












Hyperelliptic curves

Let
C : y2 + h(x)y = f(x)

be a hyperelliptic curve of genus g ≥ 1 where f(x),h(x) ∈ k[x],
deg f(x) = 2g + 2 and degh(x) ≤ g + 1.

The curve has two different points at infinity that I will denote by
∞+ and ∞−.



The hyperelliptic involution

The curve

C : y2 + h(x)y = f(x)

has a natural involution defined by

ιC : C −→ C
(x, y) 7−→ (x,−y − h(x))

∞+ 7−→ ∞−

∞− 7−→ ∞+



How to compute an explicit model of the Jacobian

The following:

Θ+ = C × · · · × C︸ ︷︷ ︸
g−1

×{∞+} and Θ− = C × · · · × C︸ ︷︷ ︸
g−1

×{∞−}

define divisors of C(g) and an embedding of the Jacobian into
projective space is given by L(2(Θ+ +Θ−)).

(These are functions in the function field of C(g) that at worst can only
possibly have poles in 2(Θ+ +Θ−) of the “right” multiplicity.)



What happens, for instance, when g = 2?

For g = 2, let’s consider two copies of a curve C

y21 + h(x1)y1 = f(x1) y22 + h(x2)y2 = f(x2)

Then, some independent functions of L(2(Θ+ +Θ−)) are

1,x1 + x2,x1x2, (x1 + x2)
2, (2y1+h(x1))−(2y2+h(x2))

x1−x2
, . . .

In this case |L(2(Θ+ +Θ−))| = 16.



What happens, for instance, when g = 2

The embedding would be obtained by considering the closure of

[1 : x1 + x2 : x1x2 : (x1 + x2)
2 : (2y1+h(x1))−(2y2+h(x2))

x1−x2
, . . . ] ↪→ P15

where (x1, y1), (x2, y2) ∈ C.

Given a point of the Jacobian as a projective variety over a field k,
we can also identify it as a degree 0 divisor modulo linear
equivalence.



But there is a drawback…

The embedding by L(2(Θ+ +Θ−)) is given by the intersection of
many conics:

Genus 1 2 3 · · · g

Pn in which it embeds 3 15 63 · · · 4g − 1

Number of conics 2 72 1568 · · · 22g−1(2g − 1)2



Simplifying models at the cost of losing information

ιC extends to an involution on C(g), such that ιC acts linearly on the
elements of L(2(Θ+ +Θ−)). If the field of definition has
characteristic different than 2, we can “diagonalise” this action to
obtain a decomposition:

L(2(Θ+ +Θ−)) = {even functions} ⊕ {odd functions}

where

ιC(even) = even ιC(odd) = −odd



Going back to our example when g = 2

The functions

{1,x1 + x2,x1x2, (x1 + x2)
2, . . . }

are even and #{even functions} = 10.

The functions

{ (2y1+h(x1))−(2y2+h(x2))
x1−x2

, (2y1+h(x1))x2−(2y2+h(x2))x1

x1−x2
, . . . }

are odd and #{odd functions} = 6.



Kummer varieties

Kummer variety

Let A be an Abelian variety (e.g. the Jacobian of a hyperelliptic
curve) and let ι be the involution in A that sends an element to its
inverse. Then, the Kummer variety associated to A, Kum(A) is
the quotient variety A/ι.

Fact

For g > 1, A[2] is the set of all fixed points under the action of ι
and these points are singular points of Kum(A).



Kummer varieties according to the genus

Suppose that the field of definition is
algebraically closed and has characteristic
different than 2.

• If the dimension of A is 2, Kum(A) is a
surface described by a quartic in P3 with 16
nodal singularities.

• Generally, if the dimension of A is g,
Kum(A) can be found as an intersection in
P2g−1.



Why are Kummer varieties relevant?

• Their models are considerably easier.

• They are not Abelian varieties, so they do not have a group law.
However, they inherit a pseudo-group law that helps to makes
computations in the Jacobian (this is strongly used in
cryptography).

• For a hyperelliptic curve C, the projective embedding of the
Kummer variety associated to the Jacobian of C is given by
L(Θ+ +Θ−).





Let’s illustrate this with an example

Let C be the following genus 2 curve defined over F7

C : y2 = (x− 1)(x+ 1)(x− 2)(x+ 2)(x− 3)(x+ 3) = x6 − 1

We want to study C(F7) and Jac(C)(F7).

Because we are working over a finite field, it is
easy to check that

C(F7) = {∞±} ∪ {(n, 0) | n ∈ {−3,−2,−1, 1, 2, 3}}



Let’s illustrate this with an example

As for Jac(C)(F7), we can write a basis of L(2(Θ+ +Θ−))

L(2(Θ+ +Θ−)) =
{
1,x1 + x2,x1x2, (x1 + x2)

2, y1 − y2
x1 − x2

, x2y1 − x1y2
x1 − x2

, . . .
}

and the 72 equations that define. With even more brute force, we
could count the points of Jac(C)(F7), and deduce that

Jac(C)(F7) ∼= (Z/2Z)4 × Z/3Z



Why is this a bad idea?

Essentially, the problem is that Jac(C) is defined by a very
complicated intersection in a large projective space, so the points
of Jac(C)(F7) are really sparse in P15(F7)

#P15(F7) ≈ 5.54× 1012 # Jac(C)(F7) = 48

For this example, it works, but there is no hope that we can
replicate this for bigger finite fields and definitely not for global
fields.

Here is where Kummer surfaces offer a solution!



Let’s utilise the power of Kummer surfaces

In order to compute Kum(C), we first find a basis for L(Θ+ +Θ−)

L(Θ+ +Θ−) =
{
1,x1 + x2,x1x2,

−1 + x31x
3
2 − y1y2

(x1 − x2)2

}
where (x1,x2) ∈ C. Then,

[k1 : k2 : k3 : k4] =
[
1 : x1 + x2 : x1x2 :

−1 + x31x
3
2 − y1y2

(x1 − x2)2

]
↪→ P3

defines an embedding of Kum(C) ⊂ P3 given by

(3k1k3 − k22)k
2
4 − 3(k31 − k33)k4 − 3(k1k3 − k22)

2 = 0



Let’s utilise the power of Kummer surfaces

Kum(C) : (3k1k3 − k22)k
2
4 − 3(k31 − k33)k4 − 3(k1k3 − k22)

2 = 0

We can start by computing all the points of the
Kummer over F7.

# Kum(C)(F7) = 48

Out of this 48 points, 16 are singular points
of the Kummer and the other 32 are smooth
points.



Let’s utilise the power of Kummer surfaces

Kum(C) : (3k1k3 − k22)k
2
4 − 3(k31 − k33)k4 − 3(k1k3 − k22)

2 = 0

We can start by computing all the points of the
Kummer over F7.

# Kum(C)(F7) = 48

Out of this 48 points, 16 are singular points
of the Kummer and the other 32 are smooth
points.



Let’s utilise the power of Kummer surfaces

Proposition

The inclusion L(Θ+ +Θ−) ⊂ L(2(Θ+ +Θ−)) induces a quotient
morphism

Jac(C) π−−→ Kum(C)

such that for any field k,

Jac(C)(k) ⊆ π−1(Kum(C)(k))
Jac(C)[2](k) = π−1(Sing(Kum(C)(k)))



From the previous theorem…

We deduce that

16 ≤ Jac(C)(F7) ≤ 80

and that, in order to know what is Jac(C)(F7), we only need to
understand if the preimages with respect to π of the smooth points
of Kum(C)(F7) lie in Jac(C)(F7).



Going back to the start of the talk…

Considering the involution of C

ιC : C −→ C
(x, y) 7−→ (x,−y)

we obtain

L(2(Θ+ +Θ−)) = {even functions} ⊕ {odd functions}

#{even functions} = 10 #{odd functions} = 6

where

ιC(even) = even ιC(odd) = −odd



Even and odd interactions

L(Θ+ +Θ−) = {k1, k2, k3, k4}

=
{
1,x1 + x2,x1x2,

−1 + x31x
3
2 − y1y2

(x1 − x2)2

}
⊂ {even functions of L(2(Θ+ +Θ−))}

In fact, the space of even functions of L(2(Θ+ +Θ−)) is generated
as a vector space by the products of every two functions of
L(Θ+ +Θ−), i.e.

{even functions} = {k21 , k1k2, k1k3, k1k4, k22 , k2k3, k2k4, k23 , k3k4, k24}



And here is the twist

Consider a basis for the odd functions

{odd functions} = {b1, b2, b3, b4, b5, b6}

=
{ y1 − y2
(x1 − x2)

, x2y1 − x1y2
(x1 − x2)

, x
2
2y1 − x21y2
(x1 − x2)

, . . .
}

The embedding of the Jacobian is given by quadratics relations
between the elements of L(2(Θ+ +Θ−)). But the fact that the
product of any two odd functions is an even function, allows us to
express the product of every two bi as a homogeneous polynomial
of degree 4 on the kj .



In the example



b21 = 4(k4
2 − 2k1k

2
2k3 + k2

1k
2
3 + k3

1k4)

b1b2 = 4k2(k
2
2k3 − k1k

2
3 − 3k2

1k4)

b22 = 3(k4
1 − k2

2k
2
3 − k2

1k3k4)

b1b3 = 4(k2
2k

2
3 − k1k

3
3 − 3k1k

2
2k4 − k2

1k3k4)
...

We can evaluate {k1, k2, k3, k4} at the points of Kum(C)(F7) to see
if there exist bi ∈ F7 satisfying those equations. Those points for
which this is possible lift to points in Jac(C)(F7). This allows us to
compute Jac(C)(F7).



Moving on to rational points

Suppose that we now want to study the points of the curve

C : y2 = (x− 1)(x+ 1)(x− 2)(x+ 2)(x− 3)(x+ 3)

over the rationals. As C has good reduction at 7, we have that

Jac(C)(Q)torsion ↪→ Jac(C)(F7)

and in this case this is actually an isomorphism.
Computing the rank is notoriously difficult. In this case, it can
be checked that the rank is zero and so

Jac(C)(Q) ∼= (Z/2Z)4 × Z/3Z





Redefining Kummer surfaces

Kummer surfaces

A Kummer surface is a quartic surface in P3 with 16 isolated
singularities.

Every Kummer surface has 16 special conics
known as tropes in the following
configuration:
• Each trope goes through 6 singular points.
• For each singular point, there are 6 tropes

going through it.



Desingularisation of the Kummer

Suppose we want to desingularise the Kummer surface that we
saw before:

Kum(C) : (3k1k3 − k22)k
2
4 − 3(k31 − k33)k4 − 3(k1k3 − k22)

2 = 0

Consider the odd functions {b1, b2, b3, b4.b5, b6}. We have a rational
map

Kum(C) ϕ−−→ P5

[k1 : k2 : k3 : k4] 7−→ [b1 : b2 : b3 : b4 : b5 : b6]

which happens to be well-defined outside of Sing(Kum(C)).



Desingularisation of the Kummer

The closure of the image of this map defines a smooth surface Y in
P5 given by the complete intersection of three quadrics.

b1b2 + b4b5 + b3b6 = 0

−3b21 + 2b24 − 3b3b5 + b2b6 = 0

2b3b4 − 3b2b5 + b1b6 = 0

Actually… The map φ is a birational morphism Kum(C) 99K Y
which turns out to be the inverse of the blow-up of the 16 singular
points of Kum(C)!





Concerning mixed characteristic

Idea

Suppose we start with a Kummer surface defined over a number
field over where all the tropes and the singular points are defined.
Furthermore, assume this surface has good reduction over a prime
p not lying above 2.

Then, the reduction map will preserve all the geometric and
arithmetic features that we have discussed.

Essentially the theory of Kummer surfaces is the same over
characteristic zero than over characteristic p > 2.









But, what is so special about characteristic 2?

Fact

For g > 1, A[2] is the set of all fixed points under the action of ι
and these points are singular points of Kum(A).

In algebraically closed fields of characteristic 2, the 2-torsion of the
Jacobian of a curve C of genus g is

J (C)[2] ∼= (Z/2Z)r

for some 0 ≤ r ≤ g.





But, what is so special about characteristic 2? Part II

In characteristic 2 we cannot diagonalise the action of ιC , so it does
no longer makes sense to talk about even and odd functions.

So what can be said about Kummer surfaces in characteristic
two?





Arithmetic side

Theorem / Computation (G.)

Given a genus 2 curve C defined over a field k of characteristic 2, it
is possible to find a basis of L(2(Θ+ +Θ−)) that gives an explicit
embedding of Jac(C) inside of P15.

⇒ With small modifications, we can repeat the reasoning of the
previous example to study curves over fields of characteristic 2.



Geometric side

Theorem (G.)

Given a genus 2 curve C defined over a number field whose
Jacobian has good reduction at a prime p lying above 2, consider
the following diagram

Kum(C) Y

Kum(Cp) Yp

redp redp

ϕ−1

ϕ−1
p

Then, Yp ⊂ P5 defines a partial desingularisation of Kum(Cp).



Geometric side

2-rank 0 1 2

Number of tropes 1 2 4

Singularities 1× Elliptic 2×D8 4×D4

Singularities after
partial desingularisation

1× Simpler
elliptic

2×D4 + 2× A3 12× A1
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