) − cβ and x(ω). An order of magnitude
estimate for β, however, for a model with exponential stiffness variation (de
Boer & MacKay, 1980) is 0.075mm (independent of frequency), which is
much shorter than the observed minimum wavelength.

Models with 2D or 3D fluid flow do not escape this criticism, because
they predict that the phase goes to infinity on approaching the critical layer,
which disagrees strongly with observations. One could argue that the obser-
vations are masked by an additional component after the resonant location
(“cochlear fast wave”), due to the differences between the oval and round
windows, so that the infinite phase change gets truncated to some large
value. Indeed, the phase beyond the critical layer is always observed to
adopt a specific relation modulo 2π with that of the stapes, so perhaps this
is a valid escape. The observed sharpness of tuning at low amplitudes, how-
ever, suggests that damping is almost cancelled and then the phase should
go to infinity.

Similarly, one can compare with experiments observing fixed place at
varying frequency. The accumulated phase (usually measured as the phase
difference between response at a fixed place and forcing at the stapes, on
increasing the frequency ω from 0), does not go to infinity as ω approaches
the critical frequency for the given place; instead it plateaus at around 3–4
cycles, e.g. Fig. 7 of Robles & Ruggero (2001) and Fig. 5 of Shera & Guinan
(1999). This is consistent with a 1D critical layer but not a 2D or 3D one.

Secondly, a common objection to such critical layer models (e.g. Naidu
& Mountain, 1998) is that the observed variation in stiffness (by a factor
of 104, e.g. Olson & Mountain, 1991) from one end of the membrane to
the other is inadequate to account for the observed range of frequencies
that we can hear (103). According to the models, the natural frequency

at a given place is
√

λ
m , which would change by a factor of only 102 from
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one end to the other (as already mentioned, the effective membrane density
m is usually assumed not to vary much). Some authors try to get round
this by proposing alternative resonances below the minimum on the basilar
membrane, to extend the range, for example using the helicotrema (Lighthill,
1981), but the effects look weak.

Thirdly, nearly all the models ignore longitudinal stiffness of the mem-
brane, which, although apparently very small (Voldrich, 1978), can not logi-
cally be neglected in models which predict k2 to go through infinity at some
point and the basilar membrane displacement to suffer an infinite discon-
tinuity there! Addition of longitudinal stiffness would add a term sk6 to
the dispersion relation, for some stiffness coefficient s, and instead of going
through infinity as x increases, k2(x) would rise steeply and then plateau
at

√
mω2/s. Thus one would obtain an enhanced amplitude as the wave

approaches what was the critical layer but the amplitude would remain high
thereafter, unless damping was stronger for such short wavelength modes.

Critical layer models in any domain of science suffer from a generalisation
of this problem: the phenomenon of critical layer absorption is not robust
to addition of many other physical effects, however small (Stix, 1992; Swan-
son, 1998). To some extent this situation is mitigated by damping: then
addition of further physical effects weaker than damping does not change
the results much. In the (live and oxygenated) cochlea, however, damping
can be considered to be very small because of the active feedback provided
by outer hair cells, which among other things is likely to nearly cancel (or
exceed) damping.

Fourthly, the impulse response is often observed to have a double-lobed
structure, e.g. Fig. 9 of Robles & Ruggero (2001), and I don’t think critical
layer models can explain this. On a critical layer model, an impulse at
the stapes should produce a response at a given location starting with low
frequencies and increasing to the resonant frequency for that location and
then ringing at that frequency for a number of cycles depending on the
damping. The double-lobed response suggests that a second packet of waves
arrives later and interferes with the first. From where does it come?

Fifthly, critical layer models have trouble explaining otoacoustic emis-
sions (OAE). These are sounds that come out of ears. There are various
sorts (Probst et al, 1991):

spontaneous : occurs in about one third of ears, at one or more well
defined frequencies (e.g. Fig. 5.6 of de Boer (1991) and figures in Mc-
Fadden & Plattsmier, 1984; Martin et al, 1988; a case with 23 has
been reported (Probst et al, 1991). Note that although sometimes
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correlated with tinnitus, a subjectively audible high frequency whis-
tle, opinion seems to be that tinnitus is a neurological rather than
mechanical phenomenon (Probst et al, 1991).

transiently evoked : response to a click or short tone-burst; it usually has
a fairly well defined frequency and delay time (around 10 ms) before
starting. The reflected energy can reach 100% of the incident energy
at low stimulus amplitudes, e.g. Figs 5 and 8 of Wilson, 1983. This
was the first form of OAE to be discovered (Kemp, 1978).

tone-evoked : response at the same frequency; interference with the in-
cident waves causes modulation in the frequency response of the ear
canal with a period of around 100 Hz, which approaches near complete
cancellation at low amplitudes, e.g. Fig. 1 of Shera & Guinan, 1999.

evoked distortion-products : response at a combination frequency to
input at two frequencies (as a clearly nonlinear effect, this will not be
considered here).

Spontaneous OAEs (SOAEs) and the near full energy reflection of tran-
siently and tone-evoked OAEs were the first evidence for an active compo-
nent to the mechanics of the cochlea. Active processes are not a problem for
critical layer models, but the first three classes of OAEs are incompatible
with critical layer models in several ways. Critical layer models can pro-
duce one eigenvalue, but SOAEs in some subjects occur at more than one
frequency. On linear theory, all those places with negative damping would
produce SOAEs corresponding to their resonant frequency, and nonlinear
effects could lock them to a discrete set of frequencies (or produce chaotic
output), but it seems to me the set of frequencies would be highly sensitive
to physiological conditions, in contrast to the observed stability (Martin et
al, 1988). It is usual to try to explain transiently and tone-evoked OAEs in
terms of errors in the WKB approximation, arising from non-smooth spatial
variations of the medium, or nonlinear effects producing some equivalent.
Shera & Zweig (1993) (also Zweig & Shera, 1995) made a particularly thor-
ough attempt to make this approach work. Such explanations encounter a
problem, however: the delay time for transiently evoked OAEs is around
10–14 periods, whereas the phase shift from stapes to resonance is of the or-
der of 3, so if the echo were a reflection in the same mode before the critical
layer it would have a time delay of at most 6 periods (de Boer, 1991).

Sixthly, if the active processes over-compensate for damping at the res-
onant location (as is proposed in a zone just before the resonant location),
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then the connection formula for critical layer resonance would change, so
that an incoming wave produces a response growing rapidly towards the
apex and the solution decaying towards the apex matches to an outgoing
wave from the critical layer. One might say this is SOAEs, but then the
cochlea should be unable to match in-going waves at unstable frequencies
to bounded displacement at the apex. In any case, using a model with
such extreme sensitivity to the balance between damping and anti-damping
feels risky. It is a good general principle that models should be robust to
modifications unless there are strong constraints on their form.

In contrast, mode conversion is robust to modelling errors, and I will
indicate that it can work with the observed range of stiffness, can explain
multiple SOAEs, tone-evoked OAEs, and with some tweaking of models
might give the right tuning curves.

4 Mode conversion

The context for mode conversion is a wave-bearing medium which varies
smoothly in space in such a way that the square k2 of the local wavenumber
is a multivalued function of position x, with a fold point at a positive value
of k2 where two real values of k merge and split as two complex solutions
(Fig. 4).
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Figure 4: Wavenumber k as a function of position x for given frequency for
a system exhibiting mode conversion, contrasted with a case of critical layer
resonance.
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It is crucial to distinguish this from the well known case where k2 de-
creases through 0, which is usually called a “cutoff” (because waves can
not propagate beyond it) or “turning point” (because it gives a fold in the
graph of k(x)) and plays a fundamental role in semiclassical mechanics, radio
propagation and many other domains of science. To avoid confusion, I will
always refer to the place where the graph of k2(x) folds as a “fold point”,
although both “turning point” and “cutoff” would a priori have been equally
good descriptions.

The phenomenon is that a wave entering in one mode slows down to
zero group velocity at the fold point and then turns into the other mode
and propagates back out the way it came. The intensity builds up in inverse
proportion to the group speed. This phenomenon was found and analysed
by Stix (1965) in a plasma waves context (warning: Stix called the fold a
“critical layer”, which again is reasonable terminology but was subsequently
used by Booker & Bretherton (1967) for the case of k2(x) passing through 0
and the latter usage has dominated). In magnetised plasmas (ionised gases)
it occurs near lower and upper hybrid resonances, the perpendicular ion-
cyclotron resonance and the Buchsbaum two-ion resonance (Stix, 1992). I
think it should also occur in many other contexts, e.g. ultrasound in elastic
plates with thickness gradients, cf. Fig. 1 of Prada et al (2005).

Stix considered equations of the form

ηp(4) −Xp′′ + p = 0, (18)

representing the leading terms in a description of a lossless medium near a
point (X = 0) where the coefficient of the second derivative changes sign.
Actually, he used a parameter µ and spatial coordinate u, related to ours
by η = µ3 and X = −µu, but the above form is more convenient for present
purposes. The case of small positive η was studied earlier by Wasow (1950) in
connection with Orr-Sommerfeld theory for linear stability of parallel shear
flows (though application to that problem requires taking η imaginary).

Take η > 0 (the case η < 0 has no fold and corresponds qualitatively to
the case with longitudinal stiffness). The local dispersion relation is

ηk4 + Xk2 + 1 = 0,

so it has local dispersion curve

k2 =
−X ±

√
X2 − 4η

2η
,

equivalently
X = −(ηk2 + k−2), (19)
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with a fold at X = −2η1/2, k = η−1/4. Stix considered waves in a warm
magnetised plasma, but (18) can be viewed as a (singular) perturbation of
the affine impedance cochlear model (11).

The general solution of (18) can be written as a linear combination of
solutions of the form

p(X) =
∫

Γ
dz exp

(
η

3z3
− X

z
− z

)
, (20)

for various choices of contour Γ in the complex z-plane (some are shown in
Stix (1992) in the plane of u = µz). Asymptotic analysis of these solutions
showed that the solutions going to 0 on the far left do so like

i

√
2X

π
K1(2

√
X),

and connect to linear combinations of solutions asymptotic to

−
√
−πX

2
H−

1 (2
√
−X) +

η3/4

√
2(−X)5/4

ei( 2
3
η−1/2(−X)3/2−π

4 )

and its complex conjugate on the far right (a subdominant term on the left
determines the linear combination). K1 and H−

1 are Bessel functions: K1

decays to 0 as its argument goes to infinity, H−
1 oscillates with clockwise-

rotating phase.
The interpretation is that an incoming wave from large negative X in

a mode where ηp(4) is negligible (the term involving H−
1 ; this is the usual

mode approaching a critical layer) produces an evanescent wave for X > 0
(the term involving K1; just as for a critical layer) and an outgoing wave
for X < 0 in a mode where p is negligible (resulting from a balance between
ηp(4) and Xp′′; this would be a new mode in the cochlear context).

Note that the problem depends on the parameter η which can not be
removed by scaling, so unlike critical layer solutions, there is not a universal
form for mode conversion solutions.

On the k′ � k2 criterion the WKB approximation is good for |2ηk3 −
2
k | � 1. This corresponds to avoiding sufficiently a neighbourhood [k1, k2]
of the wavenumber at the fold, with k1,2 ∼ η−1/4 ∓ 1

8η−1/2 for η � 1
4096 ,

k1 ∼ 2, k2 ∼ (2η)−1/3 for η � 1
4096 , equivalently, to X being to the left of

X1 on the lower branch, X2 on the upper branch, with X1,2 ∼ −2
√

η − 1
16

for η � 1
4096 , X1 ∼ −1

4 , X2 ∼ −(η
4 )1/3 for η � 1

4096 . Since the crossover
occurs at a small value of η, it is valid to use the large η formulae even for
η of order 1.
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5 Correspondence with the cochlea

Let us assume that there is some physical effect in the cochlea which pro-
duces a perturbation of the form ηp(4) to (11), and analyse to what predic-
tions it would lead for the cochlea.

Initially let us use (3) to convert p to a, though 2D and 3D effects are
addressed later. Some solutions a(X) were computed numerically by Kevin
Painter for his undergraduate Applied Mathematics project with me in 1994.
To select solutions which decay to the right one has to shoot from small final
conditions on the right or treat it as a two-point boundary value problem
giving at least two (small or zero) values at the right. Figure 5 shows one I
produced recently: one can see two wave modes on the left – the underlying
long one corresponds to the critical layer resonance and the superimposed
short one is the new mode.

x
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Figure 5: a(X) ∝ p′′(X) for a solution of (18) for η = 1.

One might say that the large amplitude short wave mode is inconsis-
tent with observations of the cochlea, but perhaps one would need greater
than usual spatial resolution to see it; probably most current measurement
procedures would average away the short wave leaving only the long one.
Furthermore, I would suggest that except at low power the short mode is
damped relatively fast, so decays to the left for a solution with input power
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coming from the left in the long mode. Also, the solutions depend on the
parameter η whose value I have not yet estimated (see Section 7 for a for-
mula, but it requires knowledge of OHC responses), but numerics did not
reveal a great dependence on η other than setting the wavelengths of the
two modes.

To start some analysis of the shape of the solutions, note that (18) has
a conserved quantity, “power” or “wave energy flux”:

Φ =
1

2σω
=(ηp′′p̄(3) − pp̄′)

(the factor 1
2σω is included to correspond with the physically derived (12) in

the case η = 0). This can be checked by differentiation or derived as a con-
sequence of the following Hamiltonian formulation for (18). Equation (18)
defines a non-autonomous dynamical system on the space of (p, p′, p′′, p(3)) ∈
R4. For a solution p let H = 1

2(ηp(3)2 − Xp′′2 + 2pp′′ − p′2) and for two
solutions p, q let ω(p, q) = η(p′′q(3) − q′′p(3)) − (pq′ − qp′). Then ω is a
symplectic form on R4 and the Hamiltonian vector field of H with respect
to ω (i.e. solution V of ω(V, ξ) = dH(ξ) ∀ξ ∈ R4) is equivalent to (18).
Conservation of ω is automatic; this is the Hamiltonian way to view con-
servation of Wronskians. The formulation can be extended to C4 by letting
H = 1

2(η|p(3)|2 − X|p′′|2 + 2<(pp̄′′) − |p′|2) and ω(p, q) = =(ηp′′q̄(3) − pq̄′).
Then phase rotation invariance implies the associated Noether conserved
quantity P = =(ηp′′p̄(3) − pp̄′), solving ω(W, ξ) = dP (ξ) ∀ξ ∈ C4, where
W is the vector field for infinitesimal phase rotation. Up to multiplication
by a physical factor, this P is the “power”. It is not necessary for H to
be conserved (nor even possible, because dH(p)

dX = ∂H
∂X 6= 0). Note that all

this remains true even if the coefficient of p′′ in (18) is replaced by any real
function of X. Indeed, such a Hamiltonian formulation is the mathemati-
cal expression for the physical concept of a “lossless medium” at the linear
time-invariant level.

Now let us see what the WKB approximation tells us about the solutions,
using conservation of power. As soon as η � 1

4096 the domain of validity of
the WKB approximation is all but an interval of length about 1

16 in X to the
left of the fold point (and even for smaller η it is all but an interval of about
1
4 in X). For solutions bounded on the right, hence going to zero, Φ = 0,
so it follows that the incoming and mode-converted waves carry equal and
opposite powers, which abusing notation I’ll also write as Φ. Then in the
WKB regime for each mode,

|p|2 =
2σωΦ

(ηk4 + 1)k
, (21)
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|a|2 =
2k3Φ

σω3(ηk4 + 1)
= − 2kΦ

σω3X
,

using (3) to convert p to a (one could redo this to allow for 2D and 3D
fluid flow effects, by taking ηk2 = −X − 1/|k| for kh � 1). Using (19),
note that the resulting amplitude as a function of position depends only on
X/η1/2 (up to scale in a which is arbitrary). Figure 6 shows the amplitude
as a function of X/η1/2 for the two waves (connected through the fold even
though the WKB approximation is not formally valid there).
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Figure 6: Amplitude |a| and scaled phase φ/η1/4 of oscillation as functions
of x = X/η1/2 for the WKB approximation of (18). The long-wave mode
has the lower amplitude and shallower phase curve.

The phase of the waves from WKB theory is φ = −
∫

k dX. Using (19)
and integration by parts one obtains φ = 2(ηk3

3 + 1
k ). Thus in terms of

κ = η1/4k we have

X = −η1/2(κ2 + κ−2), φ = 2η1/4(
κ3

3
+

1
κ

).

This is also plotted in Fig. 6. For the phase of the true problem, there is a
non-WKB correction and a non-trivial approach to a constant on the right,
which I have not computed.

Since the maximum amplitude in mode conversion occurs near the fold
rather than at the resonance, it is feasible for the range of mode-converting
frequencies to be broader than that for critical layer resonances. In partic-
ular, the frequency range extends considerably downwards because for low
frequencies one can have a fold on the basilar membrane at a frequency
whose resonant location would be off the apical end.
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With addition of suitable anti-damping to the incoming wave, damping
to the outgoing one and 3D effects, I think it is likely that a fit with observed
tuning curves could be obtained.

Mode conversion could explain transiently and tone-evoked OAEs, be-
cause it gives complete conversion of the incoming wave into an outgoing
one, and the properties of the second mode can be widely different from the
first, e.g. much slower group velocity, so it could fit the long time delay for
the echo and the accumulated phase curves.

As a first step, I propose a specific form for the additional term, namely
a force ∂2

∂t2
∂
∂xν ∂a

∂x with ν > 0, to be justified physiologically in section 7.
Let us compute the phase shift and group delays for a case of this with
exponential stiffness variation but other properties constant. 3D fluid flow
effects are allowed, but success or failure of this particular model should not
be taken as definitive for the whole class of mode conversion models. Thus
I take λ(x) = Ce−αx and m, ν and the function I of (8) independent of x.
So the dispersion relation is

νk2 − (
C

ω2
e−αx −m) + I(k) = 0.

This inherits the simplifying feature from the exponential critical layer model
that a change in ω is equivalent to a shift in x. It follows that

e−αx =
ω2

C
f(k) (22)

where f(k) = νk2 + m + I(k).
First, compute the phase shift from the base to the fold in the long wave

mode (using the WKB approximation):

∆φf = −
∫ xf (ω)

0
k dx,

where the position xf (ω) of the fold is given by e−αxf (ω) = ω2M
C with M =

mink f(k). Using integration by parts, and defining k−(ω) < k+(ω) to be
the positive roots of f(k) = C

ω2 for ω <
√

C/M (the maximum frequency
for which the fold falls in the domain x ≥ 0) and kf to be the minimiser
of f (note that this is independent of ω, whereas experiment shows the
wavenumber at the characteristic place to increase weakly with frequency,
but this could be fixed by allowing ν, m or I to vary with x, at the cost of
more complicated calculations), one obtains

∆φf = −kfxf (ω) +
∫ kf

k−

x dk = − 1
α

(
k− log

C

Mω2
+

∫ kf

k−

log
f(k)
M

dk

)
.
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This gives a phase delay of magnitude 1/α times the area shown in Figure 7.
As ω → 0 the area converges to a finite non-zero limit L =

∫ kf

0 log f(k)
M dk.
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Figure 7: The area entering the calculation of the phase delay from stapes
to fold for the exponential mode conversion model. The plotted function
g(k) = log f(k)

M , the horizontal cutoff is at height log C
Mω2 , and the integral

extends to the minimum. The plot was made using ν = 1 and I(k) = 1
k tanh k .

Thus for ω sufficiently below
√

C/M the phase shift is close to −L/α. This
corresponds with observations of a phase delay from stapes to characteristic
place (of about 23 radians) independent of frequency. This model predicts
a reduction in the magnitude of the phase delay as frequency increases, at a
rate τ f

p = −∂∆φf

∂ω = 2k−(ω)
αω ≈ 2

α

√
σ
C for low frequencies, with the phase delay

going to 0 as ω approaches the maximum
√

C/M . It would be interesting
to know whether such a change is observed.

Next, let us compute the group delay τ f
g from stapes to fold in the long-

wave mode. Disturbances near frequency ω propagate at the group velocity
cg = ∂ω

∂k . Thus the time delay for a disturbance from stapes to fold is

τ f
g =

∫ xf (ω)

0

dx

cg
=

∫ kf

k−

∂x

∂k
/
∂ω

∂k
dk,

the derivative in the numerator being performed at constant ω and that in
the denominator at constant x. This evaluates to

τ f
g =

2
αω

(kf − k−(ω)) ∼
2kf

αω
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for ω sufficiently below
√

C/M . Thus the model predicts a group delay
from stapes to characteristic place inversely proportional to frequency. I
don’t know if this has been measured.

Thirdly, let us compute the phase shift for a wave entering in the long
wave mode and coming out in the short one (or equivalently, the other way
round). The WKB phase shift (perhaps one should add something for the
non-WKB region near the fold) is, integrating by parts,

∆φ0 = −
∫

k dx =
∫ k+

k−

x dk = − 1
α

∫ k+

k−

log
ω2f(k)

C
dk.

This is a phase advance, because the argument of the logarithm is less than
1 in the given range. I am not aware of a direct measurement of this phase
change, but what has been measured is its derivative with respect to fre-
quency, inferred from the 100 Hz modulation of the frequency response. This
derivative is

τ0
p =

∂∆φ0

∂ω
= − 2

αω
(k+(ω)− k−(ω)).

Note first that it is negative, so looks like a time delay. This agrees with
the sign observed (Kemp, private communication). Secondly, for ω suffi-

ciently below
√

C/M we have k+(ω) ∼
√

C
ν

1
ω and k− much smaller, so

τ0
p ∼ − 2

α

√
C
ν

1
ω2 ; it decreases in magnitude as frequency increases but too

fast compared with observations, which give ωτ0
p approximately constant at

about 15× 2π (Wilson, 1980). So perhaps some modifications of the model
are necessary, e.g. ν could vary exponentially with x too (it is thought to
be larger at the base than the apex).

Fourthly, the group delay for the round trip from stapes to stapes is:

τ0
g =

∫
dx

cg
=

∫ k+

k−

∂x

∂k
/
∂ω

∂k
dk =

2
αω

(k+(ω)− k−(ω)),

which, remarkably, is the same as −τ0
p . The equality of τ0

g and −τ0
p agrees

with observations (Wilson, 1980), but again the frequency dependence is
incorrect.

In principle, one could work out a formulation in the time domain for a
mode conversion system, analogous to that of section 2.3, but we can already
deduce further qualitative features without this.

For example, consider generation of SOAEs. In contrast to critical layer
models, mode conversion models have a discrete set of resonant frequencies,
much as in a wind instrument but using reflection between the two modes
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at the fold and a combination of reflections at the base. Of these, it could
be that some are unstable or at least so close to unstable that they amplify
noise and hence give rise to an array of SOAEs, cf. Fig. 1 of Martin et al
(1988). Fig. 9 of Wilson (1983) suggests a situation close to a subcritical
Hopf bifurcation for one of the modes.

Finally, consider the impulse response for a mode conversion model. An
impulse at the stapes will generically produce waves in both modes, of which
the short-wave mode is slower. Thus at a given location one should expect to
see first a fast wave arrive, with frequency increasing to the value for the fold
at that location and then decreasing as we get to see waves turning at more
apical folds and coming back in the other mode, followed by a slow wave,
with frequency also increasing to the value for the fold at that location and
then decreasing. This could explain the two-lobed waveform of Recio et al
(1998). If one waits longer one might also see the effects of waves reflecting
at the stapes and coming round again.

To obtain realistic predictions of the shape of the tuning curves, impulse
response and OAEs one would have to make realistic models, including re-
alistic variation of the parameters along the length, active feedback and all
the relevant transfer functions, and probably nonlinear effects too (which
could have a drastic effect on peak shape!).

6 Precedents

The idea of mode conversion has already been proposed in cochlear mechan-
ics, by Huxley (1969), albeit without the terminology or results. He pointed
out that it was inconsistent to leave out the effects of longitudinal stiffness of
the membrane and suggested that to obtain the observed frequency to place
response additional effects should be included to make a path for waves
from the incoming mode to an exponentially decaying one. He suggested
this could be achieved by longitudinal compression of the membrane (with
which I agree, though whether it is physical is another matter) or an effect of
the spiral geometry of the cochlea (which I haven’t managed to understand).
Longitudinal stiffness would give rise to an irrelevant third mode with much
shorter wavelength.

The idea of studying models with more than one mode has been proposed
several other times (see section 7.1 of de Boer, 1996). In addition to the
references given there, Kolston (1988) proposed an “OHCAP” model, which
has two modes of deformation of the basilar membrane, de Boer (1990)
proposed a two-membrane model (basilar membrane and reticular lamina),
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and Hubbard (1993) proposed a two-mode model. Also Wilson and Bruns
(1983) observed two modes of deformation of the basilar membrane in a
bat. These and others are surveyed in section 4.3 of Hubbard & Mountain
(1996). None of the authors appears to have commented on the possibility of
mode conversion, however. Interestingly, de Boer’s model does exhibit mode
conversion, namely where hZBM = 4h3(ZOC −ZHC), though this might not
occur in the physiological range.

Note that the “second mode” of Watts (1993) is not a candidate, because
it is just the evanescent wave on the apical side of a critical layer. Nor is the
“fast wave” of Lighthill (1981) a candidate, because it has a much longer
wavelength, this being an acoustic wave in the fluid supported by its slight
compressibility.

7 Physiological origin of mode conversion?

What the mode conversion explanation requires before anything else is a
plausible physical reason for a fold in the wavenumber as a function of
position. I am not convinced by Huxley’s suggestions. It is not clear to me
that any of the two-mode models have mode conversion in the physiological
range, and if they produce critical layers then they will fail for the same
reasons as already discussed.

Here is one conjectured mechanism to create a fold. The outer hair
cells (OHCs) exert a force (Brownell et al, 1985) on the membrane. What
forces the OHCs produce is a matter of continuing debate (see section 7.2
of de Boer (1996) for a survey up to that date), but since they are con-
tained within the organ of Corti they can not produce a net force nor a net
longitudinal torque on the basilar membrane, so it seems to me than in the
continuum approximation the force must be a second derivative with respect
to x (or a change in transverse mode shape). This could be a natural re-
sult of evolution of the hair cells sharpening the response, since such a force
acts as amplification of transverse displacement with inhibition. There are
three rows of OHCs and they are slanted differently along the membrane so
could easily produce a second derivative response (indeed, a first derivative
response was already proposed by Kolston et al (1989), Steele et al (1993)).
In any case, a second derivative in x of the given sign creates a fold in k2(x),
analogous to Huxley’s suggestion of longitudinal compression.

Let us suppose the OHC force has value

F = −ω2 ∂

∂x
ν

∂a

∂x
, (23)
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for some positive function ν(x) of position, allowing for the observed vari-
ation in properties of the OHCs along the membrane. The factor ω2 is
required to keep the membrane stable (stability is analysed in the next sec-
tion). It is also reasonable because Mammano & Nobili (1993) claim that
despite the OHCs being low-pass filters, the “inertial reaction of the tecto-
rial membrane makes the triggering mechanism of outer hair cells increase
as the square of frequency over a wide range”. This picture might also fit
with those who see the OHCs as having a natural frequency, as for frogs and
turtles (Duke & Julicher, 2003): balance between ω2 ∂

∂xν ∂a
∂x and (λ−mω2)a

could give oscillations at frequency ω0 =
√

λ
νk2

0+m
with k0 corresponding to

the minimum possible wavelength of two segments of the basilar membrane
(20 µm), to achieve zero group speed.

Note that the proposed outer hair cell force (23) is reactive rather than
resistive. The possibility of a reactive component was anticipated in Gold
(1948). Of course there could be, and almost certainly is, an (anti-)resistive
component too to cancel damping but it might be that the principal response
of the outer hair cells is reactive (Kolston & Smoorenburg, 1990) (this would
also be sensible to reduce the power requirement of the OHCs, which is a
prohibitive concern for many models). The work of de Boer & Nuttall (2000)
inferring the basilar membrane impedance by fitting data to a 3D critical
layer model does not allow one to settle this question, because the separation
of the imaginary part into active and passive parts is not possible. Also it
seems strange to me that they obtain anti-damping only in the region just
before the peak response at the tested frequency: I would have thought
the anti-damping should be ready for any frequency of input and therefore
distributed along the whole membrane; but see sections 6.1 and 8.3 of de
Boer (1996) for a distinction between “undamping” and “local activity”: I
think the idea is that undamping is a force proportional to a velocity whereas
local activity can depend on other time and space derivatives.

Assuming the OHC force law (23), one obtains dispersion relation (ig-
noring the now irrelevant longitudinal stiffness term −sk6, but using 1D
fluid flow for simplicity)

νω2k4 − (λ−mω2)k2 + σω2 = 0.

If m, σ and ν are taken to be roughly constant and λ to decrease with
x, then one obtains a fold as in Fig. 4 at the position x where λ(x) =
(m + 2

√
νσ)ω2, and the wavenumber at the fold is k = (σ

ν )1/4. Thus kf is
roughly independent of ω, as observed, though there should be corrections
from 3D fluid flow and an effect from variation of ν with position.
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Taking the affine approximation (11), the parameter η of (18) is given
by η = ν

σβ4 , evaluated near the fold.
One feature of this model is that existence of the return mode depends on

outer hair cell activity, so if it were inhibited (e.g. by oxygen deprivation or
aspirin) then the fold would be replaced by the critical layer curve of Fig. 4
and there would be no transiently or tone-evoked OAEs, consistent with
observations (Weir et al, 1988; Martin et al, 1988); but of course, oxygen
deprivation would also reduce the cancellation of damping and it might just
be that the OAEs become more damped so not noticeable.

One refinement that can be made is to replace the derivatives by finite
differences, to reflect the fact that the basilar membrane is made up of
segments of width about 10µm (Mammano & Nobili, 1993). This would
saturate the wavelength of the new mode at two segment widths.

Another consideration is that in addition to active OHC length changes
there is also active hair bundle motion (e.g. Kennedy et al, 2006), which
might contribute to the function.

8 Local Stability

A fundamental requirement of a cochlear model is that the undisturbed state
normally be stable, though spontaneous OAEs show it to be close to the
threshold of instability. To obtain a first idea one can study “local stability”
meaning that all properties like λ, σ,m are treated as locally constant along
the membrane.

Longitudinal compression K (one of Huxley’s suggestions) would lead to
instability, because it would modify (4) to

m
∂2a

∂t2
= −K

∂2a

∂x2
− λa− p,

which with (3) gives frequencies ω for real wave number k according to

ω2 =
λk2 −Kk4

σ + mk2
.

This is negative for k2 > λ/K so the membrane is unstable (to short wave
buckling).

In contrast, the proposed outer hair cell force proportional to the second
derivative in both time and space would give a stable result, because

m
∂2a

∂t2
=

∂2

∂t2
∂

∂x
ν

∂a

∂x
− λa− p (24)
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with (3) gives

ω2 =
λk2

σ + mk2 + νk4
,

which is positive for all real k.
To treat the case of λ, σ,m, ν depending on position one ought to examine

the spectrum of the generalised eigenvalue problem (eigenvalue ω2)

(
λ

ω2
−m)

∂

∂x

1
σ

∂p

∂x
− ∂

∂x
ν

∂2

∂x2

1
σ

∂p

∂x
+ p = 0

with appropriate boundary conditions, for which the eigenfunctions can not
be assumed to be of the form eikx, but the above treatment should suffice to
gain a first impression. In fact, consideration of the correct boundary condi-
tions leads to the requirement to include the volume displacement at the oval
window (and its opposite at the round window) as an additional dynamical
variable, as was already done for critical layer models in section 2.3.

9 Conclusion

The inadequacy of critical layer resonance models of the cochlea has been
detailed and it is proposed that they be replaced by mode conversion models.

Mode conversion models can explain the double-lobed impulse response,
the resonances in stimulated otoacoustic emissions, the minimum observed
wavelength roughly independent of frequency, and other experimental ob-
servations.

The main prediction for experimentalists is that a short-wave mode
should occur on the basilar membrane in addition to the “usual” one, de-
pending on a balance between membrane stiffness and outer hair cell forces.
This might be observable in transiently evoked oto-acoustic emission exper-
iments, but the wavelength will be shorter than those observed so far, so it
would require high spatial resolution to detect.

The most important extension for modellers to make to mode conversion
models is to analyse the effects of nonlinearity.

Another issue that may need addressing is low frequencies (≤ 200Hz),
for which it is possible that the mode conversion location would be off the
apical end of the basilar membrane and hence different treatment required.

Acknowledgements

I dedicate this paper to the people who have inspired me about waves in in-
homogeneous media or cochlea mechanics: Ken Budden, Michael McIntyre,

30



James Lighthill, Egbert de Boer, Tom Stix, Ted Evans, Andrew Huxley and
Pat Wilson. I have been terribly slow about writing it (it could have been
written in the early 1990s), and I’m afraid Budden, Lighthill and Stix have
not lived to see this. I’m grateful to Jonathan Ashmore for suggesting it
could still be useful, to David Kemp for important comments, and to IHES
(France) for hospitality during the writing of a first version (MacKay, 2006).

References

[1] Boer E de, 1990, Wave-propagation modes and boundary conditions for
the Ulfendahl-Flock-Khanna preparation, in Dallos et al, 1990, 333–9.

[2] Boer E de, 1991, Auditory physics. Physical principles in hearing theory
III, Phys Rpts 203, 125–231.

[3] Boer E de, 1996, Mechanics of the cochlea: modeling efforts, in: The
cochlea, eds Dallos P, Popper AN, Fay RR (Springer) 258–317.

[4] Boer E de, MacKay R, 1980, Reflections on reflections, J Acoust Soc
Am 67, 882–890.

[5] Boer E de, Nuttall AL, 2000, The mechanical waveform of the basilar
membrane II: from data to models and back, J Acoust Soc Am 107,
1487–96.

[6] Booker JR, Bretherton FP, 1967, The critical layer for internal gravity
waves in a shear flow, J Fluid Mech 27, 513–539.

[7] Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y, 1985, Evoked
mechanical responses of isolated cochlear outer hair cells, Science 227,
194–6.

[8] Budden KG, 1955, The non-existence of a “fourth reflection condition”
for radio waves in the ionosphere, in: Physics of the ionosphere (Phys-
ical Soc, London) p.320.

[9] Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds),
1990, The mechanics and biophysics of hearing, Lect Notes Biomath 87
(Springer).
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