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Setting = t does not work because y = v/1 — {2 may not be rational.



x2+y2:1 z,y € Q

By using geometric arguments, we can prove that the solutions are

either (z,y) = (—1,0) or (z,y) = (;iz 1_%;2) witht € Q




22+ y? =0 z,y € Q






r? — 3yt =2 z,y € Q



r? — 3yt =2 z,y € Q

No solutions!

Consider the equivalent equation X? — 3Y? = 272 X,Y,Z eZ\ {0}

X? =277 (mod 3) can only happen if X = Z =0 (mod 3) because 2 is not a
square modulo 3.

This implies that 3| X, 3|Z and 3|Y. Contradiction!
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© Studying the solutions of Diophantine equations is (generally) hard.

® Finding the real solutions of a Diophantine equation can help us
determine the existence (or not) of solutions.

® Considering the homogeneous equations modulo n for appropriate n € N,
we can sometimes determine if an equation does not have integer solutions.



© Studying the solutions of Diophantine equations is (generally) hard.

® Finding the real solutions of a Diophantine equation can help us
determine the existence (or not) of solutions.

©® Considering the equations modulo p™ for an appropriate prime p and
m € N, we can sometimes determine if an equation does not have integer
solutions.
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p-adic absolute value

Fix a prime p. Let x = p"{ € Q non-zero, with a,b,n € Z and a, b coprime to p.
Then, the p-adic absolute value of z is defined to be

—n

|z, = p

Examples

-1 —

=125
; 125

1 3
[10];= ¢ ‘1 i




The field of p-adic numbers Q,, is the completion of Q with respect to the absolute
value | |p.

® The completions of Q with respect to a valuation are known as local fields of the
ring Q. These are either R or Q, for some p prime.

® The field Q is known as the global field of R and Q,,.
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Let b € Z, 22 = b has a solution z € R iff b > 0. Let’s see what happens in Q,.

Theorem

The equation 22 = b has a solution z € Qs if and only if b is of the form b = 22"by with
n € Z>pand by =1 (mod 8).

For any odd prime p, the equation 2> = b has a solution z € Q,, if and only if b is of the
form b = p*by with n € Z>0 and by a quadratic residue modulo p (this means by = a%

(mod p) for some ag).

Example of application of this theorem

2?2 = 17 for some € Qp,as 17 = 1 (mod 8).
22 = 2 for some z € Q17, as 62 = 2 (mod 17).



No solution in @, for some p or no solution in R = No solution in Q.

Hasse Principle (The converse statement)

If a system of polynomial equations with rational coefficients has a solution in R and in
Qy, for every prime p, then it has a solution in Q.

Does this principle always hold?



No solution in @, for some p or no solution in R = No solution in Q.

Hasse Principle (The converse statement)

If a system of polynomial equations with rational coefficients has a solution in R and in
Qy, for every prime p, then it has a solution in Q.

Does this principle always hold?

No



Consider the equation (z? — 2)(2% — 17)(2? — 34) = 0. It has
e Six real solutions {:I:\/i +/17, :I:\/3_4}

® At least two 2-adic solutions (as 22 — 17 = 0 for some z € Q»).
® At least two 17-adic solutions (as 22 — 2 = 0 for some = € Q7).

® At least two p-adic solutions for any other prime p (because if 2 and 17 are
not quadratic residues modulo p, then 34 is a quadratic residue and so, at
least one of the equations

2 —-2=0 22 —17=0 22 —-34=0

must have solutions in Q).

® No rational solutions.



Let C be a curve (smooth, projective, irreducible variety) over Q.

Theorem

Let C be a curve over Q of genus 0. Then, it is Q-birationally equivalent either to
a line or to a conic section of the form aX? 4+ bY?2 + cZ? = 0, with a,b, ¢ € Q.

Theorem (Hasse-Minkowski)

Every curve of genus 0 satisfies the Hasse principle.



For curves with genus g > 0, the Hasse principle does not generally apply.

Challenge

Finding counterexamples to the Hasse principle in curves.
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For curves with genus g > 0, the Hasse principle does not generally apply.

Challenge

Finding counterexamples to the Hasse principle in curves.

Lind and Reichart (1940) Selmer (1951)
2% =1 — 172" 32° +4y° =5

! !

y' =2+ 17z y? = 2® — 283752



Elliptic curve

An elliptic curve £ is a non-singular curve of genus 1 with a rational point. We
denote by £(Q) its set of rational points.

An elliptic curve can always be transformed into a curve that in affine
coordinates has equation

v =23+ Az + B with A, B € Q



We can “sum” points in an elliptic curve and £(Q) is a group
with respect to this operation

A

Q T+T

P+Q
P+Q+R=0 T+T+S=o0




Multiplication-by-m isogeny

[m]: £(Q) —— £(Q)
P——P+.--+P
—_———

m terms

m-torsion subgroup

E(Q)m] ={P € £(Q) : [m]P = o}.

We will denote by Eiors(Q) the points of finite order in &, i.e.,

oo

Eiors(Q) = U E(Q)[m].

m=2



Q




Theorem (Mordell-Weil)

Let € be an elliptic curve. Then, the group £(Q) is finitely generated and so
E(Q) = gtors(Q) X Zr
where Eo;5(Q) is finite, and 7 is called the rank of £(Q).

Computing the rank of an elliptic curve is generally hard and there are many
questions that we don’t know about it. For instance,

Unsolved problem

Is the rank of elliptic curves bounded?
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That sequence can be extended [Har20, Theorem 1.17] to a sequence between coho-
mology groups

0 HCh e SR —r B e, E1RY) — L OG0, E1R)) 2

§

[—» H' (G E(Rg]) —— H (G, E1K)) —— H'(Gryw. £'(K)).

1, o

0 E(K) ]

EK)
: ]

L HY (G gy E(K¢]) — YOk, E(K) — NG gk, E'(K)).

Furthermore, from this sequence we can deduce the fimdamental exact short sequence

0 — SR ER)) S (e, £ — HE (0 BN ] — 0
(35)
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To find the rank of an elliptic curve, we can study the group £(Q)/2£(Q), as
£(Q)/2£(Q) = £(Q)2] x (Z/2z)

By the theory of Galois cohomology we get a short exact sequence

0 —— £(Q)/26(Q) —— HY(E(Q)[2)) —2— WC(£(Q))[2] —— 0

* HY(E(Q)[2]) is a finite subgroup of Q* /(Q*)? x Q*/(Q*)2.
e WWC(E/Q)[2]is a group whose elements are homogeneous spaces.

° ker(v)) =2 £(Q)/2£(Q) are the elements of H'(£(Q)[2]) whose images
homogeneous spaces do not have rational points.



What does this have to do with the Hasse principle?

We can study “Galois cohomology with respect to local fields” to get
0 —— £(Q)/26(Q) — Sel?(€ /Q) —— LI(£ /Q)[2) —— 0

where

* Sel? (€ /Q) is the 2-Selmer group, which is the subgroup of all elements

of H'(£(Q)[2]) whose images homogeneous spaces have points in R and
in Q, for every p.

e III(£ /Q) is the Tate-Shaferevich group, which is a group that measures to

what extent all possible homogeneous spaces associated to £ satisfy the
Hasse principle.



0 —— £(Q)/2£(Q) —— Sel® (£ /Q) —— II(£ /Q)[2] —— 0

If we are able to prove that III1(£ /Q) is non-trivial (for instance, by proving that
I(E /Q)[2] is non-trivial), then some of the homogeneous spaces of £ are
counterexamples of the Hasse principle.

In fact, 2y? = 1 — 172" is a counterexample of the Hasse principle, because it is a
homogeneous space associated to the curve £ : y*> = 2® + 17z, which has

(€ /Q)[2] = (z/22)*.



Conjecture

The Tate-Shaferevich group is finite.

If this conjecture is true, then the order of III(€ /Q) is a square and so is the
order of any of the p-primary components of III(£ /Q).

From

0 —— £(Q)/2£(Q) —— Sel® (£ /Q) —— II(£ /Q)[2] —— 0

we deduce that

ranky oz II1(E /Q)[2] = rankz oz Sel® (£ /Q) — rankz /7 £(Q)/2£(Q)
= rankys7, Sel? (€ /Q) — rankyz /o7 €(Q)[2] — rankz £(Q)



Conjecture (Birch and Swinnerton-Dyer). The Taylor expansion of L(C,s) at

s =1 has the form N > 1M

L(C,s) = c(s — 1)" + higher order terms
with ¢ # 0 and r = rank(C(Q)).
In particular this conjecture asserts that L(C,1) = 0 < C(Q) is infinite.

Remarks. 1. There is a refined version of this conjecture. In this version one has
to define Euler factors at primes p|2A to obtain the completed L-series, L*(C,s).
The conjecture then predicts that L*(C,s) ~ ¢*(s — 1)" with

¢* = |e|Roowoo [] wp/|C(Q@)".
pl2A

Here || is the order of the Tate-Shafarevich group of the elliptic curve C.
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