ALVARO GONZALEZ HERNANDEZ

University of Warwick

Genus 2 curves in characteristic 2 via Kummer surfaces

Points on a curve

 defined over a certain field
Points on a curve

 defined over a certain field
The Jacobian

variety associated to the curve

Given a hyperelliptic curve, how can we compute an explicit model of its Jacobian as a projective variety?

The idea is

Let

$$
\mathcal{C}: y^{2}+h(x) y=f(x)
$$

be a hyperelliptic curve of genus $g \geq 1$ where $f(x), h(x) \in k[x]$, $\operatorname{deg} f(x)=2 g+2$ and $\operatorname{deg} h(x) \leq g+1$.

The curve has two different points at infinity that I will denote by ∞_{+}and ∞_{-}.

The hyperelliptic involution
The curve

$$
\mathcal{C}: y^{2}+h(x) y=f(x)
$$

has a natural involution defined by

$$
\begin{aligned}
\iota_{\mathcal{C}}: \mathcal{C} & \longrightarrow \mathcal{C} \\
(x, y) & \longmapsto(x,-y-h(x)) \\
\infty_{+} & \longmapsto \infty_{-} \\
\infty_{-} & \longmapsto \infty_{+}
\end{aligned}
$$

How to compute an explicit model of the Jacobian

The following:

$$
\Theta_{+}=\underbrace{C \times \cdots \times C}_{g-1} \times\left\{\infty_{+}\right\} \quad \text { and } \quad \Theta_{-}=\underbrace{C \times \cdots \times C}_{g-1} \times\left\{\infty_{-}\right\}
$$

define divisors of $\mathcal{C}^{(g)}$ and an embedding of the Jacobian into projective space is given by $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$.
(These are functions in the function field of $\mathcal{C}^{(g)}$ that at worst can only possibly have poles in $2\left(\Theta_{+}+\Theta_{-}\right)$of the "right" multiplicity.)

Example

For $g=2$, let's consider two copies of a curve \mathcal{C}

$$
y_{1}^{2}+h\left(x_{1}\right) y_{1}=f\left(x_{1}\right) \quad y_{2}^{2}+h\left(x_{2}\right) y_{2}=f\left(x_{2}\right)
$$

Then, some independent functions of $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$are

$$
1, x_{1}+x_{2}, x_{1} x_{2},\left(x_{1}+x_{2}\right)^{2}, \frac{\left(2 y_{1}+h\left(x_{1}\right)\right)-\left(2 y_{2}+h\left(x_{2}\right)\right)}{x_{1}-x_{2}}, \ldots
$$

In this case $\left|\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)\right|=16$.

Example

The embedding would be given by considering

$$
\left[1: x_{1}+x_{2}: x_{1} x_{2}:\left(x_{1}+x_{2}\right)^{2}: \frac{\left(2 y_{1}+h\left(x_{1}\right)\right)-\left(2 y_{2}+h\left(x_{2}\right)\right)}{x_{1}-x_{2}}, \ldots\right] \hookrightarrow \mathbb{P}^{15}
$$

where $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in \mathcal{C}$.

The embedding by $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$is given by the intersection of many conics:

Genus	1	2	3	\cdots	g
\mathbb{P}^{n} in which it embeds	3	15	63	\cdots	$4^{g}-1$
Number of conics	2	72	1568	\cdots	$2^{2 g-1}\left(2^{g}-1\right)^{2}$

$\iota_{\mathcal{C}}$ extends to an involution on $\mathcal{C}^{(g)}$, such that $\iota_{\mathcal{C}}$ acts linearly on the elements of $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$. If the field of definition has characteristic different than 2 , we can "diagonalise" this action to obtain a decomposition:

$$
\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)=\{\text {even functions }\} \oplus\{\text { odd functions }\}
$$

where

$$
\iota_{\mathcal{C}}(\text { even })=\text { even } \quad \iota_{\mathcal{C}}(\text { odd })=- \text { odd }
$$

Going back to our example when $g=2$

The functions

$$
\left\{1, x_{1}+x_{2}, x_{1} x_{2},\left(x_{1}+x_{2}\right)^{2}, \ldots\right\}
$$

are even and $\mid\{$ even functions $\} \mid=10$.
The functions

$$
\left\{\frac{\left(2 y_{1}+h\left(x_{1}\right)\right)-\left(2 y_{2}+h\left(x_{2}\right)\right)}{x_{1}-x_{2}}, \frac{\left(2 y_{1}+h\left(x_{1}\right) x_{2}\right)-\left(2 y_{2}+h\left(x_{2}\right)\right) x_{1}}{x_{1}-x_{2}}, \ldots\right\}
$$

are odd and $\mid\{$ odd functions $\} \mid=6$.

Kummer variety

Let \mathcal{A} be an Abelian variety (e.g. the Jacobian of a hyperelliptic curve) and let ι be the involution in \mathcal{A} that sends an element to its inverse. Then, the Kummer variety associated to $\mathcal{A}, \operatorname{Kum}(\mathcal{A})$ is the quotient variety \mathcal{A} / ι.

Fact

For $g>1, \mathcal{A}[2]$ is the set of all fixed points under the action of ι and these points are singular points of $\operatorname{Kum}(\mathcal{A})$.

Examples of Kummer varieties

Suppose that the field of definition has characteristic different than 2 .

- If the dimension of \mathcal{A} is $2, \operatorname{Kum}(\mathcal{A})$ is a surface described by a quartic in \mathbb{P}^{3} with 16 nodal singularities.
- Generally, if the dimension of \mathcal{A} is g, $\operatorname{Kum}(\mathcal{A})$ can be found as an intersection in $\mathbb{P}^{2^{g}-1}$.
- Their models are considerably easier.
- They are not Abelian varieties, so they do not have a group law. However, they inherit a pseudo-group law.
- For a hyperelliptic curve \mathcal{C}, the projective embedding of the Kummer variety associated to the Jacobian of \mathcal{C} is given by $\mathcal{L}\left(\Theta_{+}+\Theta_{-}\right)$.

$$
\mathcal{L}\left(\Theta_{+}+\Theta_{-}\right) \subset\left\{\text { even functions of } \mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)\right\}
$$

In fact, the space of even functions of $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$is generated as a vector space by the products of every two functions of $\mathcal{L}\left(\Theta_{+}+\Theta_{-}\right)$.

Furthermore, the space of odd functions of $\mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)$defines a model of the desingularisation of the Kummer surface as the intersection of 3 quadrics in \mathbb{P}^{5}.

Desingularisation of the Kummer surface

Explicit projective models of the Jacobian of a genus 2 curve

1 Canonical form. We shall normally suppose that the characteristic \llbracket of the ground field is not 2 and consider curves \mathcal{C} of genus 2 in the shape

$$
\begin{equation*}
\mathcal{C}: \quad Y^{2}=F(X) \tag{1.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F(X)=f_{0}+f_{1} X+\ldots+f_{6} X^{6} \in k[X] \tag{1.1.2}
\end{equation*}
$$

1. The Jacobian variety

We shall work with a general curve \mathscr{C} of genus 2 , over a ground field K of characteristic not equal to 2,3 or 5 , which may be taken to have hyperelliptic form

$$
\begin{equation*}
\mathscr{C}: Y^{2}=F(X)=f_{6} X^{6}+f_{5} X^{5}+f_{4} X^{4}+f_{3} X^{3}+f_{2} X^{2}+f_{1} X+f_{0} \tag{1}
\end{equation*}
$$

with f_{0}, \ldots, f_{6} in $K, f_{6} \neq 0$, and $\Delta(F) \neq 0$, where $\Delta(F)$ is the discriminant of F. In \mathbb{F}_{5} there is, for example, the curve $Y^{2}=X^{5}-X$ which is not birationally equivalent to the above form.

1 Canonical form. We shall normally suppose that the characteristic \llbracket of the ground field is not 2 and consider curves \mathcal{C} of genus 2 in the shape

$$
\begin{equation*}
\mathcal{C}: \quad Y^{2}=F(X) \tag{1.1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
F(X)=f_{0}+f_{1} X+\ldots+f_{6} X^{6} \in k[X] \tag{1.1.2}
\end{equation*}
$$

2. SET-UP

Let k be a field of characteristic not equal to two, k^{s} a separable closure of k, and $f=$ $\sum_{i=0}^{6} f_{i} X^{i} \in k[X]$ a separable polynomial with $f_{6} \neq 0$. Denote by Ω the set of the six roots of f in k^{s}, so that $k(\Omega)$ is the splitting field of f over k in k^{s}. Let C be the smooth projective

In algebraically closed fields of characteristic 2 , the 2-torsion of the Jacobian of a curve \mathcal{C} of genus g is

$$
\mathcal{J}(\mathcal{C})[2] \cong(\mathbb{Z} / 2 \mathbb{Z})^{r}
$$

for some $0 \leq r \leq g$.

Characteristic	2		Not 2	
2-rank	0	1	2	
Number of singularities	1	2	4	16
Singularity type	Elliptic	D_{8}	D_{4}	A_{1}

Characteristic 2

"Almost"
"Almost"

Characteristic different than 2

Supersingular

Ordinary

In characteristic 2 we cannot diagonalise the action of $\iota_{\mathcal{C}}$, so it does no longer makes sense to talk about even and odd functions.

So what can be said about the desingularisation of Kummer surfaces in characteristic 2 ?

Work in progress

$$
\begin{aligned}
& \text { Computing } \\
& \mathcal{L}\left(2\left(\Theta_{+}+\Theta_{-}\right)\right)
\end{aligned}
$$

for genus 2 curves in characteristic 2

Studying the desingularisation of Kummer surfaces

Finding explicit models that can be used for computation

$2^{*} g 2^{*} g 3^{* k} 1^{* k} 3^{*} v 4+2 * g 3^{*} k 1^{*} k 3^{*} v 5$

 $f 6 * g 0^{\wedge} 2^{*} g 3^{\wedge} 2^{*} k 1^{*} k 2^{*} k 3^{*} k 4-3^{*} f 5^{*} g 0^{* g} 1^{*} g 3^{\wedge} 2^{*} k 1^{*} k 2^{*} k 3^{*} k 4+2^{*} f 4^{*} g 0^{* g} 2^{*} g 3^{\wedge} 2^{*} k 1^{*} k 2^{*} k 3^{*} k 4-g 0^{*} g 2^{\wedge} 3^{*} g 3^{\wedge} 2^{*} k 1^{*} k 2^{*} k 3^{*} k 4-f 1^{*} g 2^{*} g 3^{\wedge} 3^{*} k 1^{*} k 2^{*} k 3^{*} k 4-$
 $2^{* * 1} 1^{*}+6^{*} g 3^{\wedge} 2^{*} k 2^{\wedge} 2^{*} k \quad 3^{\wedge} 2^{*} k 2^{\wedge} 2^{*} k 3^{*} k 4-2^{*} f 5^{*} g 0^{*} g 2^{*} g 3^{n} 2^{*} \quad 2^{*} k 3^{*} k 4+f 4^{*} g 0^{*} g 3^{\wedge} 3^{*} k 2^{\wedge} 2^{* * k} 3^{*} k 4-g 0^{*} g 2^{\wedge} 2^{*} g 3^{\wedge} 3^{*} k 2 \quad 3^{*} k 4-8^{*} f 3^{*} f 4^{*} f 6^{*} k 1^{*} k 3^{\wedge} 2^{*} k 4+$

 $2^{*} \mathrm{f} 4^{*} \mathrm{~g} 1^{* g} 2^{*} \mathrm{~g} 3^{\wedge} 2^{* k} 1^{*} \mathrm{k} 3^{\wedge} 2^{\star}$

 $-8^{*} f 4^{*} f 5^{\star} f 6 * k 3^{\wedge} 3^{*} k 4-2^{\star} f 5^{*} f 6^{*} g 2^{\wedge} 2^{*} k 3^{\wedge} 3^{*} k 4-2^{\star} f 5^{*} f 6^{*} g 1^{*} g 3^{*} k 3^{\wedge} 3^{*} k 4+4^{\star} f 4^{\star} f 6 * g 2^{*} g 3^{*} k 3^{\wedge} 3^{*} k 4+f 6^{*} g 2^{\wedge} 3^{*} g 3^{*} k 3^{\wedge} 3^{*} k 4-2^{*} f 4^{*} f 5^{*} g 3^{\wedge} 2^{*} k 3^{\wedge} 3^{*} k 4-2^{* * f} 3^{*} f 6^{*} g 3^{\wedge} 2^{*} k 3^{\wedge} 3^{*} k 4$ $2^{\star} f 5^{\star} g 2^{\wedge} 2^{*} g 3^{\wedge} 2^{*} k 3^{\wedge} 3^{*} k 4-f 6^{\star} g 0^{*} g 3^{\wedge} 3^{*} k 3^{\wedge} 3^{*} k 4-4^{\star} f 5^{\star} g 1^{*} g 3^{\wedge} 3^{*} k 3^{\wedge} 3^{*} k 4+f 4^{*} g 2^{*} g 3^{\wedge} 3^{*} k 3^{\wedge} 3^{*} k 4-f 3^{*} g 3^{\wedge} 4^{*} k 3^{\wedge} 3^{*} k 4-2^{\star} g 1^{*} g 2^{\star} g 3^{\wedge} 4^{\star} k 3^{\wedge} 3^{\star} k 4-g 0^{*} g 3^{\wedge} 5^{*} k 3^{\wedge} 3^{*} k 4-$

 $2^{*} f 6^{*} g 2^{\wedge} 2^{* k} 2^{*} k 3^{*} k 4^{\wedge} 2-2^{*} f 5^{*} \mathrm{~g} 2^{*} g, \quad 3^{2}$

 f1*g3^3*k2*k4*v2 + 8*f4*f6*g1*k3*k4*v2 + 2*f6*g1*g2^2*k3*k4*v2 + 2*f6*g1^2*g3*k3*k4*v2-2*f6*g0*g2*g3*k3*k4*v2 + 2*f5*g1*g2*g3*k3*k4*v2$2^{\star} f 5^{*} g 0^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 2+2^{\star} f 4^{*} g 1^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 2+2^{*} g 1^{*} g 2^{\wedge} 2^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 2+g 1^{\wedge} 2^{*} g 3^{\wedge} 3^{*} k 3^{*} k 4^{*} v 2-2^{*} g 0^{*} g 2^{*} g 3^{\wedge} 3^{*} k 3^{*} k 4^{*} v 2+4^{\star} f 6^{*} g 1^{*} k 4^{\wedge} 2^{\star} v 2+g 1^{*} g 3^{\wedge} 2^{*} k 4^{\wedge} 2^{*} v 2+$ $8^{\star} f 4^{*} f 6^{*} g 2^{*} k 3^{*} k 4^{*} v 3+2^{\star} f 6^{*} g 2^{\wedge} 3^{*} k 3^{*} k 4^{*} v 3-4^{\star} f 3^{\star} f 6^{*} g 3^{*} k 3^{*} k 4^{*} v 3+2^{\star} f 5^{*} g 2^{\wedge} 2^{*} g 3^{*} k 3^{*} k 4^{*} v 3-2^{\star} f 6^{*} g 0^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 3-2^{*} f 5^{*} g 1^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 3+$

$4^{\star} f 6^{*} g 0^{*} g 3^{*} k 2^{*} k 4^{*} v 4+g O^{*} g 3^{\wedge} 3^{*} k 2^{*} k 4^{*} v 4-16^{*} f 4^{*} f 6^{*} k 3^{*} k 4^{*} v 4-4^{*} f 6^{*} g 2^{\wedge} 2^{*} k 3^{*} k 4^{*} v 4-4^{*} f 6^{*} g 1^{*} g 3^{*} k 3^{*} k 4^{*} v 4-4^{*} f 4^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 4-g 2^{\wedge} 2^{*} g 3^{\wedge} 2^{*} k 3^{*} k 4^{*} v 4-$
g1*g3^3*k3*k4*v4 - 8*f6*k4^2*v4 - 2*g3^2*k4^2*v4 - 4*f5*g3*k3*k4*v5 - 2*g2*g3^2*k3*k4*v5 - g3*k3*k4*v6

