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Let’s study some equations

3x + 5y = 1 x, y ∈ Q

(x, y) = (t, 1−3t
5 ) t ∈ Q
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Let’s study some equations

x2 + y2 = 1 x, y ∈ Q

Setting x = t does not work because y =
√
1− t2 may not be rational.



Let’s study some equations

x2 + y2 = 1 x, y ∈ Q

By using geometric arguments, we can prove that the solutions are
either (x, y) = (−1, 0) or (x, y) = (1−t2

1+t2 ,
2t

1+t2 ) with t ∈ Q



Let’s study some equations

x2 + y2 = 0 x, y ∈ Q

x = 0, y = 0



Let’s study some equations

x2 + y2 = 0 x, y ∈ Q

x = 0, y = 0



Let’s study some equations

x2 − 3y2 = 2 x, y ∈ Q

No solutions!
Consider the equivalent equation X2 − 3Y 2 = 2Z2 X ,Y ,Z ∈ Z \ {0}

X2 ≡ 2Z2 (mod 3) can only happen if X ≡ Z ≡ 0 (mod 3) because 2 is not a
square modulo 3.

This implies that 3|X , 3|Z and 3|Y . Contradiction!
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Conclusions of our little study

1 Studying the solutions of Diophantine equations is (generally) hard.

2 Finding the real solutions of a Diophantine equation can help us
determine the existence (or not) of solutions.

3 Considering the homogeneous equations modulo n for appropriate n ∈ N,
we can sometimes determine if an equation does not have integer solutions.



Conclusions of our little study

1 Studying the solutions of Diophantine equations is (generally) hard.

2 Finding the real solutions of a Diophantine equation can help us
determine the existence (or not) of solutions.

3 Considering the equations modulo pm for an appropriate prime p and
m ∈ N, we can sometimes determine if an equation does not have integer
solutions.





p-adic numbers

p-adic absolute value

Fix a prime p. Let x = pn a
b
∈ Q non-zero, with a, b,n ∈ Z and a, b coprime to p.

Then, the p-adic absolute value of x is defined to be

|x|p = p−n

Examples
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p-adic numbers

p-adic numbers

The field of p-adic numbers Qp is the completion of Q with respect to the absolute
value | |p.

• The completions of Q with respect to a valuation are known as local fields of the
ring Q. These are either R or Qp for some p prime.

• The field Q is known as the global field of R and Qp.







Application of Hensel’s lemma

Let b ∈ Z, x2 = b has a solution x ∈ R iff b ≥ 0. Let’s see what happens in Qp.

Theorem
The equation x2 = b has a solution x ∈ Q2 if and only if b is of the form b = 22nb0 with
n ∈ Z≥0 and b0 ≡ 1 (mod 8).

For any odd prime p, the equation x2 = b has a solution x ∈ Qp if and only if b is of the
form b = p2nb0 with n ∈ Z≥0 and b0 a quadratic residue modulo p (this means b0 ≡ a20
(mod p) for some a0).

Example of application of this theorem

x2 = 17 for some x ∈ Q2, as 17 ≡ 1 (mod 8).
x2 = 2 for some x ∈ Q17, as 62 ≡ 2 (mod 17).



Hasse Principle

No solution in Qp for some p or no solution in R ⇒ No solution in Q.

Hasse Principle (The converse statement)

If a system of polynomial equations with rational coefficients has a solution in R and in
Qp for every prime p, then it has a solution in Q.

Does this principle always hold?

No
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Counterexample to the Hasse principle

Consider the equation (x2 − 2)(x2 − 17)(x2 − 34) = 0. It has

• Six real solutions {±
√
2,±

√
17,±

√
34}.

• At least two 2-adic solutions (as x2 − 17 = 0 for some x ∈ Q2).
• At least two 17-adic solutions (as x2 − 2 = 0 for some x ∈ Q17).
• At least two p-adic solutions for any other prime p (because if 2 and 17 are
not quadratic residues modulo p, then 34 is a quadratic residue and so, at
least one of the equations

x2 − 2 = 0 x2 − 17 = 0 x2 − 34 = 0

must have solutions in Qp).
• No rational solutions.



Hasse principle for curves

Let C be a curve (smooth, projective, irreducible variety) over Q.

Theorem

Let C be a curve over Q of genus 0. Then, it is Q-birationally equivalent either to
a line or to a conic section of the form aX2 + bY 2 + cZ2 = 0, with a, b, c ∈ Q.

Theorem (Hasse-Minkowski)

Every curve of genus 0 satisfies the Hasse principle.



Hasse principle for curves

For curves with genus g > 0, the Hasse principle does not generally apply.

Challenge

Finding counterexamples to the Hasse principle in curves.

Lind and Reichart (1940) Selmer (1951)
2y2 = 1− 17x4 3x3 + 4y3 = 5
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Hasse principle for curves

For curves with genus g > 0, the Hasse principle does not generally apply.

Challenge

Finding counterexamples to the Hasse principle in curves.

Lind and Reichart (1940) Selmer (1951)
2y2 = 1− 17x4 3x3 + 4y3 = 5xy xy
y2 = x3 + 17x y2 = x3 − 283552



A crash course on elliptic curves

Elliptic curve

An elliptic curve E is a non-singular curve of genus 1 with a rational point. We
denote by E(Q) its set of rational points.

An elliptic curve can always be transformed into a curve that in affine
coordinates has equation

y2 = x3 + Ax+B with A,B ∈ Q



Group Law

We can “sum” points in an elliptic curve and E(Q) is a group
with respect to this operation



Some relevant concepts in elliptic curves

Multiplication-by-m isogeny

[m] : E(Q) −−−−→ E(Q)

P 7−−−−→ P + · · ·+ P .︸ ︷︷ ︸
m terms

m-torsion subgroup

E(Q)[m] = {P ∈ E(Q) : [m]P = o}.

We will denote by Etors(Q) the points of finite order in E , i.e.,

Etors(Q) =

∞⋃
m=2

E(Q)[m].



Example of torsion points



E(Q) as a group

Theorem (Mordell-Weil)

Let E be an elliptic curve. Then, the group E(Q) is finitely generated and so

E(Q) ∼= Etors(Q)× Zr

where Etors(Q) is finite, and r is called the rank of E(Q).

Computing the rank of an elliptic curve is generally hard and there are many
questions that we don´t know about it. For instance,

Unsolved problem

Is the rank of elliptic curves bounded?







Computing the rank

To find the rank of an elliptic curve, we can study the group E(Q)/2 E(Q), as

E(Q)/2 E(Q) ∼= E(Q)[2]× (Z/2Z)r

By the theory of Galois cohomology we get a short exact sequence

0 −−−→ E(Q)/2 E(Q) −−−→ H1(E(Q)[2])
ψ−−−→ WC(E(Q))[2] −−−→ 0

• H1(E(Q)[2]) is a finite subgroup of Q×/(Q×)2 ×Q×/(Q×)2.

• WC(E /Q)[2] is a group whose elements are homogeneous spaces.
• ker(ψ) ∼= E(Q)/2 E(Q) are the elements of H1(E(Q)[2]) whose images
homogeneous spaces do not have rational points.



2-Selmer and Tate-Shaferevich groups

What does this have to do with the Hasse principle?

We can study “Galois cohomology with respect to local fields” to get

0 −−−→ E(Q)/2 E(Q) −−−→ Sel(2)(E /Q) −−−→ X(E /Q)[2] −−−→ 0

where
• Sel(2)(E /Q) is the 2-Selmer group, which is the subgroup of all elements
of H1(E(Q)[2]) whose images homogeneous spaces have points in R and
in Qp for every p.

• X(E /Q) is the Tate-Shaferevich group, which is a group that measures to
what extent all possible homogeneous spaces associated to E satisfy the
Hasse principle.



2-Selmer and Tate-Shaferevich groups

0 −−−→ E(Q)/2 E(Q) −−−→ Sel(2)(E /Q) −−−→ X(E /Q)[2] −−−→ 0

If we are able to prove thatX(E /Q) is non-trivial (for instance, by proving that
X(E /Q)[2] is non-trivial), then some of the homogeneous spaces of E are
counterexamples of the Hasse principle.

In fact, 2y2 = 1− 17x4 is a counterexample of the Hasse principle, because it is a
homogeneous space associated to the curve E : y2 = x3 + 17x, which has
X(E /Q)[2] ∼= (Z/2Z)2.



The Tate-Shaferevich group is mysterious

Conjecture

The Tate-Shaferevich group is finite.

If this conjecture is true, then the order of X(E /Q) is a square and so is the
order of any of the p-primary components ofX(E /Q).

From

0 −−−→ E(Q)/2 E(Q) −−−→ Sel(2)(E /Q) −−−→ X(E /Q)[2] −−−→ 0

we deduce that

rankZ/2Z X(E /Q)[2] = rankZ/2Z Sel(2)(E /Q)− rankZ/2Z E(Q)/2 E(Q)

= rankZ/2Z Sel(2)(E /Q)− rankZ/2Z E(Q)[2]− rankZ E(Q)
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