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Why to do cryptography in genus g > 1 curves?

• Elliptic curves allow us to develop a Diffie-Hellman key exchange based on
the group law on an elliptic curve.

• Given a genus g > 1 curve C, we can also define a group law on an associate
algebraic abelian variety known as the jacobian variety JC .

• The practical incentive for using these curves is that

#JC(Fq) = O(qg)

Therefore, we can get similar complexity, using q of much smaller size!



Why genus 2?

1 2 comes just after 1!

2 Every genus 2 curve is hyperelliptic.

3 The jacobian of a genus 2 curves have some properties that makes
arithmetic even faster than in the elliptic curve case.

Despite some few technical difficulties, there is nothing stopping us from
considering curves with genus g > 2 (anyone interested?).





Set-up

We will denote by C a projective irreducible curve of genus g over a perfect field
k.

For the sake of convenience, we will work in affine coordinates x, y, and we will
consider the point of infinity ∞ to have projective coordinates [0 : 1 : 0] (the
reasons why I say ”the” point of infinity will become evident later when I specify
which kinds of curves we will be studying in this talk).

k(C) will denote the function field of C, C(k) will denote the k-rational points.



Divisors of a curve

A divisor is a formal sum of points of C(k) with coefficients in Z.
The divisors of a curve form a group

Div(C) =
{ ∑

P∈C(K)

nPP | nP ∈ Z
}

We can associate to each function f ∈ k(C)× a principal divisor

div(f) =
∑

P∈C(K)

ordP (f)P

The principal divisors form a subgroup Prin(C) ⊂ Div(C).



Picard group and the connected component of the identity

Picard group

We can define the group Pic(C) = Div(C)/ Prin(C).

There is a natural degree homomorphism

Div(C) −→ Z∑
P∈C(K)

nPP 7−→
∑

P∈C(K)

nP

which extends to Pic(C) and whose kernel is

Pic0(C) = {[D] = D + div(f) | deg(D) = 0, f ∈ k(C)}



An example in the case of elliptic curves

Let E be an elliptic curve over F5 defined by y2 = x3 + 1

div(x− 2) = (2,−2) + (2, 2)− 2∞
div(y − x− 1) = (1, 0) + (0, 1) + (2,−2)− 3∞

Reorganising, we get that

(1, 0) + (0, 1)− 2∞ = div(y − x− 1)− (2,−2) +∞
= div(y − x− 1)− div(x− 2) + (2, 2)−∞

= div
(y − x− 1

x− 2

)
+ (2, 2)−∞



An example in the case of elliptic curves

Therefore, as

(1, 0) + (0, 1)− 2∞ = div(y−x−1
x−2 ) + (2, 2)−∞,

over Pic0(E) we get that

[(1, 0)−∞] + [(0, 1)−∞] = [(2, 2)−∞]
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An example in the case of elliptic curves

Therefore, as

(1, 0) + (0, 1)− 2∞ = div(y−x−1
x−2 ) + (2, 2)−∞,

over Pic0(E) we get that
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An example in the case of elliptic curves

Therefore, as

(1, 0) + (0, 1)− 2∞ = div(y−x−1
x−2 ) + (2, 2)−∞,

over Pic0(E) we get that

[(1, 0)−∞] + [(0, 1)−∞] = [(2, 2)−∞]

This suggest that there is an isomorphism

E(F5) −→ Pic0(E)
P 7−→ [P −∞]

Observation: the point ∞ is special.



Jacobian of a curve

Under the assumption that we choose a suitable point of E , we can
explicitly identify the elements of Pic0(E) with the points of a
projective variety X (in this case E) in such a way that the
operation in Pic0(E) can be described nicely in terms of rational
functions of k(X ).

Such a variety X is what is known as an abelian variety.



Jacobian of a curve

In general, it can be proven that, given a curve C of genus g > 1,
the group Pic0(C) can be identified with an abelian variety known
as the jacobian variety JC of C.

Furthermore, it can be seen that the dimension of JC is equal to
the genus of C.



Abel-Jacobi map

Considering a special point (for instance, ∞), there is a natural
way of embedding C in its jacobian through the known as the
Abel-Jacobi map:

C −→ Pic0(C)
P 7−→ [P −∞]

In the complex case, this map can be computed explicitly by
integrating differential forms of Ω1(C(C)).



Understanding the jacobian

Let us now assume that C is a hyperelliptic curve y2 = f(x) of
genus g > 1 with f a polynomial with odd degree, and let

ι : C −→ C
(x, y) 7−→ (x,−y)



Reduce representative for classes

As a consequence of Riemann-Roch, we have the following
convenient result:

Every element [D] ∈ Pic0(C) can be expressed in a unique way as

[D] = [P1 + · · ·+ Pr − r∞]

for some P1, . . . ,Pr ∈ C depending on [D] such that
• Pi 6= ∞
• Pi 6= ι(Pj) for i 6= j

• r ≤ g



Adding elements in the jacobian

Let [D1] = [P1 + · · ·+ Pr − r∞] and
[D2] = [P ′

1 + · · ·+ P ′
s − s∞].

Consider the interpolation polynomial
g(x) that goes through all the Pi and P ′

j .

Then, if the g(x) intersects C in
ι(P ′′

1 ), . . . , ι(P ′′
t ),

[D1] + [D2] = [P ′′
1 + · · ·+ P ′′

t − t∞]





Projective models of the jacobian

We saw that an abelian variety is an algebraic group that can be
embedded in some projective space.

For cryptographic applications, we are interested in finding an
embedding of the jacobian in an actual projective space. When we
fix such embedding (that is we find equations and set coordinates
on our abelian variety), we say that it is a principally polarised
abelian variety (PPAV).



Handwavy polarisations

A polarisation on an abelian variety is analogous to choosing a
distinguished point ∞ on an elliptic curve: this choice of a divisor
gives us embeddings in projective spaces via Riemann-Roch spaces.

This is not pretty, for instance, in the case of genus 2, we have that
the jacobian can be embedded as 72 quadratic equations in P15

(Flynn) or, at best, as 10 quadratic and 3 cubic equations in P8

(Grant).



Why then?

Because we need to polarise abelian varieties to compute with
them, from the cryptographic point of view, principally polarised
abelian varieties are the“correct”higher-dimensional
generalizations of elliptic curves.



How do principally polarised abelian varieties look like?

1 Every 1-dimensional PPAV is an elliptic curve.

2 Every 2-dimensional PPAV is isomorphic to the jacobian of a genus 2
curve (necessarily hyperelliptic).

They can sometimes be isomorphic to the product of 2 elliptic
curves.

y2 = Ax6 +Bx4 + Cx2 +D −→ y2 = Ax3 +Bx2 + Cx+D

(x, y) 7−→ (x2, y)

y2 = Ax6 +Bx4 + Cx2 +D −→ y2 = Dx3 + Cx2 +Bx+ A

(x, y) 7−→ (1/x2, y/x3)



How do principally polarised abelian varieties look like?

3 Every 3-dimensional PPAV is isomorphic to the jacobian of a genus 3
curve (either hyperelliptic or non-hyperelliptic).

They can sometimes be isomorphic to the product of an elliptic
curve with a genus 2 jacobian.

They can sometimes be isomorphic to the product of 3 elliptic
curves.

Not all g-dimensional PPAVs are isomorphic to the jacobian of a curve for g > 3.



Some random facts about abelian varieties over finite fields

Let A be a g-dimensional abelian variety over Fq. Then,
• The cardinality of A(Fq) is

(q1/2 − 1)2g ≤ #A(Fq) ≤ (q1/2 + 1)2g

• A[`k](Fq) ∼= (Z/`kZ)2g when ` 6= p.
• A[pk](Fq) ∼= (Z/pkZ)r for 0 ≤ r ≤ g (independent of k).



Isogenies of abelian varieties

An isogeny of abelian varieties is a finite, (geometrically) surjective morphism
that maps 0 to 0.

Given a principally polarised abelian variety A (with special divisor [D]), there is
always a degree 1 isogeny λD from A to a dual abelian variety Â.

This isogeny allows us to define a Weil pairing on the n-torsion A[n] by

〈 , 〉λD
: A[n]×A[n] −→ µn

for (n, p) = 1.



Isogeny of principally polarised abelian varieties

A subgroup G ⊆ A[n] is isotropic if the Weil pairing 〈 , 〉λD
is

trivial when restricted to G.

An isotropic subgroup G is maximal isotropic if there is no
isotropic subgroup of A which properly contains G.

Then, an isogeny of principally polarised abelian varieties is
an isogeny whose kernel maximal isotropic.



Just why?

Why do we need this definition?
We need to respect polarisations if we want to realise the isogeny
as a projective map.

For elliptic curves, any cyclic subgroup G ⊆ E(k) of order `
coprime to the characteristic of k is maximal isotropic inside
ker[`] = E[`]. Hence, E → E/G is an isogeny of principally
polarised abelian varieties.



Types of isogenies

• (`, . . . , `)-isogenies, which are the isogenies with kernel
isomorphic to (Z/`Z)g.

• Cyclic isogenies, which are the isogenies with kernel
isomorphic to Z/`Z.

These are all very difficult to compute (theta functions and
projective embeddings). But the first kind are the main object of
our isogeny graph.



Supersingular vs superspecial

Supersingular: isogenous to a product of supersingular elliptic
curves.

Superspecial: supersingular and isomorphic as an unpolarised
PPAV to a product of supersingular elliptic curves.

The distinction is subtle, but if you start with a superspecial PPAV
and use only separable isogenies (no p-isogenies), then you stay
superspecial.
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