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Abstract. This paper treats synchronization dynamics in a shift-invariant
ring of N mutually coupled self-sustained electrical units. Via some qualita-
tive theory for the Lyapunov exponents, we derive the regimes of coupling
parameters for which synchronized oscillation is stable or unstable in the ring.

1. Introduction.
Synchronisation of dynamical systems is a phenomenon of widespread technolog-

ical and natural importance, ranging from the operation of electricity distribution
networks to the neural generation of breathing rhythm, for example. It is of inter-
est to determine the parameter regimes in which stable synchronisation can occur.
There are many works on this, e.g. [1]- [15] and it would fill a book to review the
literature.

Here we restrict attention to the simplest context for synchronisation, a shift-
invariant ring of identical nearest neighbour coupled second order oscillators, and
the strongest notion of synchronisation, identical time dependence. Such a system
has been used to model a parallel operating system of microwave oscillators [16, 17],
and the interest in synchronisation is to produce high power. This allows us to
derive strong general results on the parameter regime for stable synchronisation.
The key new ingredient is qualitative analysis of the parameter dependence of the
time-dependent flow on projective space of an associated two-dimensional linearised
system about a synchronous solution. The paper is developed around a specific
electrical example, but the theory applies more generally.

The paper is organised as follows. In Section 2 the electrical system is described.
In Section 3, basic results on linear stability of synchronous solutions of such a
system are explained. In Section 4, the Prüfer transformation is used to develop
extensive qualitative theory for a generalised class of linear equations; parts are
deferred to appendices. In Section 5, the theory is compared to the results of
numerics on the electrical system, with good agreement. Section 6 summarises the
conclusions, gives a simple extension of the results, and suggests some directions
for further work.

2000 Mathematics Subject Classification. Primary: 58F15, 58F17; Secondary: 53C35.
Key words and phrases. Synchronization, Master stability function, Lyapunov exponents.

1



2 R. YAMAPI AND R. MACKAY

Figure 1. Schema of the ring of N mutually coupled self-
sustained electrical units. The units are shown in Figure 2(a). The
coupling elements are capacitors Cm to ground.

2. The electrical model.
We study a ring of N electrical units, as in Figure 1, where each unit consists of

an inductor L, nonlinear resistor R and nonlinear capacitor C in series, as in Figure
2(a), and the coupling is via capacitors Cm to ground between each neighbouring
pair of units.

The voltage VC across each nonlinear capacitor is taken to depend on its charge
q by

VC =
1
C0

q + a3q
3, (1)

where C0 is the linearised capacitance and a3 is a nonlinear coefficient depending
on the type of capacitor in use. This is typical of nonlinear reactance components
such as varactor diodes widely used in many areas of electrical engineering to de-
sign for instance parametric amplifiers, up-converters, mixers, low-power microwave
oscillators, etc [18]. We allow the coefficient a3 to be of either sign, but if negative
we should add some additional term for |q| large to keep VC of the same sign as q.
To simplify presentation we leave it out.

The current i through any capacitor is related to the charge q on it by

i =
dq

dτ
(2)
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Figure 2. (a) Schema of each electrical unit; (b) Alternative
schema of a unit including half the capacitors to ground at each
end, which makes the unit self-exciting.

where τ is time.
The voltage VR across each nonlinear resistor is taken to depend on the current

i through it by

VR = R0i0

[
−

(
i

i0

)
+

(
i

i0

)3
]

, (3)

where R0 is its linearised negative resistance and i0 is the current at which the
voltage changes to the same sign as i. This represents the effect of an amplifying
device, e.g. transistor, and nonlinear saturation.

The voltage VL across an inductor depends on the current i through it by

VL = −L
di

dτ
. (4)

Thus the voltage Vn across the nth unit is given by

Vn = VC + VL + VR =
qn

C0
+ a3q

3
n −R0i0(

in
i0
− (

in
i0

)3)− L
din
dτ

(5)

where qn is the charge on its nonlinear capacitor and in the current through all
three elements.

With free ends, in = 0 and qn is constant, so nothing happens. Each unit
becomes a self-exciting oscillator if its ends are connected, however because the
equation in = 0 is replaced by Vn = 0, which combined with (2) is a second-order
nonlinear differential system, and standard phase plane analysis [22] shows there is
an unstable equilibrium at qn = 0, in = 0 surrounded by an attracting limit cycle



4 R. YAMAPI AND R. MACKAY

(if a3 is very negative this conclusion requires the previously mentioned addition of
a term to keep VC of the same sign as q).

An alternative way to view each unit as a self-exciting oscillator, more natural in
this context, is to connect each of its ends to ground via a capacitor of value Cm/2
as in Figure 2(b). Then writing U± for the voltages across the capacitors Cm/2 at
the left and right respectively, and q± for their charges, we obtain

dq±
dτ

= ∓i, U± =
2q±
Cm

, Vn = U+ − U−. (6)

The first equation in (6) implies that q± = c±∓q for some constants c±, and thus the
second and third lead to Vn = 2

Cm
(c+−c−). We suppose that c± = 0, corresponding

to there being no initial imbalance of charge in the circuit, and thereby recover the
equation Vn = 0 for the case with the ends connected.

The ring of Figure 1 is obtained by joining neighbouring ends of units of Figure
2(a) to a capacitor Cm to ground, (equivalently just joining the units of Figure 2(b)
at the tops of neighbouring capacitors Cm/2). Denoting the voltage at the left end
of the nth unit by Un and identifying n = 0 with n = N , we obtain

in − in−1 = −Cm
dUn

dτ
, Un+1 − Un = Vn. (7)

Combining the first equation of (7) with (2) we obtain Un = (qn−1 − qn)/Cm + cn

for some constants cn, which we again take to be zero corresponding to no initial
charge imbalance. Then using equation (2) again, the second equation of (7) yields

L
d2qn

dτ2
−R0

[
1− 1

i20

(
dqn

dτ

)2
]

dqn

dτ
+

qn

C0
+ a3q

3
n =

1
Cm

(qn+1 − 2qn + qn−1),

n = 1, 2, ..., NmodN.

Putting ω2
e =

1
LC0

and introducing the dimensionless variables xn = ωe

i0
qn,

t = ωeτ and parameters

µ =
R0

Lωe
, β =

a3i
2
0

Lω4
e

, K =
C0

Cm
,

equation (8) yields the following set of coupled non-dimensional differential equa-
tions

ẍn − µ(1− ẋ2
n)ẋn + xn + βx3

n = K(xn+1 − 2xn + xn−1), n = 1, 2, ..., N. (8)

We introduce yn = ẋn (a non-dimensionalisation of in) to obtain

ẋn = yn,

ẏn = µ(1− y2
n)yn − xn − βx3

n + K(xn+1 − 2xn + xn−1), n = 1, 2, ..., N. (9)

The equations (9) are a set of N mutually coupled identical Rayleigh-Duffing equa-
tions. As mentioned in the introduction, this system can model rings of microwave
oscillators which produce high power if synchronised.

3. Stability theory for synchronous solutions.
In the context of a network of identical units, as here, we say a solution is synchro-

nous if all units have identical time dependence. As mentioned in the introduction,
this system can model systems of microwave oscillators which produce high power
if synchronised. Equivalently they lie on the synchronization sub-manifold [19] S =
{x1 = x2 = ... = xN , y1 = y2 = ... = yN}. It has dimension two, that of a single
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unit. It is invariant under the dynamics by the assumption of shift-invariance of
the ring, and the dynamics on S is that of a single unit because the coupling has
no effect there. The behavior on S is limited by the Poincaré-Bendixson theorem
[20], so the interest focusses on periodic solutions.

The central goal of this investigation is to predict when a synchronized periodic
solution xn = xs(t), yn = ys(t), ∀n is stable. The linear stability of the resulting
dynamical states can be determined by letting xn = xs + Xn, yn = ys + Yn and
linearizing equations (9) around the solution (xs, ys). This leads to

Ẋn = Yn

Ẏn = µ(1− 3y2
s)Yn − (1 + 3βx2

s)Xn + K(Xn+1 − 2Xn + Xn−1), (10)

Since the system has translation symmetry, the variational equations (10) can be
block-diagonalised by transforming to spatial Fourier modes (ξk, ηk) [19, 21] defined
by

Xn =
1√
N

N−1∑

k=0

ξk exp(−2πink/N),

Yn =
1√
N

N−1∑

k=0

ηk exp(−2πink/N). (11)

The variational equations (10) take the form

ξ̇k = ηk,

η̇k = µ(1− 3y2
s)ηk −

{
1 + 3βx2

s + 4K sin2

{
πk

N

}}
ξk,

k = 0, 1, . . . , N − 1. (12)

The mode k = 0 represents the linearized equations tangent to S. The remaining
variations (ξk, ηk), k = 1, 2, ..., N − 1 are transverse to S, and describe the system’s
response to small deviation from the synchronization manifold.

The stability of the synchronized state is ensured if arbitrary small transverse
variations from the synchronization manifold decay to zero as t → +∞. Therefore,
a necessary condition for the stability of the synchronous state is that all the trans-
verse (k ≥ 1) Lyapunov exponents be non-positive i.e λk

j ≤ 0. If some Lyapunov
exponent is positive, then the corresponding transverse modes are unstable, and
there will be no stable synchronization (US). On the other hand, if all Lyapunov
exponents are negative, the transverse modes k are stable, then stable synchroniza-
tion (SS) will occur from initial conditions sufficiently close to the synchronization
manifold. If some transverse Lyapunov exponent is zero and none are positive then
nonlinear analysis is required to assess the stability of synchronisation.

Before continuing with this analysis, it is worth noting that although (ξk, ηk)
are in general complex, their real and imaginary parts satisfy the same equations,
so only the equations k = 1, ..., N

2 need to be considered to decide the stability of
the synchronous state. This is also understood by the even symmetry of the term
sin2(πk/N) in equation (12), or from a mathematical perspective by the dihedral
DN symmetry (including reflections in the ring as well as translations). The highest
wave number (shortest wavelength) mode occurs at kmax = N/2.
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We now proceed to develop some qualitative theory for a general version of the
linearized equations (12) about a synchronous solution. They take the form

ξ̇ = η, (13)
η̇ = (f(t)− c)ξ + g(t)η,

where c = 4K sin2 (πk/N), f(t) = −(1 + 3βx2(t)), g(t) = µ(1− 3y2(t)). These can
be written in matrix form as

ζ̇ = Lc(t)ζ, (14)

with

ζ =
[

ξ
η

]
, Lc(t) =

[
0 1

f(t)− c g(t)

]
.

Attention will be restricted to the case when the synchronized solution is an at-
tracting periodic orbit. Denote its period by T .

Stability of the synchronized solution is determined mainly by the Floquet mul-
tipliers, i.e. the eigenvalues µk

1 , µk
2 of the monodromy matrices Mk(T ), where Mk(t)

is the matrix solution of

Ṁ = Lc(t)M, (15)

starting from M(0) = I (the identity), for c = 4K sin2(πk/N) with k = 0, . . . , N−1.
In particular, if there is a Floquet multiplier µk

j with |µk
j | > 1 then the reference

solution is unstable; if all Floquet multipliers apart from a simple one at +1 (corre-
sponding to phase shift) satisfy |µk

j | < 1 then the solution is stable (and attracting).
Writing

Mk(T ) =
[

A B
C D

]
(16)

then µk
j = A+D

2 ±
√

(A−D)2

4 + BC. For numerical accuracy it is better to compute

µk
1 = A+D

2 + sign(A + D)
√

(A−D)2

4 + BC and µk
2 = AD−BC

µ1
and compute ∆ =

AD − BC by the formula after (19) below, which avoids large cancellation and
resulting numerical noise.

Instead of the Floquet multipliers, it is often convenient to use the Lyapunov
exponents λk

j . They can be derived from the Floquet multipliers by

λk
j =

1
T

log |µk
j |. (17)

The solution is unstable if it has a positive Lyapunov exponent; it is stable (and
attracting) if all its Lyapunov exponents except for a simple one at 0 are negative.

For c = 0 the linearized equations are simply those for a single oscillator. Thus
there is one Floquet multiplier +1 corresponding to phase shift along the orbit.
The orbit for a single oscillator is assumed to be linearly attracting, thus the other
Floquet multiplier is inside the unit circle.

The product of the Floquet multipliers for given c is equal to the determinant of
M(T ). The determinant ∆(t) of M(t) evolves from ∆(0) = 1 by

∆̇ = trLc(t)∆. (18)

Thus ∆(T ) = exp
∫ T

0
trLc(t)dt. Since trLc(t) = g(t) is independent of c, ∆(T ) is

for all c equal to its value for c = 0; this is just the second Floquet multiplier for a
single oscillator. Let λk

max = max(j=1,2)λ
k
j . Then λk

max is given by evaluating the
largest Lyapunov exponent of (15), named the master stability function in [2], at
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c = 4K sin2 πk
N . Because ∆(T ) is real and positive, we can write the second Floquet

multiplier as e−νT , with

−ν =
1
T

∫ T

0

g(t)dt

denoting the second Lyapunov exponent for a single oscillator. It follows that for
all c, the product of the Floquet multipliers is e−νT . In particular for all c,

λk
1 + λk

2 = −ν. (19)

If the Floquet multipliers are complex or a repeated real, then they have equal
modulus and so the Lyapunov exponents are equal. Thus by the above, they both
equal −ν/2. If they are distinct reals then (19) determines only their sum. So we
can expect the graph of the Lyapunov exponents against c to have intervals where
both equal −ν/2, alternating with intervals where they differ (but average to −ν/2).

4. Prüfer transformation and consequences.
To understand further qualitative features of how the Lyapunov exponents de-

pend on c, it is convenient to transform to polar coordinates (r, θ) in the (ξ, η)-plane,
known as Prüfer variables in Sturm-Liouville theory [22]. The Lyapunov exponents
are given by the growth rate of the radius r, but r can be considered as driven by
the angular behavior, so we concentrate on the equation for the angle θ.

Writing ξ = r cos θ, η = r sin θ, with r ≥ 0, one obtains

θ̇ = (f(t)− c) cos2 θ + g(t) sin θ cos θ − sin2 θ (20)
ṙ = r((1 + f(t)− c) sin θ cos θ + g(t) sin2 θ). (21)

These equations are equivariant with respect to adding any multiple of π to θ. Since
the synchronized solution has period T , they are also periodic in t with period T .
In the case of odd nonlinearity they actually have period T/2, but discussion of the
consequences is deferred to later in this section.

Since the plane of (t, θ) is two-dimensional, solutions of (20) for given c can
not cross each other. In particular, no solution can cross any of its translates by
multiples of π in θ or T in t, so (as proved by Poincaré, e.g. [20]) the average rotation
rate ρ = limt→∞

θ(t)−θ(0)
t of a solution is well defined. Secondly, if one solution has

an average rotation rate ρ then so do all; denote the common value by ρ(c).
For c = 0 the angle of the tangent to the synchronized solution in the (x, y)-

plane is a solution. For the example studied, the tangent turns once clockwise in
one period, so ρ(0) = − 2π

T .
Since cos2 θ ≥ 0, for any two values c1 < c2 of c, solutions for c2 in the plane

of (t, θ) can not cross upwards those for c1. Thus the average rotation rate ρ(c)
is non-increasing with respect to c. It depends continuously on c by an argument
of Poincaré [20]: given c0, for any integer n > 0, there is a neighbourhood U of
c0 such that for all θ(0), the change in θ(T ) for changing c0 to c ∈ U is less than
π/n in absolute value. Thus the change in θ(nT ) is less than π. If ρ(c0) < mπ/nT
for some integer m, it follows that ρ(c) < (m + 1)π/nT for all c ∈ U . Similarly, if
ρ(c0) > mπ/nT then ρ(c) > (m − 1)π/nT . So the rotation rate can change by at
most 2π/nT .

The rotation rate is non-positive for all c, because when θ = π/2 then θ̇ = −1,
so all trajectories cross θ = π/2 (and all translates by multiples of π) downwards.

If ρ is not a multiple of π/T then the Floquet multipliers are complex (and
so the Lyapunov exponents are equal to −ν/2). This is because to have a real
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Floquet multiplier, M(T ) must have a real eigenvector. Its direction gives an initial
condition θ(0) such that θ(T ) is in the same or opposite direction, meaning it differs
by a multiple m of π. Thus ρ = mπ/T .

Conversely, if ρ is a multiple of π/T then the Floquet multipliers are real, because
for ρ = mπ/T there is a period-T orbit of the θ equation (modulo π): take as initial
condition the limit of θ(nT )−nmπ as n →∞ from an arbitrary θ(0) (this sequence
is monotone and bounded so converges). A period-T orbit for θ implies a real
eigenvector in that direction for M(T ), with real eigenvalue. Since there are only
two Floquet multipliers, if one is real so is the other.

More generally, the arguments of the Floquet multipliers in the complex plane
are those of e±iρT/2π.

If for some value of c there is a non-degenerate period-T orbit for θ (meaning its
linearized time-T map has eigenvalue not equal to +1), then the same is true for
all nearby values of c. Thus the rotation rate is constant at a value ρ = mπ/T until
values of c for which all period-T orbits are degenerate.

Furthermore, if there is a non-degenerate period-T orbit then the Lyapunov
exponents are distinct because the linearisation of equation (20) is

δθ̇ = q(t, θ) δθ (22)

with
q(t, θ) = g(t) (cos2 θ − sin2 θ)− 2(1 + f(t)− c) sin θ cos θ, (23)

so the eigenvalue for its time-T map is κ = exp
∫ T

0
q(t, θ(t)) dt, and the equation

(21) for r can be written as

ṙ

r
=

g

2
− q(t, θ)

2
. (24)

Thus the non-degenerate period-T orbit of (20) gives a Lyapunov exponent for the
original system

λ =
1
T

∫ T

0

[
1
2
g(t)− 1

2
q(t, θ)]dt = −ν

2
− 1

2T
log κ. (25)

Since we assumed non-degeneracy, κ 6= 1 and thus λ 6= −ν/2. The sum of the
Lyapunov exponents is −ν so since one is not −ν/2 then they are distinct.

Generically the rotation rate can not cross an integer multiple of π/T as c varies
without locking to that integer multiple for an interval of c. This is because the only
way for ρ(c) to cross immediately from above to below mπ/T is that every orbit of
the θ flow have period T at the transition case. This implies that M(T ) is a multiple
of the identity, a phenomenon of codimension 3, so unlikely in a 1-parameter family.
On the other hand, it can be forced to happen if there are additional symmetries.
In particular, if f and g are even, as is the case for oscillators with odd nonlinearity,
then (20) has period T/2 in t, and it follows that M(T ) is the square of the matrix
M(T/2), so is a negative multiple of the identity whenever the arguments of the
eigenvalues of M(T/2) pass through ±π/2 (then M(T/2) is conjugate to a scalar
multiple of a rotation by π/2).

Generically, the rotation rate changes like a square root with respect to c at
the ends of a step, and the Lyapunov exponents separate like a square root inside
the step. These statements can be proved by unfolding the case with a degenerate
period-T orbit under the codimension-3 assumption that M(T ) is not a multiple of
the identity. Then M(T ) is a multiple of a shear and there is a unique period-T
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λ1

λ2
−ν

ρ
−2π/Τ

c

λ1=λ2

λ2

λ1

(i)

−4π/Τ

−6π/Τ

λ1
c

λ1=λ2

λ2

λ1

−2π/Τ

λ2

(ii)

−4π/Τ

−6π/Τ

Figure 3. Sketch of expected behavior of rotation rate and Lya-
punov exponents as functions of c for (i) λ′(0) < 0, e.g. β suffi-
ciently positive (hardening), and (ii) λ′(0) > 0, e.g. β sufficiently
negative (softening).

orbit. It can be checked that the quadratic term in the expansion of the time-T
map for θ is non-zero, and that changing c crosses this case transversely.

For values not a multiple of π/T the rotation rate ρ is a differentiable function of
c with negative derivative. A proof is given in Appendix A. For f and g of period
T/2 the result of Appendix A can be applied to the time T/2-map and thus the
conclusion also holds for all values of ρ not a multiple of 2π/T .
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If c ≤ mint f(t) then θ̇ ≥ 0 at θ = 0, thus the strip 0 ≤ θ ≤ π/2 is forward
invariant and so ρ(c) = 0. In particular, the Floquet multipliers are real.

On the other hand, ρ(c) → −∞ as c → +∞, because for c large and positive,
θ decreases by π in a time less than the function τ(c) given by replacing f by its
maximum and g sin θ cos θ by the maximum of g. The function τ(c) is positive and
goes to zero as c goes to infinity, so ρ(c) ≤ −π/τ(c) → −∞.

When the Floquet multipliers are distinct, they depend differentiably on c (the
monodromy matrix depends analytically on c by standard ODE theory, and simple
eigenvalues of a matrix depend as smoothly on parameters as the matrix does by
applying the implicit function theorem to the eigenvalue-eigenvector problem with a
normalization condition on the eigenvector). Thus the Lyapunov exponents depend
smoothly on c whenever they are distinct.

Figure 4. Variation of the Lyapunov exponents versus the cou-
pling coefficient c for the case µ = 0.1;β = 0.5.
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The remaining question is for what subset, if any, of c in each step for the rotation
rate function is there a positive Lyapunov exponent? We begin with the ρ = 0 step.
For c large and negative, one of the Lyapunov exponents is positive, and in fact
grows asymptotically like

√
|c|. One way to see this is to use (26). For c large

and negative there is a period-T orbit of the θ equation close to θ0 = cot−1(
√
|c|),

because one can use the implicit function theorem to find a nearby zero of the
map from C1 functions of period-T to C0 functions of period-T defined by θ 7→
c cos2 θ + sin2 θ + (εθ̇ − f cos2 θ + g sin θ cos θ) for ∈ε[0, 1]. Then (26) gives

λ = −ν

2
− 1

2T

∫ T

0

[g(t) cos 2θ−(1+f−c) sin 2θ] dt =
√
|c|+O(1) as c → −∞, (26)

using θ(t) ≈ θ0 and
∫ T

0
g(t) dt = −νT .

For the steps with ρ = −2πm/T , m large, equivalently c large and positive, put
η̃ = η/

√
c, τ =

√
ct, ξ̃ = ξ, ζ̃ = (ξ̃, η̃), to obtain

dζ̃

dτ
=

[
0 1

−1 + f(t)
c

g(t)√
c

]
ζ̃ (27)

for τ = 0 to
√

cT . Because the dominant dynamics is rotation at rate 1 over a long
interval in τ with f and g slowly and smoothly varying, there is an averaging effect
which renders the monodromy matrix in these coordinates within 1/

√
c of that given

by replacing g by its average (−ν) and f by −ν2/4. The resulting approximation
is conjugate to e−νT/2 times a rotation. Thus as the corrections are turned on,
M(T ) ± I remains invertible for c large enough, hence no Floquet spectrum can
cross the unit circle, and so no Lyapunov exponent becomes positive.

For the ρ = −2π/T step, we know that λ1 = 0 at c = 0 so if the slope dλ1/dc is
non-zero then λ1 is positive for one sign of small c. To decide for which sign of small
c we have λ1 > 0, the following formula for λ′ = dλ1/dc at c = 0 was obtained:

λ′(0) = − 1
T

∫ T

0

B2(t)ẋ(t) dt, (28)

where B2(t) is the second component of the linear functional B(t) measuring phase
shift for linearised displacements from the limit cycle. More specifically, let (ξ, η)(t)
be a non-zero solution of the linearised equations about the synchronised solution
corresponding to Floquet multiplier e−νT . Then any tangent vector v at (x, y)(t)
can be written uniquely as (aẋ(t)+bξ(t), aẏ(t)+bη(t)) for some (a, b), and B(t)v = a.
A proof of (28) is given in Appendix B.

So the sign of λ′(0) is determined by averaging B2(t)ẋ(t) round the limit cycle.
Although it is amenable to numerical computation, its sign is not transparently
clear to us. Nonetheless, the following qualitative analysis allows us to determine
its sign when the basic oscillator is sufficiently anharmonic.

If the basic oscillator is sufficiently hardening, meaning that the trajectories of
initial conditions outside the limit cycle rotate significantly faster than those on
the limit cycle (as for β sufficiently positive), then the ρ = −2π/T step extends
only a short way on the c > 0 side, and leads to no instability on that side and
an interval (c−, 0) of instability on the c < 0 side. To see this, the hardening
assumption implies that any initial angle θ(0) ∈ (−π

2 , π
2 − )ε of tangent vector at

the intersection of the limit cycle with the positive x-axis for some >ε0 small, is
attracted close to the orbit for θ(0) = −π

2 when c = 0. So the repelling period-T
orbit is just below the attracting one in the (t, θ)-plane. Then making c > 0 pushes
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Figure 5. Variation of the rotation rate ρ versus the coefficient c
for the case µ = 0.1; β = 0.5.

the two period-T orbits towards each other and they annihilate at a small positive
value of c. This bifurcation corresponds to the right hand end of the ρ = −2π/T
step and thus the Lyapunov exponents equal −ν/2 there and separate like a square
root as c decreases.

If on the other hand the basic oscillator is sufficiently softening, meaning that
the trajectories of initial conditions outside the limit cycle rotate significantly slower
than those on the limit cycle (as for β sufficiently negative), then a similar argument
shows that the ρ = −2π/T step extends only a short way on the c < 0 side, the
Lyapunov exponents are negative for all negative c in the step and there is an
interval (0, c+) of instability on the positive side.

The conclusion is that for a system with odd symmetry in (x, y), the Lyapunov
exponents as a function of c should behave like Figure 3 (i) or (ii); the behavior
of the rotation rate ρ is also sketched. Case (i) is expected if the dynamics of a
single unit is sufficiently hardening; while case (ii) if sufficiently softening. If odd
symmetry is not assumed there should be additional steps at rotation rate equal to
odd multiples of π/T and associated bubbles of distinct Lyapunov exponents.

5. Numerical study.
Now we report on numerical computation of the Lyapunov exponents and some

simulations of the dynamics. For this purpose, a fourth-order Runge-Kutta algo-
rithm was used to solve the equations of motion with the set of the parameters
µ = 0.1 and β = 0.5 or −0.1. The analysis after equation (28) leads us to expect
that these two cases have λ′(0) negative and positive, respectively, and the numerics
will be seen to confirm this. For intermediate β one can expect a transition between
the two cases at some βc for which λ′(0) = 0; at βc it is likely that λ(c) < 0 for
both signs of small c, giving rise to enhanced stability domains for synchronisation.

5.1. Case β = 0.5.
In this subsection, we study the case β = 0.5, which is a quite strongly hardening

nonlinearity so can be expected to lead to λ′(0) < 0. When the coupling coefficient
is turned off (i.e K is equal to zero), the Lyapunov exponents are λ0

1 = 0, λ0
2 =

−ν ≈ −0.1. For K 6= 0, and for a given value of N , the Lyapunov exponents will
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Figure 6. Variation of the transverse Lyapunov exponents versus
the coupling coefficient K of a ring of 6 self-sustained electrical
units for the case µ = 0.1;β = 0.5.

enable us to derive the range of the coupling parameter K in which the transverse
Fourier modes are stable, and then each system in the ring of mutually self-sustained
electrical systems can work synchronously. By the preceding theory, they are given
by evaluating the Lyapunov exponents for (13) at values of c = 4Ksin2 πk

N . The
functions f and g are determined from a numerical solution for (xs, ys) from the
equations of motion (9).

Figure 7. Variation of the transverse Lyapunov exponent versus
the coupling coefficient K of a ring of 10 self-sustained electrical
units for the case µ = 0.1;β = 0.5.

The dependence of the Lyapunov exponents with c is plotted on Figure 4. Note
that the graph is reflection symmetric about the line λ = −ν, in agreement with
(20). As c increases, consistently with the above analysis, we find the following
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domains of dynamical states. First there is the unstable domain in which there
is a positive Lyapunov exponent and defined by c ∈ IUS =] − ∞;−1.791[∪] −
0.758; 0[. Secondly, there is the stable domain, defined as c ∈ ISS = ISS− ∪ ISS+ =
[−1.791;−0.758]∪]0;+∞[, where all the Lyapunov exponents are negative. It ap-
pears that as c increases, the Lyapunov exponents are real and distinct with opposite
sign until c = −1.791 where the two Lyapunov exponents become both negative,
and at c = −1.789 the system passes to an interval of c where both Lyapunov
exponents are equal to −ν/2 ≈ −0.051. Then at c = −0.774, a “bubble” for dis-
tinct Lyapunov exponents (c ∈] − 0.774; 0.019[) appears, containing a subinterval
c ∈ [−0.758; 0[ where both Lyapunov exponents are negative, and thereafter the
system passes into another domain (c > 0.019) with equal Lyapunov exponents (see
Figure 4(i)). For larger positive values of c, we find another bubble in the interval
c ∈ [3.75; 3.775] with distinct negative Lyapunov exponents (see Figure 4(ii)), but
they both remain negative, insufficient to destabilize the ring.

As we expected in the above section, the Lyapunov exponents against c have
intervals where both equal −ν/2 alternating with intervals where they differ but
average to −ν/2. Furthermore, the instability near c = 0 is for c negative, consistent
with the expectation that λ′(0) < 0.

Next we plot in Figure 5 the rotation rate ρ(c) as a function of the parameter c.
The rotation rate is constant at a value ρ = −2π/T ≈ −1.17547 for the range of c
defined by c ∈]− 0.774; 0.019[ and at a value ρ ≈ 0 for c ∈]−∞;−1.789[. We find
in Figure 5 that the rotation rate ρ decreases and ρ(c) → −∞ as c → +∞, which
is what we expected in section 4.

Figure 8. The stability diagram of the synchronization process
in the (N,K) plane for the case µ = 0.1;β = 0.5. (US) Unstable
domain and (SS) stable synchronization domain.

After the above analysis which enables us to find the qualitative changes of the
Lyapunov exponents and the rotation rate when the parameter c evolves, we will now
use the direct relation between c, the coupling coefficient K and the mode k given
by K = c/(4 sin2(πk/N)) to find the stability of the synchronized state in the ring
as the coupling parameter K varies. The range of K for unstable synchronization
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is derived as K ∈ DUS is the union over k = 1, . . . , N/2 of IUS/4 sin2(πk/N). The
variation of the Lyapunov exponents are derived and plotted on Figures 6 and 7 for
rings of 6 and 10 mutually coupled self-sustained electrical systems. As K increases,
we find through the above analysis the following domains of dynamical states: The
first is the unstable domain in which synchronization is unstable and hardly depends
on the number N as

DUS(N = 4) = ]−∞;−0.447[∪]− 0.39; 0[,
DUS(N > 5) = ]−∞; 0[,

In DUS at least one transverse mode is unstable. Secondly, we have the domain of
stability K ∈ DSS , the complement of DUS ,

DSS(N = 4) = ]− 0.447;−0.39[∪]0;+∞[,
DSS(N > 5) = ]0; +∞[,

In this case, all the transverse modes have negative Lyapunov exponents. Figure 8
displays the stability boundaries. We find that the number of units hardly affects
the stability boundaries of the synchronization process in the ring. This is because
the relevant values of c are 4Ksin2(kπ/N), all c > 0 are stable and there is only a
short stability interval for c < 0.

Figure 9. Space-time amplitude plot showing absence of synchro-
nization in the ring for the case µ = 0.1; β = 0.5 and two negative
values of K.



16 R. YAMAPI AND R. MACKAY

To illustrate our results, Figures 9 and 10 show space-time amplitude diagrams
from simulations of (9) that display behaviors consistent with our analysis for some
values of the coupling parameter K and number N chosen in the unstable synchro-
nization (US) and stable synchronization (SS) domains. For the unstable domain,
Figure 9 shows that for (N,K) = (8,−0.4) and (N, K) = (15,−0.2) respectively,
no synchronization is found in the ring. Considering the domain of stable synchro-
nization, we confirm in Figure 10 for (N, K) = (15, 0.05) and (N,K) = (8, 0.5) that
stable synchronization is possible in the ring.

Figure 10. Space-time amplitude plot showing convergence to sta-
ble synchronization in the ring for the case µ = 0.1; β = 0.5 and
two positive values of K.

5.2. Case β = −0.1.
Now we study the case β = −0.1 which we believe has λ′(0) > 0. It is a softening

nonlinearity, but not as large as in the previous subsection, to avoid having to add
a term to the model to keep VC of the same sign as q in the range of relevance.
The Lyapunov exponents for a single dynamical unit are λ1 = 0, λ2 ≈ −0.051.
Figures 11 and 12 show respectively the variations of the Lyapunov exponents and
the rotation rate ρ versus c. As c increases, we find that the unstable domains
are given by c ∈ IUS =] − ∞;−0.83[∪]0; 0.187[, while the stable one is given by
c ∈ ISS = ISS− ∪ ISS+ = [−0.83; 0]∪]0.187;+∞[. In contrast to the case of a
section 5.1, we find that the synchronous solution is unstable for both positive and
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negative values of c, as expected from the qualitative stability theory of section 4.
It appears that the rotation rate is constant at a value ρ ≈ 0 (for c ∈]−∞;−0.830])
and at ρ = −2π/T ≈ −0.942 (for c ∈] − 0.02; 0.26[) corresponding to the intervals
where the Lyapunov exponents are distinct. We also find that ρ(c) → −∞ as
c → +∞.

Figure 11. Variation of the transverse Lyapunov exponents ver-
sus the coupling coefficient c for the case µ = 0.1; β = −0.1.

With the above analysis, we find the following dynamical states in the shift-
invariant ring. As the number of oscillators in the ring increases, one observes the
two main above mentioned dynamical states but for different ranges of K. For some
value of N, the unstable domains of the synchronization process are:

DUS(N = 4) = ]−∞;−0.209[∪]0; 0.094[,
DUS(N = 10) = ]−∞;−0.200[∪]0; 0.500[,
DUS(N = 15) = ]−∞;−0.210[∪]0; 1.090[,

while the stable ones are

DSS(N = 4) = [−0.209; 0[∪[0.094;+∞[,
DSS(N = 10) = [−0.200; 0[∪[0.500;+∞[,
DSS(N = 15) = ]− 0.210; 0[∪[1.090; +∞[,
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Figure 12. Variation of the rotation rate ρ versus the coefficient
c for the case µ = 0.1;β = −0.1.

Figure 13. Variation of the transverse Lyapunov exponents ver-
sus the coupling coefficient K of a ring in N = 6 self-sustained
electrical units for the case µ = 0.1; β = −0.1.

Figures 13 and 14 show the variation of the transverse Lyapunov exponents versus
the coupling parameter K and the regimes of coupling leading to unstable and
stable synchronization can be found. Figure 15 shows the stability diagram of the
synchronization process in the (N, K) plane for this case. One can notice that as
N increases, the domain of stable synchronization reduces drastically in the region
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Figure 14. Variation of the transverse Lyapunov exponents ver-
sus the coupling coefficient K of a ring of 12 self-sustained electrical
units for the case µ = 0.1;β = −0.1.
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Figure 15. The stability diagram of the synchronization process
in the (N, K) plane for the case µ = 0.1; β = −0.1. (US) Unstable
domain and (SS) stable synchronization domain.

of positive c. This is because as N increases, the value c = 4K sin2(π/N) for mode
k = 1 enters the unstable interval for smaller K.

6. Conclusions.
We have studied in this paper the possibility of synchronizing a shift-invariant

ring of mutually coupled self-sustained electrical systems. Stability boundaries for
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the synchronization process have been derived using the transverse Lyapunov ex-
ponents and numerical simulations. They agree with qualitative theory we have
developed for the linearized equations about a synchronous solution. A generic
feature is that there is a threshold for synchronization for the K > 0 attractive
parameter. For K < 0, the repulsive case, the ring can be synchronized only if the
number N of units is small and K lies in a special interval of the coupling. The
form of the regions of stable synchronisation in (N,K) space depends crucially on
the sign of a quantity λ′(0) defined in (29).

The results extend with only minor change to rings of identical units with certain
types of inhomogeneous coupling or more general networks than a ring. For identical
units with any linear coupling of the form of a tensor product of a coupling matrix
on the network with a fixed matrix on the state space of a single unit, the spatial
Fourier decomposition used here generalises to a decomposition into modes of the
coupling matrix and the linear stability analysis of a synchronous solution reduces
to the same equation (13) but with the parameter c running over eigenvalues of the
coupling matrix [2] (and some extensions to nonlinear coupling are possible [24])
. If the coupling matrix is symmetric (or self-adjoint with respect to some inner
product) then all the eigenvalues are real and of geometric multiplicity 1; if not then
nontrivial Jordan blocks or complex eigenvalues can occur, which require extra
treatment (e.g. [25]). For straightforward application of this generalisation, the
coupling matrix is assumed to be balanced: each of its rows sum to zero; this ensures
that a synchronous solution is a solution of an individual unit. This restriction is
not necessary for application of our method, however. For an unbalanced coupling
matrix the synchronisation submanifold is still of the dimension of a single unit and
the equations of motion on it are a small perturbation of those for a single unit if
the coupling is small, so the dynamics of a network of self-sustained oscillators can
still be expected to give contain synchronous oscillations and one just analyses the
one-parameter family of linearised equations about them; one just has to bear in
mind that c = 0 is not automatically an eigenvalue of the coupling matrix.

Some directions for future works are: (i) extend the analysis to rings of units of
more than two dimensions (this requires analysis of flows on projective spaces of
dimension more than 1), (ii) apply the theory of dynamics with dihedral symmetry
to deduce some other types of solution, e.g rotating standing waves and analyze
their stability, (iii) investigate the extent of the basins of attraction of the stable
synchronous solutions, either numerically or by attempting to adapt the method of
[23], (iv) for small K, apply the theory of normally hyperbolic invariant manifold
to reduce to a flow on an N -torus, allow breaking of the dihedral symmetry and
study what rotational behavior is possible (in particular, say that two units are
synchronized if they have the same average frequency of rotation, and then study
what combinations of partial synchrony can occur), (v) study the possible existence
and stability of cluster synchronisation.
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Appendix A.
In this appendix it is proved that when the rotation rate ρ is not a multiple of

π/T it is a differentiable function of c with negative derivative.
Differentiability of ρ with respect to c when not a multiple of π/T follows from

the relation of ρ to the argument of a Floquet multiplier given in section 3. When
ρ is not a multiple of π/T the Floquet multipliers are a complex conjugate pair.
Simple eigenvalues of a matrix depend as smoothly on parameters as the matrix
does. The monodromy M(T ) depends smoothly on c (in fact analytically). Thus ρ
depends analytically on c as long as the multipliers are distinct.

We already remarked that the rotation rate is non-increasing with c, so the
derivative is non-positive. To prove that the derivative is negative, we first note
that for ρ not a multiple of π/T the time-T map for equation (20) has an invariant
probability measure with positive density. Indeed, it has a unique one of the form

dµ = dθ/(A + B sin 2θ + C cos 2θ)

on θ mod π, with normalisation condition A2 = π2 + B2 + C2. To see this, write
(20) in the form

θ̇ = α + β sin 2θ + γ cos 2θ, (29)

where α = (f − c − 1)/2, β = g/2, γ = (f − c + 1)/2, and compute that measures
of the above form evolve with t by

d

dt




A
B
C


 = 2




0 −γ β
−γ 0 α
β −α 0







A
B
C


 . (30)

The time-T map of (30) is linear and preserves the hyperboloid A2 = π2 + B2 +
C2, A > 0. It follows that it is an isometry of the hyperboloid with respect to
the standard hyperbolic metric (that induced by restricting the Lorentzian metric
dA2 − dB2 − dC2). Rotation rate not a multiple of π/T implies the monodromy
is conjugate to a rotation, not a multiple of π, so this isometry is elliptic (from
which terminology we exclude the identity). Thus it has a unique fixed point.
Furthermore, the fixed point (being non-degenerate) depends as smoothly on c as
the coefficients of (29).

Secondly, we note that the time-T map fc for the (20) has ∂f
∂c (θ) continuous and

negative for all θ. This is because by general theory for ODEs the solutions of (20)
depend at least as smoothly on c as θ̇ depends on t, θ, c, and ∂f

∂c = η(T ) where η is
the solution from η(0) = 0 of

η̇ = q(t, θ)η − cos2 θ,

where q was defined in (23). So

η(T ) = −
∫ T

0

e
R T

t
q dt′ cos2 θ(t) dt (31)

which is non-positive. The only way it could be zero is if θ(t) = π/2 mod π for all
t, but θ̇ = −1 whenever θ = π/2 mod π, so there is no such possibility.

Thirdly, we prove the following formula for the difference of rotation numbers
ρ, ρ̃ for two lifts of degree-1 circle homeomorphisms f, f̃ in terms of (lifts of) invari-
ant probability measures µ, µ̃ (the rotation number is the average rate of advance
divided by the length of the circle).
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Theorem: ρ̃−ρ =
∫

A
dµ̃(x) dµ(x′), where A is the signed area between the graphs

x′ = f̃(x), x′ = f(x), for one period in x (A is considered positive where f̃(x) >

f(x), negative where f̃(x) < f(x)).

Proof: The rotation number ρ of f can be written (e.g. [20]) as

ρ =
∫ f(x)

x

dµ(x′)

for any x (if µ has atoms then use the convention of including them at the lower
limit of integration and not the top, for example). This formula can be averaged
over x with respect to any probability measure, in particular µ̃ over one period (the
period will be denoted by π in keeping with our application). Thus

ρ =
∫ π

0

dµ̃(x)
∫ f(x)

x

dµ(x′). (32)

This is the µ̃µ product measure of the signed area between the graph of f and the
diagonal over one period of x.

Now do the same for the rotation number −ρ̃ of f̃−1:

ρ̃ =
∫ π

0

dµ(x′)
∫ x′

f̃−1(x′)
dµ̃(x).

This is the µ̃µ product measure of the signed region between the graph of f̃ and
the diagonal for one period in x′. Interchanging the order of integration and using
periodicity, it can be rewritten as

ρ̃ =
∫ π

0

dµ̃(x)
∫ f̃(x)

x

dµ(x′),

the µ̃µ measure for one period in x. Taking the difference gives the required result.

Corollary 1: If f̃(x) ≥ f(x) for all x with inequality somewhere and µ and µ̃ have
positive densities then ρ̃ > ρ.

Proof: µ̃µ gives positive measure to the area A.

Corollary 2: If a family fc(x) is C1 with respect to x and a parameter c and
has invariant probability density pc depending continuously on c and x then ρ is
differentiable with respect to c and

dρ

dc
=

∫ π

0

pc(x)pc(f(x))
∂f

∂c
(x)dx.

Proof:

ρ(c′)− ρ(c) =
∫

A

pc′(x)pc(x′)dx′dx =
∫

pc′(x)(fc′ − fc)(x)pc(x′)dx

for some x′(x, c′) between fc(x) and fc′(x). The integrand is within o(c′ − c) of
∂f
∂c (x)pc(f(x))(c′ − c) and pc′ is within o(1) of pc. Hence the result.

In particular, we apply this corollary to the time-T map for (20). If the rotation
rate for some value of c is not a multiple of π/T then the conditions of Corollary 2
are met and the integrand is negative everywhere, so dρ

dc < 0.
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Appendix B.
Here the formula (28) for dλ1/dc at c = 0 is proved.
When the Floquet multipliers are real and positive, as near c = 0, the Lyapunov

exponents are the real numbers λ such that there is a non-zero solution ζ = eλtP (t)
of the linearised equation ζ̇ = Lcζ with P of period T . This can be regarded as an
eigenvalue-eigenvector problem for (λ, P ):

LcP − Ṗ = λP. (33)

Since a linear operator and its adjoint have the same eigenvalues, there is a non-zero
solution A = e−λtB(t) of the adjoint equation Ȧ = −ALc on linear functionals, with
B of period T , i.e.

BLc + Ḃ = λB. (34)
For distinct Lyapunov exponents (as near c = 0), the exponent and eigenvectors
depend differentiably on c. So letting π = dP/dc, L′ = dLc/dc, λ′ = dλ/dc,
differentiating (33) with respect to c yields

π̇ + λπ − Lcπ = L′P − λ′P (35)

Apply the linear functional B(t) to (35) and integrate over one period in t:
∫ T

0

Bπ̇ + λBπ −BLcπ dt =
∫ T

0

BL′P −Bλ′P dt (36)

Integrate the first term by parts and use (34) to see that the left hand side is zero.
Now BP is constant (apply (33) and (34) to d(BP )

dt = ḂP + BṖ ) and non-zero, so
by scaling B we can take BP = 1. Thus (36) yields

λ′ =
1
T

∫ T

0

BL′P dt (37)

Now L′ =
[

0 0
−1 0

]
, and at c = 0 we can take λ = 0, P (t) = (ẋ(t), ẏ(t)). So

λ′(0) = − 1
T

∫ T

0

B2(t)ẋ(t) dt, (38)

as claimed.
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