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Plan for this session

1 Introduction to the theory of elliptic curves over DVRs.

2 Discussion of the types of reduction.

3 Reduction of torsion points.

4 The Néron-Ogg-Shaferevich criterion.



If in doubt… Chapter VII



Discrete valuation ring

DVR
A discrete valuation ring is a principal ideal domain R with exactly one non-zero
maximal ideal p.

Alternatively, it is a PID endowed with a discrete valuation v on the
field of fractions K of R such that

R = {0} ∪ {x ∈ K : v(x) ≥ 0}

Residue field
The residue field k of R is defined as k = R/p

Uniformiser
A uniformiser of R is an element π ∈ R satisfying that v(π) = 1.
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My fave example of DVR (p 6= 2, 3)

R = Zp

K = Qp

k = Fp

π = p



Minimal Weierstrass equation

Let E/K be an elliptic curve given by a Weierstrass equation y2 = x3 + ax+ b.

y2 = x3 + ax+ b
x′=u2x y′=u3y←−−−−−−−−−−−→ (y′)2 = (x′)3 + u−4ax′ + u−6b

Minimal Weierstrass equation

We say that a Weierstrass equation is minimal if a and b belong to R and v(a) < 4 or
v(b) < 6 (equivalently v(∆) is minimal).

Over K = Q5,
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u=10−−−−−−−→ y2 = x3 + 3x− 4



Minimal Weierstrass equation

Let E/K be an elliptic curve given by a Weierstrass equation y2 = x3 + ax+ b.

y2 = x3 + ax+ b
x′=u2x y′=u3y←−−−−−−−−−−−→ (y′)2 = (x′)3 + u−4ax′ + u−6b

Minimal Weierstrass equation

We say that a Weierstrass equation is minimal if a and b belong to R and v(a) < 4 or
v(b) < 6 (equivalently v(∆) is minimal).

Over K = Q5,

y2 = x3 + 30 000x− 4 000 000
u=5−−−−−−−→ y2 = x3 + 48x− 256



Definition time!

Minimal Weierstrass model
The minimal Weierstrass model for E is the projective scheme E over R defined by a
minimal Weierstrass equation.

Reduction of E modulo p

The reduction of E modulo p, which we will denote by E, is the special fiber Ek of E .
We will denote by Esm the smooth locus of E.

It is easy to see that E is an irreducible projective curve over k (maybe singular) and that
we can define a group law on Esm using the secant line construction.
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Definition time!

Reduction map

The reduction map is the map

E(K)→ E(k)

P 7−→ P

induced by the natural morphism R→ R/p = k.

We also have,

E0(K) = {P ∈ E(K) : P ∈ Esm(k)}.

E1(K) = {P ∈ E(K) : P = O}.
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Definition time!

Reduction map

The reduction map is the map

E(K)→ E(k)

P 7−→ P

induced by the natural morphism R→ R/p = k.
We also have,

E0(K) = {P ∈ E(K) : P ∈ Esm(k)}.

E1(K) = {P ∈ E(K) : P = O}.



Example

Over Q5,

E : y2 = x3 + 3x− 4
mod 5−−−−−−−→ E : y2 = x3 − 2x+ 1 = (x− 2)2(x− 1)

Then,

E(F5) = {O, (0,−1), (0, 1), (1, 0), (2, 0)}
Esm(F5) = {O, (0,−1), (0, 1), (1, 0)} ∼= Z/4Z
E0(Q5) = {(x, y) ∈ E(Q5) : x 6≡ 2 (mod 5)}

For example, (1, 0) and (0,±2i) all belong to E0(Q5) (where i is considered to be one of
the roots of the polynomial x2 + 1).



Example

Over Q5,

E : y2 = x3 + 3x− 4
mod 5−−−−−−−→ E : y2 = x3 − 2x+ 1 = (x− 2)2(x− 1)

Then,

E1(Q5) = {(x, y) ∈ E(Q5) : v5(y) < 0} = {(x, y) ∈ E(Q5) : v5(x) < 0}

For example, [4](0, 2i) =
(

707679
1537600 ,

3027727631
1906624000 i

)
∈ E1(Q5).



Example

Over Q5,

E : y2 = x3 + 3x− 4
mod 5−−−−−−−→ E : y2 = x3 − 2x+ 1 = (x− 2)2(x− 1)

It is easy to check that if x ≡ 2 (mod 5), then, v(x3 + 3x− 4) = 1 and so, as v(y2) is
even, this shows that there cannot be any point in E(Q5) that reduces to (2, 0).
Therefore, E(Q5) = E0(Q5) and #E(Q5)/E0(Q5) = 1.



The quotient E(K)/E0(K)

Finiteness of E(K)/E0(K)

The group E(K)/E0(K) is finite. Furthermore, if Esm(k) ∼= k∗ (i.e. E has split
multiplicative reduction) then the group is cyclic of order −v(j); otherwise, it has
cardinality at most 4.



Types of reduction

As E is given by the equation y2 = x3 + ax+ b, so it is non-singular (hence an elliptic
curve) if and only if ∆ 6= 0.

Good reduction

We say that E has good reduction if ∆ 6= 0.

Example: y2 = x3 + 1 in Qp for all p ≥ 5 (∆ = −24 33).



Types of reduction

As E is given by the equation y2 = x3 + ax+ b, so it is non-singular (hence an elliptic
curve) if and only if ∆ 6= 0.

Bad reduction

We say that E has bad reduction if ∆ = 0.

If ∆ = 0 and either a 6= 0 or b 6= 0, we say that E has multiplicative reduction.

If ∆ = 0 and a = b = 0, we say that E has additive reduction.



Types of reduction

As E is given by the equation y2 = x3 + ax+ b, so it is non-singular (hence an elliptic
curve) if and only if ∆ 6= 0.

Bad reduction

We say that E has bad reduction if ∆ = 0.

If ∆ = 0 and either a 6= 0 or b 6= 0, we say that E has multiplicative reduction.

If ∆ = 0 and a = b = 0, we say that E has additive reduction.

Examples:
y2 = x3 + 3x− 4 over Q5 has (split) multiplicative reduction.
y2 = x3 + 5 over Q5 has additive reduction.



Types of reduction

Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández


Álvaro González Hernández




Behaviour of reduction type under extensions

Preservation of reduction type under extension

Let K′/K be a finite extension. Suppose that either K′/K is unramified or E has
semi-stable reduction over K . Then a minimal Weierstrass equation for E over K is still
minimal over K′. Therefore the reduction type of E over K is the same as that overK′.

Semi-stable reduction theorem
There exists a finite extension K′/K such that E has semi-stable reduction over K′.

y2 = x3 + ax+ b
x′=u2x y′=u3y←−−−−−−−−−−−→ (y′)2 = (x′)3 + u−4ax′ + u−6b
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Behaviour of reduction type under extensions

Over Q5, y2 = x3 + 5 has additive reduction but over Q5(5
1/6), it has good reduction.

y2 = x3 + 5
x′=(51/6)2x y′=(51/6)3y←−−−−−−−−−−−−−−−→ (y′)2 = (x′)3 + 1

Over Q5, y2 = x3 + 75x− 500 has additive reduction but over Q5(5
1/2) it has

multiplicative reduction.

y2 = x3 + 75x− 500
x′=(51/2)2x y′=(51/2)3y←−−−−−−−−−−−−−−−→ (y′)2 = (x′)3 + 3x− 4
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Behaviour of reduction type under extensions

For all sufficiently large extensions K′/K , the curve E over K ′ has either good or
multiplicative reduction.

Potential reduction
We say that E has potentially good or potentially multiplicative reduction
according to the type of semistable reduction that E has over an extension ofK .

Test of potentially good reduction

E has potentially good reduction if and only if j(E) = −1728(4a)3/∆ is integral.



Reduction of torsion points

Suppose that E has good reduction. Since E is a proper smooth group over R, for any n
its n-torsion E [n] is a finite flat group scheme over R.

Reduction of torsion points

Suppose E has good reduction
• If n is prime to the residue characteristic, then:

• The reduction map E[n](K)→ E[n](k) is injective.
• The reduction map E0[n](K)→ Esm[n](k) is injective.
• The reduction map E[n](K)→ E[n](k) is an isomorphism of Galois modules.

• If K is an extension of Qp with e < p− 1, then it is also true that the reduction
map E[n](K)→ E[n](k) is injective.



The Néron-Ogg-Shaferevich criterion

Let GK be the absolute Galois group ofK and IK the inertia subgroup.

The Néron-Ogg-Shaferevich criterion

Let ` be a prime different from the residue characteristic. Then:
• E has good reduction if and only if IK acts trivially on T`(E).
• E has semi-stable reduction if and only if IK acts unipotently on T`(E).



Let’s recall some definitions

As unramified extensions of K correspond to extensions of the residue field k, we have,

Inertia subgroup IK

The inertia subgroup IK of GK is the set of elements of GK that act trivially on k.

Tate module
The `-adic Tate module of E, denoted T`(E), is the inverse limit of the groups
E[`n](K), where the transition maps are multiplication by `. Explicitly, an element of
T`(E) is a sequence (x0,x1,…) ofK-points of E, where x0 = O and `xi = xi−1 for
i > 0.

The fact that E[`n](K) = (Z/`nZ)2 allows us to define an isomorphism between T`(E)
and Z2

` through the inverse limit.



Example: Action of the inertia subgroup on the 4-torsion of E

P(0,0) = O



P(0,2) = (2, 0)


P(0,1) = (2−

√
5,−5 +

√
5)

P(0,3) = (2−
√
5, 5−

√
5)

P(2,1) = (2 +
√
5,−5−

√
5)

P(2,3) = (2−
√
5, 5 +

√
5)

P(2,0) = (1, 0)


P(1,0) = (1− 2i,−2− 4i)

P(3,0) = (1− 2i, 2 + 4i)

P(1,2) = (1 + 2i,−2 + 4i)

P(3,2) = (1 + 2i, 2− 4i)

P(2,2) = (−3, 0)


P(1,1) = (−3− 2

√
5, 2i(5 + 2

√
5))

P(3,3) = (−3− 2
√
5,−2i(5 + 2

√
5))

P(1,3) = (−3 + 2
√
5,−2i(5− 2

√
5))

P(3,1) = (−3 + 2
√
5, 2i(5− 2

√
5))

E : y2 = x3 − 7x+ 6

∆ = 28 52

(Z/4Z)2 −→ E[4](K)

(n,m) 7−→ P(n,m)

Over K = Q7 the
curve has good

reduction.

Indeed, i,
√
5 6∈ Q7,

but they are both in
the extension Q7(i).
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√
5,−5 +

√
5)

P(0,3) = (2−
√
5, 5−

√
5)

P(2,1) = (2 +
√
5,−5−

√
5)

P(2,3) = (2−
√
5, 5 +

√
5)

P(2,0) = (1, 0)


P(1,0) = (1− 2i,−2− 4i)

P(3,0) = (1− 2i, 2 + 4i)

P(1,2) = (1 + 2i,−2 + 4i)

P(3,2) = (1 + 2i, 2− 4i)

P(2,2) = (−3, 0)


P(1,1) = (−3− 2

√
5, 2i(5 + 2

√
5))

P(3,3) = (−3− 2
√
5,−2i(5 + 2

√
5))

P(1,3) = (−3 + 2
√
5,−2i(5− 2

√
5))

P(3,1) = (−3 + 2
√
5, 2i(5− 2

√
5))

Over K = Q7,

As Q7(i) is unramified, we
deduce that

IQ7(i)/Q7
= {id} and

therefore the inertia group
acts trivially on E[4](Q7).



Example: Action of the inertia subgroup on the 4-torsion of E

P(0,0) = O
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P(0,2) = (2, 0)


P(0,1) = (2−

√
5,−5 +

√
5)

P(0,3) = (2−
√
5, 5−

√
5)

P(2,1) = (2 +
√
5,−5−

√
5)

P(2,3) = (2−
√
5, 5 +

√
5)

P(2,0) = (1, 0)


P(1,0) = (1− 2i,−2− 4i)

P(3,0) = (1− 2i, 2 + 4i)

P(1,2) = (1 + 2i,−2 + 4i)

P(3,2) = (1 + 2i, 2− 4i)

P(2,2) = (−3, 0)


P(1,1) = (−3− 2

√
5, 2i(5 + 2

√
5))

P(3,3) = (−3− 2
√
5,−2i(5 + 2

√
5))

P(1,3) = (−3 + 2
√
5,−2i(5− 2

√
5))

P(3,1) = (−3 + 2
√
5, 2i(5− 2

√
5))

OverK = Q5 the curve
has multiplicative

reduction.

We know that i ∈ Q5, but√
5 6∈ Q5. As the

extension Q5(
√
5)/Q5 is

ramified, the element
σ ∈ Gal(Q5(

√
5)/Q5)

such that σ(
√
5) = −

√
5

is in IQ5 .



Example: Action of the inertia subgroup on the 4-torsion of E

P(0,0) = O



P(0,2) = (2, 0)


P(0,1) = (2−

√
5,−5 +

√
5)

P(0,3) = (2−
√
5, 5−

√
5)

P(2,1) = (2 +
√
5,−5−

√
5)

P(2,3) = (2−
√
5, 5 +

√
5)

P(2,0) = (1, 0)


P(1,0) = (1− 2i,−2− 4i)

P(3,0) = (1− 2i, 2 + 4i)

P(1,2) = (1 + 2i,−2 + 4i)

P(3,2) = (1 + 2i, 2− 4i)

P(2,2) = (−3, 0)


P(1,1) = (−3− 2

√
5, 2i(5 + 2

√
5))

P(3,3) = (−3− 2
√
5,−2i(5 + 2

√
5))

P(1,3) = (−3 + 2
√
5,−2i(5− 2

√
5))

P(3,1) = (−3 + 2
√
5, 2i(5− 2

√
5))

Over the basis
{(1, 0), (0, 1)}, the action
of σ over (Z/4Z)2 is given

by the matrix

Mσ =

(
1 2
0 1

)
showing that the action of

IQ5 on E[4](Q5) is
unipotent.



Corollaries of the Néron-Ogg-Shaferevich criterion

Corollary 1

If Ik acts trivially (or unipotently) on one T`(E) then it does so on all of them.

Corollary 2

E has potentially good reduction if and only if IK acts through a finite quotient on
T`(E).

Corollary 3

Isogenous curves have the same reduction type.



Thank you!
 

Any questions?



Questions



Proof of the Néron-Ogg-Shaferevich criterion I

First, note that IK acts trivially on T`(E) if and only if it does so on E[`n](K) for all n.
Thus, if E has good reduction then IK acts trivially on T`(E) by what we’ve already
shown.

Conversely, suppose IK acts trivially on T`(E). Thus all `n torsion points belong to
E(Kun). Let d be the order of E(Kun)/E0(K

un), which is finite. Then E0(K
un)[`n] is

the kernel of the map E(Kun)[`n]→ E(Kun)/E0(K
un), and thus has cardinality at

least `2n/d.

Since the reduction map E0(K
un)→ Esm(K) is injective on `-power torsion, it follows

that Esm(k)[`n] has cardinality at least `2n/d. But this is not true for Gm (where the
cardinality is `n) or Ga (where the cardinality is 1), and so E cannot have multiplicative
or additive reduction. Thus E has good reduction.



Proof of the Néron-Ogg-Shaferevich criterion I

First, note that IK acts trivially on T`(E) if and only if it does so on E[`n](K) for all n.
Thus, if E has good reduction then IK acts trivially on T`(E) by what we’ve already
shown.

Conversely, suppose IK acts trivially on T`(E). Thus all `n torsion points belong to
E(Kun). Let d be the order of E(Kun)/E0(K

un), which is finite. Then E0(K
un)[`n] is

the kernel of the map E(Kun)[`n]→ E(Kun)/E0(K
un), and thus has cardinality at

least `2n/d.

Since the reduction map E0(K
un)→ Esm(K) is injective on `-power torsion, it follows

that Esm(k)[`n] has cardinality at least `2n/d. But this is not true for Gm (where the
cardinality is `n) or Ga (where the cardinality is 1), and so E cannot have multiplicative
or additive reduction. Thus E has good reduction.



Proof of the Néron-Ogg-Shaferevich criterion II

Now suppose that IK acts unipotently on T`(E). It thus fixes some vector in T`(E),
which implies that E(Kun)[`n] has cardinality at least `n. Arguing as in the previous
slide, we see that Esm cannot be Ga, and so E has semi-stable reduction.

Finally, suppose that E has semi-stable reduction. The multiplication-by-`n map on the
smooth locus Esm of E is flat, and so Esm[`n] is a flat group scheme over R. Let G be
the scheme-theoretic closure in Esm[`n] of the set ofK-points which extend to
R-points. Then G is finite and flat, and Gk = Esm[`n].

Since G has `-power order, it is étale, and so G(Kun) = Esm[`n](k), which contains
Z/`nZ (since E is semi-stable). Thus E[`n](Kun) contains Z/`nZ for all n, which shows
that IK fixes a vector in T`(E). Since the determinant of T`(E) is the `-cyclotomic
character, which is trivial on IK , the result follows.
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