TCC Homological Algebra: Assignment #2 (Solutions)

David Loeffler, d.a.loeffler@warwick.ac.uk

6/12/19

Note that rings are not necessarily commutative, but are always assumed to be unital (i.e. having a multiplicative identity element 1), and ring homomorphisms are assumed to map 1 to 1. The notation <u>Ab</u> denotes the category of abelian groups, and <u>*R*-Mod</u> the category of left modules over the ring *R*.

1. Let <u>FAb</u> denote the full subcategory of <u>Ab</u> whose objects are finite abelian groups.

(a) [1 point] Show that <u>FAb</u> is an abelian category. (You may assume that <u>Ab</u> is abelian.)

Solution: If *f* is a morphism in <u>FAb</u>, then it has a kernel and cokernel in <u>Ab</u>, and these are also objects of <u>FAb</u>, since a subgroup or quotient of a finite group is finite. Since they satisfy a universal property in the larger category <u>Ab</u>, they also satisfy the same universal property in <u>FAb</u>. Thus kernels and cokernels exist for all morphisms in <u>FAb</u> and they coincide with kernels and cokernels in <u>Ab</u>. Moreover, the arrow

 \overline{f} : coker(ker f) \rightarrow ker(coker f)

is an isomorphism in <u>Ab</u> and hence also in <u>FAb</u>. Thus <u>FAb</u> is abelian.

(b) [2 points] Show that the only injective object in <u>FAb</u> is 0. (Hint: if *G* is a non-zero injective, consider homomorphisms from cyclic groups to *G*.)

Solution: Let *G* be a non-zero injective object. Since *G* is finite, there is a maximal n > 1 such that *G* has an element of order *n*. Let g_n be an element of order *n*. Then there cannot exist $h \in G$ such that $n \cdot h = g_n$, since this *h* would necessarily have order $n^2 > n$. Thus the homomorphism $C_n \to G$ sending the generator to g_n cannot be extended to a homomorphism $C_{n^2} \to G$, contradicting the injectivity of *G*.

- 2. [3 points] Let C be an abelian category, Σ a set, and for each $\sigma \in \Sigma$, let M_{σ} be an object of C. We define $\prod_{\sigma \in \Sigma} M_{\sigma}$ to be the limit of the diagram consisting of the objects M_{σ} with no morphisms between them, and $\bigoplus_{\sigma \in \Sigma} M_{\sigma}$ its colimit, assuming these limits exist.
 - (a) Show that if M_{σ} is projective for all σ , then so is $\bigoplus_{\sigma \in \Sigma} M_{\sigma}$.

Solution: Let $M = \bigoplus_{\sigma \in \Sigma} M_{\sigma}$, let $f : M \to Y$ be any morphism, and $p : X \to Y$ an epimorphism. Since M is a colimit, there are canonical maps $i_{\sigma} : M_{\sigma} \to M$ for all σ . Let $f_{\sigma} = f \circ i_{\sigma} : M_{\sigma} \to Y$. Since M_{σ} is projective this lifts to a map $\tilde{f}_{\sigma} : M_{\sigma} \to X$. By the universal property of M as colimit, the maps \tilde{f}_{σ} assemble into a map $\tilde{f} : M \to X$ which lifts f. So M is projective.

(b) Show that if M_{σ} is injective for all σ , then so is $\prod_{\sigma \in \Sigma} M_{\sigma}$.

Solution: Apply (a) to the corresponding diagram in the opposite category.

(c) Show that $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{\sigma\in\Sigma} M_{\sigma}, Z) = \prod_{\sigma\in\Sigma} \operatorname{Hom}_{\mathcal{C}}(M_{\sigma}, Z)$ for any object Z of \mathcal{C} .

Solution: Let $M = \bigoplus_{\sigma \in \Sigma} M_{\sigma}$ as before, and $i_{\sigma} : M_{\sigma} \to M$. Then mapping $f : M \to Z$ to $(i_{\sigma} \circ f)_{\sigma \in \Sigma}$ defines a map $\operatorname{Hom}(M, Z) \to \prod_{\sigma} \operatorname{Hom}(M_{\sigma}, Z)$, and the universal property of the colimit asserts that this map is a bijection.

- 3. [3 points] Let C be an abelian category and A^{\bullet}, B^{\bullet} cochain complexes over C. Define a complex $\mathcal{H} = \underline{Hom}(A^{\bullet}, B^{\bullet}) \in Ch(\underline{Ab})$ by $\mathcal{H}^{i} = \prod_{j \in \mathbb{Z}} Hom_{\mathcal{C}}(A^{j}, B^{j+i})$.
 - (a) Show that the maps $d^i_{\mathcal{H}}: \mathcal{H}^i
 ightarrow \mathcal{H}^{i+1}$ defined by

$$d_{\mathcal{H}}^{i}\left((f^{j})_{j\in\mathbf{Z}}\right) = (f^{j+1} \circ d_{A}^{j} - (-1)^{i}d_{B}^{j+i} \circ f^{j})_{j\in\mathbf{Z}}$$

are well-defined, and satisfy $d_{\mathcal{H}}^{i+1} \circ d_{\mathcal{H}}^{i} = 0$.

Solution: Let *f* denote the element $(f_j)_{j \in \mathbb{Z}}$. Clearly both $f^{j+1} \circ d_A^j$ and $d_B^{j+i} \circ f^j$ are homomorphisms $A^j \to B^{j+i+1}$, so $d_{\mathcal{H}}^i(f)$ is a collection of morphisms with the correct sources and targets.

Let us write $g = d_{\mathcal{H}}^i(f)$. Then we have

$$\begin{split} d_{\mathcal{H}}^{i+1}(g) &= g^{j+1} \circ d_{A}^{j} + (-1)^{i} d_{B}^{i+j+1} \circ g^{j} \\ &= \left(f^{j+2} \circ d_{A}^{j+1} - (-1)^{i} d_{B}^{i+j+1} \circ f^{j+1} \right) \circ d_{A}^{j} + (-1)^{i} d_{B}^{i+j+1} \circ \left(f^{j+1} \circ d_{A}^{j} - (-1)^{i} d_{B}^{j+i} \circ f^{j} \right) \\ &= \left(f^{j+2} \circ \underbrace{d_{A}^{j+1} \circ d_{A}^{j}}_{=0} \right) - (-1)^{i} \left(d_{B}^{i+j+1} \circ f^{j+1} \circ d_{A}^{j} \right) \\ &+ (-1)^{i} \left(d_{B}^{i+j+1} \circ f^{j+1} \circ d_{A}^{j} \right) - \left(\underbrace{d_{B}^{i+j+1} \circ d_{B}^{j+i}}_{=0} \circ f^{j} \right) \\ &= 0. \end{split}$$

(b) Show that $\ker(d^0_{\mathcal{H}}) = \operatorname{Hom}_{\operatorname{Ch}(\mathcal{C})}(A^{\bullet}, B^{\bullet}).$

Solution: An element f of \mathcal{H}^0 is a collection of maps $f^j : A^j \to B^j$. It satisfies $d^0_{\mathcal{H}}(f) = 0$ iff $f^{j+1} \circ d^j_A = d^{j+1}_B \circ f^j$ for all j, which is precisely the definition of a cochain map.

(c) Show that $\operatorname{im}(d_{\mathcal{H}}^{(-1)})$ is the null-homotopic maps.

Solution: An element f of \mathcal{H}^0 is null-homotopic if and only if there exist maps $s^j : A^j \to B^{j-1}$ such that $f^j = s_j \circ d_A^j + d_B^{j-1} \circ s^j$. This is precisely the assertion that $f = d_{\mathcal{H}}^{(-1)}((s^j)_{j \in \mathbb{Z}})$.

4. [2 points] Let *X*, *Y* be two objects in an abelian category *C*, and I^{\bullet} , J^{\bullet} injective resolutions of *X*, *Y* respectively. Let $f^{\bullet} : I^{\bullet} \to J^{\bullet}$ a morphism of complexes which induces the zero map $X \to Y$ on H^{0} . Show that f^{\bullet} is null-homotopic.

[Hint: We are looking for maps $s^i : I^i \to J^{i-1}$ for all i such that f = ds + sd. For $i \le 0$ the target of s^i is the zero object, so the first nontrivial step is to construct $s^1 : I^1 \to J^0$ compatible with f^0 . Then look for an opportunity to induct on i.]

Solution: Since the map $f^0 : I^0 \to J^0$ induces the zero map on *X*, it factors through I^0/X . The map d_I^0 induces a monomorphism $I^0/X \to I^1$, so by injectivity of J^0 , we can find s^1 such that $f^0 = s^1 \circ d_I^0$.

Now let $n \ge 1$, and let us suppose we have constructed morphisms $s^i : I^i \to J^{i-1}$, for $1 \le i \le n$, such that the identity $f^i = d_J^{i-1} \circ s^i + s^{i+1} \circ d_I^i$ holds for $1 \le i \le n-1$ (with $s^0 = 0$). Then $h^n := f^n - d^{n-1} \circ s^n$ is a homomorphism $I^n \to J^n$ which satisfies

 $h^n \circ d_I^{n-1} = (f - ds) \circ d = fd - dsd = fd - d(f - ds) = (fd - df) + dds = 0.$

(dropping indices for clarity). So h^n factors through $I^n / \text{Im}(d_I^{n-1})$, which is a subobject of I^{n+1} . Via the injectivity of J^n , we can define $s^{n+1} : I^{n+1} \to J^n$ such that $h^n = s^{n+1} \circ d$. So by induction we can find s^n for all $n \ge 1$ satisfying the required identity.

[Note that we do not need to use the assumption that I[•] has injective terms or that J[•] is exact.]

5. [2 points] Give an example of a morphism in Ch(<u>Ab</u>) which is a quasi-isomorphism, but not a homotopy equivalence.

Solution: Let $A = [\mathbf{Z}]$ and $B = [\mathbf{Q} \longrightarrow \mathbf{Q}/\mathbf{Z}]$, and let *f* be the natural map $A \rightarrow B$ given by the inclusion $\mathbf{Z} \hookrightarrow \mathbf{Q}$. We saw in lectures that *f* is a quasi-isomorphism.

However, we have $\text{Hom}_{\underline{Ab}}(\mathbf{Q}, \mathbf{Z}) = 0$, so $\text{Hom}_{Ch(\underline{Ab})}(B, A) = 0$. So if *f* had a homotopy inverse, it would have to be the zero map; thus the zero map $A \to A$ would have to be homotopic to the identity and hence would have to induce the identity on $H^0(A) = \mathbf{Z}$. This is impossible since \mathbf{Z} is not the zero ring. So *f* is not a homotopy equivalence.

6. [2 points] Show that if $F : C \to D$ a left-exact functor between abelian categories, and $0 \to A \to B \to C \to 0$ is an exact sequence with A injective, then $0 \to F(A) \to F(B) \to F(C) \to 0$ is exact. [*Hint: We are not assuming that C has enough injectives, so it is not enough to say that* $R^1(F)(A) = 0$.]

Solution: Since *A* is injective, the identity map $A \to A$ has to extend to a map $s : B \to A$. This gives a splitting of the exact sequence, so $B \cong A \oplus C$ with the maps $A \to B$ and $B \to C$ being the inclusion and projection maps. Since *F* is additive, it preserves direct sums, so $0 \to F(A) \to F(A \oplus C) \to F(C) \to 0$ is exact.

7. [1 point] Let C, D, \mathcal{E} be abelian categories and $C \xrightarrow{F} D \xrightarrow{G} \mathcal{E}$ left-exact functors. Assume C has enough injectives, G is exact, and F is left-exact. Show that $R^i(G \circ F) = G \circ R^i(F)$ for all i, as functors $C \to \mathcal{E}$.

Solution: By definition $R^i(G \circ F)(X) = H^i((G \circ F)(I^{\bullet}))$ where I^{\bullet} is an injective resolution of *X*. Since *G* is exact, it commutes with cohomology, so this is the same as $G(H^i(F(I^{\bullet}))) = G(R^i(F)(X))$.

[If D has enough injectives then this is a trivial consequence of the Grothendieck spectral sequence, but this is not assumed.]

- 8. [3 points] Let $G = C_2 = \{1, \sigma\}$.
 - (a) Show that

 $\dots \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G] \xrightarrow{\sigma+1} \mathbf{Z}[G] \xrightarrow{\sigma-1} \mathbf{Z}[G]$

is a projective resolution of the trivial module Z as a Z[G]-module.

Solution: This is obviously a complex since $(\sigma + 1)(\sigma - 1) = \sigma^2 - 1 = 1 - 1 = 0$. So we must check it has the correct cohomology.

A generic element of $\mathbb{Z}[G]$ looks like $a + b\sigma$ for $a, b \in \mathbb{Z}$, and we have $(\sigma \pm 1)(a + b\sigma) = (a \pm b)(\sigma \pm 1)$. Thus the image of multiplication by $\sigma \pm 1$ is $\mathbb{Z} \cdot (\sigma \pm 1)$, and its kernel is $\{a + b\sigma : a \pm b = 0\} = \mathbb{Z} \cdot (\sigma \mp 1)$, which proves that the cohomology in all degrees $\neq 0$ is trivial. Meanwhile, the image of the last map is exactly the kernel of the surjection $\mathbb{Z}[G] \rightarrow \mathbb{Z}, a + b\sigma \mapsto a + b$.

- (b) Hence compute the cohomology groups of
 - i. \mathbf{Z} with the trivial *G*-action;

Solution: We must compute the cohomology of the complex of homomorphisms from the above resolution to \mathbf{Z} , which is

$$\mathbf{Z} \stackrel{0}{\longrightarrow} \mathbf{Z} \stackrel{2}{\longrightarrow} \mathbf{Z} \stackrel{0}{\longrightarrow} \mathbf{Z} \dots$$

So the cohomology is Z in degree 0, trivial in odd degrees, and Z/2Z in positive even degrees.

ii. **Z** with the generator σ acting as -1.

Solution: Now we obtain the complex

$$\mathbf{Z} \stackrel{-2}{\longrightarrow} \mathbf{Z} \stackrel{0}{\longrightarrow} \mathbf{Z} \stackrel{-2}{\longrightarrow} \mathbf{Z} \dots$$

so the cohomology is 0 in even degrees (including degree 0) and Z/2Z in odd degrees.

- 9. Let *R* be a ring, *A*, *B* objects of <u>*R*-Mod</u>, and $\sigma \in \text{Ext}^1(A, B)$, represented by a homomorphism $f \in \text{Hom}(A, Z^1(I^{\bullet}))$ where I^{\bullet} is an injective resolution of *B*.
 - (a) [1 point] Show that the module

$$E = \{ (x, a) \in I^0 \oplus A : d(x) = f(a) \},\$$

with the obvious maps from *B* and to *A*, defines an extension of *A* by *B*; and show that the equivalence class of this extension depends only on σ and not on the representative *f*.

Solution: It is clear that *E* is an *R*-module, and $(x, a) \mapsto a$ is an *R*-module homomorphism $E \to A$. The kernel of this homomorphism is $\{(x, 0) : x \in \text{ker}(I^0 \to I^1)\}$, and since $\text{ker}(I^0 \to I^1) = B$, this gives an exact sequence $0 \to B \to E \to A$. However, since the target of *f* is $Z^1(I^\bullet)$, and I^\bullet is exact, for every $a \in A$ there is *x* such that f(a) = d(x); thus $E \to A$ is also surjective, so *E* is an extension of *A* by *B*.

If we let $f' = f + d \circ h$, where *h* is a homomorphism $A \to I^0$, and E' denotes the extension corresponding to f', then $(x, a) \mapsto (x + h(a), a)$ is clearly an isomorphism $E \to E'$ compatible with the maps to *A* and from *B*, so $0 \to B \to E \to A \to 0$ and $0 \to B \to E' \to A \to 0$ are equivalent as extensions of *A* by *B*. Thus the equivalence class of the extension depends only on the element σ .