ALVARO GONZALEZ HERNANDEZ University of Warwick

Elliptic curves over discrete valuation rings

Study group on Mazur's Torsion Theorem

- Introduction to the theory of elliptic curves over DVRs.
- Discussion of the types of reduction.
- 8 Reduction of torsion points.
- The Néron-Ogg-Shaferevich criterion.

Graduate Texts in Mathematics

Joseph H. Silverman The Arithmetic of Elliptic Curves

2nd Edition

D Springer

22 5

DVR

A **discrete valuation ring** is a principal ideal domain R with exactly one non-zero maximal ideal \mathfrak{p} .

DVR

A **discrete valuation ring** is a principal ideal domain R with exactly one non-zero maximal ideal \mathfrak{p} . Alternatively, it is a PID endowed with a discrete valuation v on the field of fractions K of R such that

 $R = \{0\} \cup \{x \in K : v(x) \ge 0\}$

Residue field

The **residue field** k of R is defined as $k = R/\mathfrak{p}$

Uniformiser

A **uniformiser** of *R* is an element $\pi \in R$ satisfying that $v(\pi) = 1$.

My fave example of DVR ($p \neq 2, 3$)

 $R = \mathbb{Z}_p$

 $K = \mathbb{Q}_p$

$$k = \mathbb{F}_p$$

$$\pi = p$$

Let E/K be an elliptic curve given by a Weierstrass equation $y^2 = x^3 + ax + b$.

$$y^{2} = x^{3} + ax + b$$
 $\xleftarrow{x' = u^{2}x \quad y' = u^{3}y} (y')^{2} = (x')^{3} + u^{-4}ax' + u^{-6}b^{-6}$

Let E/K be an elliptic curve given by a Weierstrass equation $y^2 = x^3 + ax + b$.

$$y^{2} = x^{3} + ax + b \quad \xleftarrow{x' = u^{2}x \quad y' = u^{3}y} \quad (y')^{2} = (x')^{3} + u^{-4}ax' + u^{-6}b$$

Minimal Weierstrass equation

We say that a Weierstrass equation is **minimal** if a and b belong to R and v(a) < 4 or v(b) < 6 (equivalently $v(\Delta)$ is minimal).

Over $K = \mathbb{Q}_5$,

$$y^{2} = x^{3} + 30\,000\,x - 4\,000\,000 \quad \xrightarrow{u=10} \quad y^{2} = x^{3} + 3x - 4$$

Let E/K be an elliptic curve given by a Weierstrass equation $y^2 = x^3 + ax + b$.

$$y^{2} = x^{3} + ax + b \quad \xleftarrow{x' = u^{2}x \quad y' = u^{3}y} \quad (y')^{2} = (x')^{3} + u^{-4}ax' + u^{-6}b$$

Minimal Weierstrass equation

We say that a Weierstrass equation is **minimal** if a and b belong to R and v(a) < 4 or v(b) < 6 (equivalently $v(\Delta)$ is minimal).

Over $K = \mathbb{Q}_5$,

$$y^2 = x^3 + 30\,000\,x - 4\,000\,000$$
 $\xrightarrow{u=5}$ $y^2 = x^3 + 48x - 256$

Minimal Weierstrass model

The **minimal Weierstrass model** for E is the projective scheme \mathcal{E} over R defined by a minimal Weierstrass equation.

Minimal Weierstrass model

The **minimal Weierstrass model** for E is the projective scheme \mathcal{E} over R defined by a minimal Weierstrass equation.

Reduction of E modulo \mathfrak{p}

The **reduction of** E **modulo** \mathfrak{p} , which we will denote by \overline{E} , is the special fiber \mathcal{E}_k of \mathcal{E} . We will denote by \overline{E}_{sm} the **smooth locus** of \overline{E} .

It is easy to see that \overline{E} is an irreducible projective curve over k (maybe singular) and that we can define a group law on \overline{E}_{sm} using the secant line construction.

Reduction map

The reduction map is the map

$$E(K) \to \overline{E}(k)$$
$$P \longmapsto \overline{P}$$

induced by the natural morphism $R \to R/\mathfrak{p} = k$.

Reduction map

The reduction map is the map

$$E(K) \to \overline{E}(k)$$
$$P \longmapsto \overline{P}$$

induced by the natural morphism $R \to R/\mathfrak{p} = k.$ We also have,

$$E_0(K) = \{ P \in E(K) : \overline{P} \in \overline{E}_{sm}(k) \}.$$

Reduction map

The reduction map is the map

$$E(K) \to \overline{E}(k)$$
$$P \longmapsto \overline{P}$$

induced by the natural morphism $R \to R/\mathfrak{p} = k.$ We also have,

$$E_0(K) = \{ P \in E(K) : \overline{P} \in \overline{E}_{sm}(k) \}.$$
$$E_1(K) = \{ P \in E(K) : \overline{P} = \overline{O} \}.$$

Example

Over \mathbb{Q}_5 ,

$$E: y^2 = x^3 + 3x - 4 \quad \xrightarrow{\mod 5} \quad \overline{E}: y^2 = x^3 - \overline{2}x + \overline{1} = (x - \overline{2})^2 (x - \overline{1})$$

Then,

$$\overline{E}(\mathbb{F}_5) = \{\overline{O}, (\overline{0}, -\overline{1}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0}), (\overline{2}, \overline{0})\}$$
$$\overline{E}_{sm}(\mathbb{F}_5) = \{\overline{O}, (\overline{0}, -\overline{1}), (\overline{0}, \overline{1}), (\overline{1}, \overline{0})\} \cong \mathbb{Z}/4\mathbb{Z}$$
$$E_0(\mathbb{Q}_5) = \{(x, y) \in E(\mathbb{Q}_5) : x \neq 2 \pmod{5}\}$$

For example, (1, 0) and $(0, \pm 2i)$ all belong to $E_0(\mathbb{Q}_5)$ (where *i* is considered to be one of the roots of the polynomial $x^2 + 1$).

Example

Over \mathbb{Q}_5 ,

$$E: y^2 = x^3 + 3x - 4 \xrightarrow{\mod 5} \overline{E}: y^2 = x^3 - \overline{2}x + \overline{1} = (x - \overline{2})^2 (x - \overline{1})$$

Then,

$$E_1(\mathbb{Q}_5) = \{ (x, y) \in E(\mathbb{Q}_5) : v_5(y) < 0 \} = \{ (x, y) \in E(\mathbb{Q}_5) : v_5(x) < 0 \}$$

For example, $[4](0,2i) = \left(\frac{707679}{1537600}, \frac{3027727631}{1906624000}i\right) \in E_1(\mathbb{Q}_5).$

Over \mathbb{Q}_5 ,

$$E: y^2 = x^3 + 3x - 4 \quad \xrightarrow{\mod 5} \quad \overline{E}: y^2 = x^3 - \overline{2}x + \overline{1} = (x - \overline{2})^2 (x - \overline{1})$$

It is easy to check that if $x \equiv 2 \pmod{5}$, then, $v(x^3 + 3x - 4) = 1$ and so, as $v(y^2)$ is even, this shows that there cannot be any point in $E(\mathbb{Q}_5)$ that reduces to $(\overline{2}, \overline{0})$. Therefore, $E(\mathbb{Q}_5) = E_0(\mathbb{Q}_5)$ and $\#E(\mathbb{Q}_5)/E_0(\mathbb{Q}_5) = 1$.

Finiteness of $E(K)/E_0(K)$

The group $E(K)/E_0(K)$ is finite. Furthermore, if $\overline{E}_{sm}(k) \cong k^*$ (i.e. E has split multiplicative reduction) then the group is cyclic of order -v(j); otherwise, it has cardinality at most 4.

As \overline{E} is given by the equation $y^2 = x^3 + \overline{a}x + b$, so it is non-singular (hence an elliptic curve) if and only if $\overline{\Delta} \neq 0$.

Good reduction 😇

We say that *E* has **good reduction** if $\overline{\Delta} \neq 0$.

Example: $y^2 = x^3 + 1$ in \mathbb{Q}_p for all $p \ge 5$ ($\Delta = -2^4 3^3$).

As \overline{E} is given by the equation $y^2 = x^3 + \overline{a}x + b$, so it is non-singular (hence an elliptic curve) if and only if $\overline{\Delta} \neq 0$.

Bad reduction 😈

We say that *E* has **bad reduction** if $\overline{\Delta} = 0$.

If $\overline{\Delta} = 0$ and either $\overline{a} \neq 0$ or $\overline{b} \neq 0$, we say that E has **multiplicative reduction**.

If $\overline{\Delta} = 0$ and $\overline{a} = \overline{b} = 0$, we say that *E* has **additive reduction**.

As \overline{E} is given by the equation $y^2 = x^3 + \overline{a}x + b$, so it is non-singular (hence an elliptic curve) if and only if $\overline{\Delta} \neq 0$.

Bad reduction 😈

We say that *E* has **bad reduction** if $\overline{\Delta} = 0$.

If $\overline{\Delta} = 0$ and either $\overline{a} \neq 0$ or $\overline{b} \neq 0$, we say that *E* has **multiplicative reduction**.

If $\overline{\Delta} = 0$ and $\overline{a} = \overline{b} = 0$, we say that *E* has **additive reduction**.

Examples:

 $y^2 = x^3 + 3x - 4$ over \mathbb{Q}_5 has (split) multiplicative reduction. $y^2 = x^3 + 5$ over \mathbb{Q}_5 has additive reduction.

Types of reduction

Preservation of reduction type under extension

Let K'/K be a finite extension. Suppose that either K'/K is unramified or E has semi-stable reduction over K. Then a minimal Weierstrass equation for E over K is still minimal over K'. Therefore the reduction type of E over K is the same as that over K'.

Preservation of reduction type under extension

Let K'/K be a finite extension. Suppose that either K'/K is unramified or E has semi-stable reduction over K. Then a minimal Weierstrass equation for E over K is still minimal over K'. Therefore the reduction type of E over K is the same as that over K'.

Semi-stable reduction theorem

There exists a finite extension K'/K such that E has semi-stable reduction over K'.

$$y^{2} = x^{3} + ax + b \quad \xleftarrow{x' = u^{2}x \quad y' = u^{3}y} \quad (y')^{2} = (x')^{3} + u^{-4}ax' + u^{-6}b^{-$$

Over \mathbb{Q}_5 , $y^2 = x^3 + 5$ has additive reduction but over $\mathbb{Q}_5(5^{1/6})$, it has **good reduction**.

$$y^2 = x^3 + 5$$
 $\xleftarrow{x' = (5^{1/6})^2 x \quad y' = (5^{1/6})^3 y}$ $(y')^2 = (x')^3 + 1$

•

Over \mathbb{Q}_5 , $y^2 = x^3 + 5$ has additive reduction but over $\mathbb{Q}_5(5^{1/6})$, it has **good reduction**.

$$y^2 = x^3 + 5$$
 $\xleftarrow{x' = (5^{1/6})^2 x \quad y' = (5^{1/6})^3 y}$ $(y')^2 = (x')^3 + 1$

Over \mathbb{Q}_5 , $y^2 = x^3 + 75x - 500$ has additive reduction but over $\mathbb{Q}_5(5^{1/2})$ it has **multiplicative reduction**.

$$y^{2} = x^{3} + 75x - 500 \quad \xleftarrow{x' = (5^{1/2})^{2}x \quad y' = (5^{1/2})^{3}y} \quad (y')^{2} = (x')^{3} + 3x - 4$$

For all sufficiently large extensions K'/K, the curve E over K' has either good or multiplicative reduction.

Potential reduction

We say that E has **potentially good** or **potentially multiplicative** reduction according to the type of semistable reduction that E has over an extension of K.

Test of potentially good reduction

E has potentially good reduction if and only if $j(E) = -1728(4a)^3/\Delta$ is integral.

Suppose that E has good reduction. Since \mathcal{E} is a proper smooth group over R, for any n its n-torsion $\mathcal{E}[n]$ is a finite flat group scheme over R.

Reduction of torsion points

Suppose E has good reduction

- If *n* is prime to the residue characteristic, then:
 - The reduction map $E[n](K) \to \overline{E}[n](k)$ is injective.
 - The reduction map $E_0[n](K) \to \overline{E}_{sm}[n](k)$ is injective.
 - The reduction map $E[n](\overline{K}) \to \overline{E}[n](\overline{k})$ is an isomorphism of Galois modules.

• If K is an extension of \mathbb{Q}_p with $e , then it is also true that the reduction map <math>E[n](K) \to \overline{E}[n](k)$ is injective.

Let G_K be the absolute Galois group of K and I_K the inertia subgroup.

The Néron-Ogg-Shaferevich criterion

Let ℓ be a prime different from the residue characteristic. Then:

- *E* has good reduction if and only if I_K acts trivially on $T_{\ell}(E)$.
- E has semi-stable reduction if and only if I_K acts unipotently on $T_{\ell}(E)$.

As unramified extensions of K correspond to extensions of the residue field k, we have,

Inertia subgroup I_K

The **inertia subgroup** I_K of G_K is the set of elements of G_K that act trivially on \overline{k} .

Tate module

The ℓ -adic **Tate module** of E, denoted $T_{\ell}(E)$, is the inverse limit of the groups $E[\ell^n](\overline{K})$, where the transition maps are multiplication by ℓ . Explicitly, an element of $T_{\ell}(E)$ is a sequence (x_0, x_1, \cdots) of \overline{K} -points of E, where $x_0 = O$ and $\ell x_i = x_{i-1}$ for i > 0.

The fact that $E[\ell^n](\overline{K}) = (\mathbb{Z}/\ell^n\mathbb{Z})^2$ allows us to define an isomorphism between $T_\ell(E)$ and \mathbb{Z}_ℓ^2 through the inverse limit.

$$P_{(0,0)} = O \begin{cases} P_{(0,2)} = (2,0) \\ P_{(0,2)} = (2,0) \end{cases} \begin{cases} P_{(0,1)} = (2 - \sqrt{5}, -5 + \sqrt{5}) \\ P_{(0,3)} = (2 - \sqrt{5}, 5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(1,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 + 2\sqrt{5})) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \end{cases}$$

$$P_{(0,0)} = O \begin{cases} P_{(0,2)} = (2,0) \\ P_{(0,2)} = (2,0) \end{cases} \begin{cases} P_{(0,1)} = (2 - \sqrt{5}, -5 + \sqrt{5}) \\ P_{(0,3)} = (2 - \sqrt{5}, 5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(1,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, -2 + 4i) \\ P_{(3,0)} = (1 - 2i, -2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, 2 - 4i) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 + 2\sqrt{5})) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 + 2\sqrt{5})) \\ P_{(1,3)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\$$

$$P_{(0,0)} = O \begin{cases} P_{(0,2)} = (2,0) \\ P_{(0,2)} = (2,0) \end{cases} \begin{cases} P_{(0,1)} = (2 - \sqrt{5}, -5 + \sqrt{5}) \\ P_{(0,3)} = (2 - \sqrt{5}, 5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \end{cases} & \text{Over } K = \mathbb{Q}_7, \\ P_{(1,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, 2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \end{cases} & \text{As } \mathbb{Q}_7(i) \text{ is unramified, we deduce that} \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, 2 - 4i) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, 2i(5 + 2\sqrt{5})) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(1,3)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, 2i(5 - 2\sqrt{5})) \end{cases}$$

$$P_{(0,0)} = O \begin{cases} P_{(0,2)} = (2,0) \\ P_{(0,2)} = (2,0) \end{cases} \begin{cases} P_{(0,1)} = (2 - \sqrt{5}, -5 + \sqrt{5}) \\ P_{(0,3)} = (2 - \sqrt{5}, 5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(1,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, 2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(1,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,2)} = (1 - 2i, 2 - 4i) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 + 2\sqrt{5})) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \end{cases}$$

Over $K = \mathbb{Q}_5$ the curve has multiplicative reduction.

We know that $i \in \mathbb{Q}_5$, but $\sqrt{5} \notin \mathbb{Q}_5$. As the extension $\mathbb{Q}_5(\sqrt{5})/\mathbb{Q}_5$ is ramified, the element $\sigma \in \operatorname{Gal}(\mathbb{Q}_5(\sqrt{5})/\mathbb{Q}_5)$ such that $\sigma(\sqrt{5}) = -\sqrt{5}$ is in $I_{\mathbb{Q}_5}$.

$$P_{(0,0)} = O \begin{cases} P_{(0,2)} = (2,0) \\ P_{(0,2)} = (2,0) \end{cases} \begin{cases} P_{(0,1)} = (2 - \sqrt{5}, -5 + \sqrt{5}) \\ P_{(0,3)} = (2 - \sqrt{5}, 5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,1)} = (2 + \sqrt{5}, -5 - \sqrt{5}) \\ P_{(2,1)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(2,3)} = (2 - \sqrt{5}, 5 + \sqrt{5}) \\ P_{(1,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, -2 - 4i) \\ P_{(3,0)} = (1 - 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, -2 + 4i) \\ P_{(3,2)} = (1 + 2i, 2 - 4i) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, 2i(5 + 2\sqrt{5})) \\ P_{(3,3)} = (-3 - 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, -2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, 2i(5 - 2\sqrt{5})) \\ P_{(3,1)} = (-3 + 2\sqrt{5}, 2i(5 - 2\sqrt{5})) \end{cases}$$

Corollary 1

If I_k acts trivially (or unipotently) on one $T_\ell(E)$ then it does so on all of them.

Corollary 2

E has potentially good reduction if and only if I_K acts through a finite quotient on $T_\ell(E).$

Corollary 3

Isogenous curves have the same reduction type.

Thank you!

Any questions?

First, note that I_K acts trivially on $T_{\ell}(E)$ if and only if it does so on $E[\ell^n](\overline{K})$ for all n. Thus, if E has good reduction then I_K acts trivially on $T_{\ell}(E)$ by what we've already shown.

First, note that I_K acts trivially on $T_{\ell}(E)$ if and only if it does so on $E[\ell^n](\overline{K})$ for all n. Thus, if E has good reduction then I_K acts trivially on $T_{\ell}(E)$ by what we've already shown.

Conversely, suppose I_K acts trivially on $T_{\ell}(E)$. Thus all ℓ^n torsion points belong to $E(K^{un})$. Let d be the order of $E(K^{un})/E_0(K^{un})$, which is finite. Then $E_0(K^{un})[\ell^n]$ is the kernel of the map $E(K^{un})[\ell^n] \to E(K^{un})/E_0(K^{un})$, and thus has cardinality at least ℓ^{2n}/d .

Since the reduction map $E_0(K^{un}) \to \overline{E}_{sm}(\overline{K})$ is injective on ℓ -power torsion, it follows that $\overline{E}_{sm}(\overline{k})[\ell^n]$ has cardinality at least ℓ^{2n}/d . But this is not true for G_m (where the cardinality is ℓ^n) or G_a (where the cardinality is 1), and so E cannot have multiplicative or additive reduction. Thus E has good reduction.

Now suppose that I_K acts unipotently on $T_{\ell}(E)$. It thus fixes some vector in $T_{\ell}(E)$, which implies that $E(K^{un})[\ell^n]$ has cardinality at least ℓ^n . Arguing as in the previous slide, we see that \overline{E}_{sm} cannot be G_a , and so E has semi-stable reduction.

Now suppose that I_K acts unipotently on $T_{\ell}(E)$. It thus fixes some vector in $T_{\ell}(E)$, which implies that $E(K^{un})[\ell^n]$ has cardinality at least ℓ^n . Arguing as in the previous slide, we see that \overline{E}_{sm} cannot be G_a , and so E has semi-stable reduction.

Finally, suppose that E has semi-stable reduction. The multiplication-by- ℓ^n map on the smooth locus \overline{E}_{sm} of E is flat, and so $\overline{E}_{sm}[\ell^n]$ is a flat group scheme over R. Let G be the scheme-theoretic closure in $\overline{E}_{sm}[\ell^n]$ of the set of \overline{K} -points which extend to \overline{R} -points. Then G is finite and flat, and $G_k = \overline{E}_{sm}[\ell^n]$.

Since G has ℓ -power order, it is étale, and so $G(K^{un}) = \overline{E}_{sm}[\ell^n](\overline{k})$, which contains $\mathbb{Z}/\ell^n\mathbb{Z}$ (since E is semi-stable). Thus $E[\ell^n](K^{un})$ contains $\mathbb{Z}/\ell^n\mathbb{Z}$ for all n, which shows that I_K fixes a vector in $T_\ell(E)$. Since the determinant of $T_\ell(E)$ is the ℓ -cyclotomic character, which is trivial on I_K , the result follows.