ALVARO GONZALEZ HERNANDEZ

Study group on the Hasse-Weil
L-functions and the Weil conjectures

Intersection Theory on Surfaces

Let X be a scheme of finite type over \mathbb{F}_{q}, let $|X|$ denote the set of closed points of X and let \mathbb{k}_{x} denote the residue field of X at a point $x \in X$.

Zeta function of X
The zeta function of X is defined as

$$
Z(X, t)=\prod_{x \in|X|}\left(1-t^{\operatorname{deg}(x)}\right)^{-1}
$$

where if $\left|\mathbb{k}_{x}\right|=q^{n}$, we define the degree of x to be $\operatorname{deg}(x)=n$.

Zeta function of X

The zeta function of X is defined as

$$
Z(X, t)=\prod_{x \in|X|}\left(1-t^{\operatorname{deg}(x)}\right)^{-1}
$$

where if $\left|\mathbb{k}_{x}\right|=q^{n}$, we define the degree of x to be $\operatorname{deg}(x)=n$.

- $Z\left(X, q^{-s}\right)$ defines an analytic function on compact subsets $U \subset \mathbb{C}$.
- With a change of variables $Z(X, t)$ can be related to the generating function for the numbers $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ of points of X over finite extensions of \mathbb{F}_{q}.

The Weil conjectures

Let's assume that X is a smooth projective curve over \mathbb{F}_{q} (more generally, let X be a projective scheme over \mathbb{F}_{q} with $X \times_{\operatorname{Spec}\left(\mathbb{F}_{q}\right)} \operatorname{Spec}\left(\overline{\mathbb{F}_{q}}\right)$ irreducible and non-singular). Then, $Z(X, t)$ has the following properties:

The Weil conjectures

Let's assume that X is a smooth projective curve over \mathbb{F}_{q} (more generally, let X be a projective scheme over \mathbb{F}_{q} with $X \times_{\text {Spec }\left(\mathbb{F}_{q}\right)} \operatorname{Spec}\left(\overline{\mathbb{F}_{q}}\right)$ irreducible and non-singular). Then, $Z(X, t)$ has the following properties:

Rationality

$Z(X, t)$ is the formal power series expansion of a rational function of t.

The Weil conjectures

Let's assume that X is a smooth projective curve over \mathbb{F}_{q} (more generally, let X be a projective scheme over \mathbb{F}_{q} with $X \times_{\operatorname{Spec}\left(\mathbb{T}_{q}\right)} \operatorname{Spec}\left(\overline{\mathbb{F}_{q}}\right)$ irreducible and non-singular). Then, $Z(X, t)$ has the following properties:

Rationality

$Z(X, t)$ is the formal power series expansion of a rational function of t.

Functional equation

$Z(X, t)$ satisfies an identity of the form

$$
Z\left(X, q^{-1} t^{-1}\right)=q^{1-g} t^{2-2 g} Z(X, t)
$$

The Weil conjectures

Riemann Hypothesis
$Z(X, t)$ is of the form

$$
Z(X, t)=\frac{\prod_{i=1}^{2 g}\left(1-\omega_{i} t\right)}{(1-t)(1-q t)}
$$

where $\left|\omega_{i}\right|=q^{1 / 2}$ for all i.

Proving the Riemann Hypothesis

Sketch of the proof of the Riemann Hypothesis

(1) Prove that this conjecture is equivalent to a statement about the growth of $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ as $n \rightarrow \infty$.
(2) Relate the quantity $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ to the intersection number of two divisors of $Y=X \times_{\text {Spec }\left(\overline{\left.\mathbb{F}_{q}\right)}\right.} X$ defined as pull-backs of divisors along the Frobenius endomorphism of X.

Proving the Riemann Hypothesis

Sketch of the proof of the Riemann Hypothesis

(1) Prove that this conjecture is equivalent to a statement about the growth of $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ as $n \rightarrow \infty$.

2 Relate the quantity $\left|X\left(\mathbb{F}_{q^{n}}\right)\right|$ to the intersection number of two divisors of $Y=X \times_{\text {Spec }\left(\overline{\mathbb{F}_{q}}\right)} X$ defined as pull-backs of divisors along the Frobenius endomorphism of X.

Objectives of today

- Understand how divisors transform under morphisms between schemes.
(2) Discuss how to define an intersection number for curves in surfaces.

Let $\varphi: Y \longrightarrow Z$ be a finite surjective morphism between two integral schemes of finite type over a field k.

Let $y \in Y$ be a codimension 1 point such that $\varphi(y)=z$ has codimension 1 in Z. We naturally have an inclusion of the discrete valuation rings $\mathcal{O}_{Z, z} \hookrightarrow \mathcal{O}_{Y, y}$.

Ramification index

The ramification index at y is defined as

$$
e(y)= \begin{cases}0 & \text { if } z=\varphi(y) \text { has codimension greater than } 1 \\ v_{z}(t) & \text { if } z=\varphi(y) \text { has codimension } 1\end{cases}
$$

where t is a uniformiser of $\mathcal{O}_{Y, y}$ and v_{z} is the natural valuation defined in $\mathcal{O}_{Z, z}$.

Example of ramification

Let's consider the map $\varphi: \mathbb{A}_{k}^{1} \longrightarrow \mathbb{A}_{k}^{1}$ induced in $\operatorname{Spec}(k[x]) \longrightarrow \operatorname{Spec}(k[t])$ from the ring homomorphism

$$
\begin{aligned}
\phi: k[t] & \longrightarrow k[x] \\
t & \longmapsto x^{2}
\end{aligned}
$$

Example of ramification

$$
\begin{aligned}
\operatorname{Spec}(k[x]) & \longrightarrow \operatorname{Spec}(k[t]) \\
(x) & \longmapsto(t) \\
(x-2) & \longmapsto(t-4)
\end{aligned}
$$

$$
\mathcal{O}_{\operatorname{Spec}(k[t]),(t)}=k[t]_{(t)} \longrightarrow k[x]_{(x)}=\mathcal{O}_{\operatorname{Spec}(k[x]),(x)}
$$

$$
t \longmapsto x^{2}
$$

Therefore $e([x])=v_{x}\left(x^{2}\right)=2$.

Example of ramification

$$
\begin{aligned}
\operatorname{Spec}(k[x]) & \longrightarrow \operatorname{Spec}(k[t]) \\
(x) & \longmapsto(t) \\
(x-2) & \longmapsto(t-4)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{O}_{\text {Spec }(k[t]),(t)}=k[t]_{(t-4)} & \longrightarrow k[x]_{(x-2)}=\mathcal{O}_{\text {Spec }(k[x]),(x-2)} \\
t-4 & \longmapsto x^{2}-4=(x-2)(x+2)
\end{aligned}
$$

Therefore $e([x-2])=v_{x-2}\left(x^{2}-4\right)=1$.

Pull-back

For y a point of codimension 1 , we denote by $[y]=\overline{\{y\}}$ the corresponding prime divisor.

Pull-backs

Let $\varphi: Y \longrightarrow Z$ as before and let $D=\sum n_{z}[z]$ be a divisor of Z. The pull-back of D along φ is defined as:

$$
\varphi^{*}(D)=\sum n_{z} \varphi^{*}([z])=\sum n_{z} \sum_{\varphi(y)=z} e(y)[y] .
$$

Example of pullback

Let $\varphi: \mathbb{A}_{k}^{1} \longrightarrow \mathbb{A}_{k}^{1}$ as before, and let $\left.D=-3[t]+[t-4] \in \operatorname{Div}\right)\left(\mathbb{A}_{k}^{1}\right)$. Then,

$$
\begin{aligned}
\varphi^{*}(D) & =-3 \varphi^{*}([t])+\varphi^{*}([t-4]) \\
& =-3 e([x])[x]+e([x-2])[x-2]+e([x+2])[x+2] \\
& =-6[x]+[x-2]+[x+2]
\end{aligned}
$$

Let $k(Z)=\mathcal{O}_{Z,(0)}$ denote the field of rational functions of Z. Then φ induces a morphism of sheaf of rings $\varphi: \mathcal{O}_{Z} \rightarrow \varphi_{*} \mathcal{O}_{Y}$, which, by localising, gives us a map $k(Z) \rightarrow k(Y)$.
Let $f \in k(Z)^{*}$, we will denote by (f) the divisor defined by f.

Proposition

Let \tilde{f} be the image of f under the inclusion $k(Z) \rightarrow k(Y)$ induced by φ. Then, $(\tilde{f})=\varphi^{*}((f))$.

Corollary

Pull-backs send principal divisors to principal divisors and therefore define a map $\operatorname{Pic}(Z) \longrightarrow \operatorname{Pic}(Y)$.

In our previous example the induced map between function fields is given by

$$
\begin{aligned}
k(t) & \longmapsto k(x) \\
\frac{f(t)}{g(t)} & \longmapsto \frac{f\left(x^{2}\right)}{g\left(x^{2}\right)}
\end{aligned}
$$

As $\operatorname{Pic}\left(\mathbb{A}^{2}\right)=\{0\}$, the map between $\operatorname{Pic}\left(\mathbb{A}^{2}\right) \rightarrow \operatorname{Pic}\left(\mathbb{A}^{2}\right)$ is uninteresting. A similar map over $\operatorname{Pic}\left(\mathbb{P}^{2}\right) \rightarrow \operatorname{Pic}\left(\mathbb{P}^{2}\right)$, would give us a group homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}$ that can be checked to be multiplication by 2 .

Degree

The degree of the morphism φ is the degree of the field extension $k(Y)$ over $k(Z)$, that is,

$$
\operatorname{deg}(\varphi)=[k(Y): k(Z)]
$$

Degree

The degree of the morphism φ is the degree of the field extension $k(Y)$ over $k(Z)$, that is,

$$
\operatorname{deg}(\varphi)=[k(Y): k(Z)]
$$

In our example, $k(t) \hookrightarrow k(x)$ as the set of rational functions over x^{2}. This shows that $k(x)$ can be understood as the extension of $k(t)$ by an element x satisfying $x^{2}-t=0$. This is a degree 2 extension of $k(t)$, so

$$
\operatorname{deg}(\varphi)=[k(x): k(t)]=2
$$

Let \mathbb{k}_{y} and \mathbb{k}_{z} denote the residue fields of $\mathcal{O}_{Y, y}$ and $\mathcal{O}_{Z, z}$ respectively

Push-forward

Let $D=\sum n_{y}[y] \in \operatorname{Div}(Y)$. Then the push-forward of D by φ is the divisor $D=\sum n_{y} \varphi_{*}([y])$ where

$$
\varphi_{*}([y])= \begin{cases}0 & \text { if } z=\varphi(y) \text { has codimension greater than } 1 \\ {\left[\mathbb{k}_{z}: \mathbb{k}_{y}\right][z]} & \text { if } z=\varphi(y) \text { has codimension } 1\end{cases}
$$

Let \mathbb{k}_{y} and \mathbb{k}_{z} denote the residue fields of $\mathcal{O}_{Y, y}$ and $\mathcal{O}_{Z, z}$ respectively

Push-forward

Let $D=\sum n_{y}[y] \in \operatorname{Div}(Y)$. Then the push-forward of D by φ is the divisor $D=\sum n_{y} \varphi_{*}([y])$ where

$$
\varphi_{*}([y])= \begin{cases}0 & \text { if } z=\varphi(y) \text { has codimension greater than } 1 \\ {\left[\mathbb{k}_{z}: \mathbb{k}_{y}\right][z]} & \text { if } z=\varphi(y) \text { has codimension } 1\end{cases}
$$

In our example the residue fields of $k[x]_{(x-\alpha)}, k[t]_{(t-\beta)}$ are k for all points, so $\varphi_{*}([x-\alpha])=\left[t-\alpha^{2}\right]$ for every α.

Proposition

Let $g \in k(Y)$. Then, $\varphi_{*}((g))=\left(N_{k(Y) / k(Z)}(g)\right)$, where $N_{k(Y) / k(Z)}: k(Y) \longrightarrow k(Z)$ denotes the norm map.

Corollary

Push forwards preserve linear equivalence and therefore descend to give a map $\operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}(Z)$.

Push-forwards

Proposition

Let $g \in k(Y)$. Then, $\varphi_{*}((g))=\left(N_{k(Y) / k(Z)}(g)\right)$, where $N_{k(Y) / k(Z)}: k(Y) \longrightarrow k(Z)$ denotes the norm map.

Corollary

Push forwards preserve linear equivalence and therefore descend to give a map $\operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}(Z)$.

In our example, for instance,

$$
\begin{aligned}
\varphi_{*}\left(\left(\frac{x}{1+x}\right)\right) & =\left(N_{k(x) / k(t)}\left(\frac{x}{1+x}\right)\right)=\left(N_{k(x) / k(t)}\left(\frac{x(1-x)}{(1+x)(1-x)}\right)\right) \\
& =\left(N_{k(x) / k(t)}\left(\frac{-t}{1-t}+x \frac{1}{1-t}\right)\right)=\left(\left(\frac{-t}{1-t}\right)^{2}-t\left(\frac{1}{1-t}\right)^{2}\right)=\left(\frac{-t}{1-t}\right)
\end{aligned}
$$

Combining pull-backs and push-forwards

Combining φ_{*} and φ^{*} gives us endomorphisms of $\operatorname{Div}(Y)$ and $\operatorname{Div}(Z)$.

Proposition

The endomorphism $\varphi_{*} \varphi^{*}$ of $\operatorname{Div}(Z)$ acts by $D \mapsto \operatorname{deg}(\varphi) \cdot D$.

- Cohomological techniques were shown to be very strong tools to prove analogue results to the Riemann hypothesis for Kahler manifolds.
- Intersection theory represents something about the cohomological structure of a variety.

Given Y a non-singular projective surface, we are interested in finding a way to count the number of points of intersection of two irreducible curves $C, D \subset S$ in a consistent way.

Transversal intersection

Two smooth curves C and D in Y intersect transversely at $\boldsymbol{P} \in \boldsymbol{Y}$ if there are regular functions f and g defined in a neighborhood of P in Y, so that C is given locally near P as the zeros of f and D by g, and such that the images of f and g in $\mathcal{O}_{Y, P}$ generate the maximal ideal.

Transversal divisor

Two smooth curves C and D in Y intersect transversely at $\boldsymbol{P} \in \boldsymbol{Y}$ if there are uniformisers $f \in \mathcal{O}_{C, P}, g \in \mathcal{O}_{D, P}$ such that the images of f and g in $\mathcal{O}_{Y, P}$ generate the maximal ideal.
We say that C and D intersect transversely if they do so at every point of their intersection.

Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

$$
\begin{aligned}
\operatorname{Div}(Y) \times \operatorname{Div}(Y) & \longrightarrow \mathbb{Z} \\
\left(D_{1}, D_{2}\right) & \longmapsto D_{1} \cdot D_{2}
\end{aligned}
$$

satisfying the following properties:

Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

$$
\begin{aligned}
\operatorname{Div}(Y) \times \operatorname{Div}(Y) & \longrightarrow \mathbb{Z} \\
\left(D_{1}, D_{2}\right) & \longmapsto D_{1} \cdot D_{2}
\end{aligned}
$$

satisfying the following properties:
(1) $D_{1} \cdot D_{2}$ is a bilinear and symmetric pairing.

Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

$$
\begin{aligned}
\operatorname{Div}(Y) \times \operatorname{Div}(Y) & \longrightarrow \mathbb{Z} \\
\left(D_{1}, D_{2}\right) & \longmapsto D_{1} \cdot D_{2}
\end{aligned}
$$

satisfying the following properties:
(1) $D_{1} \cdot D_{2}$ is a bilinear and symmetric pairing.
(2) $D_{1} \cdot D_{2}$ depends on D_{1} and D_{2} only up to linear equivalence, i.e.

$$
D_{1} \stackrel{\operatorname{lin}}{\sim} D_{1} \quad \Longrightarrow \quad D_{1} \cdot D_{2}=D_{1}^{\prime} \cdot D_{2}
$$

Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

$$
\begin{aligned}
\operatorname{Pic}(Y) \times \operatorname{Pic}(Y) & \longrightarrow \mathbb{Z} \\
\left(D_{1}, D_{2}\right) & \longmapsto D_{1} \cdot D_{2}
\end{aligned}
$$

satisfying the following properties:
(1) $D_{1} \cdot D_{2}$ is a bilinear and symmetric pairing.
(2) $D_{1} \cdot D_{2}$ depends on D_{1} and D_{2} only up to linear equivalence, i.e.

$$
D_{1} \stackrel{\operatorname{lin}}{\sim} D_{1} \quad \Longrightarrow \quad D_{1} \cdot D_{2}=D_{1}^{\prime} \cdot D_{2}
$$

(3) If C and D are smooth curves that do not have any common components,

$$
C \cdot D=\sum_{P \in C \cap D}(C \cdot D)_{P}
$$

where $(C \cdot D)_{P}=\operatorname{dim}_{k} \mathcal{O}_{Y, P} /(f, g)$.

Example

In \mathbb{P}^{2}

$$
\begin{gathered}
C: Z Y^{2}=X^{3} \quad D: \quad Z Y=X^{2} \\
(C \cdot D)_{[0: 0: 1]}= \\
\operatorname{dim}_{k} \frac{k[X, Y, Z]_{[0: 0: 1]}}{\left(Z Y-X^{3}, Z Y-X^{2}\right)}=\operatorname{dim}_{k} \frac{k[x, y]_{(0,0)}}{\left(y-x^{2}, y^{2}-x^{3}\right)} \\
=\operatorname{dim}_{k} \frac{k[x]_{(0)}}{\left((x-1) x^{3}\right)}=\operatorname{dim}_{k} \frac{k[x]_{(0)}}{\left(x^{3}\right)}=\operatorname{dim}_{k}\left(k \oplus k x \oplus k x^{2}\right)=3
\end{gathered}
$$

Similarly $(C \cdot D)_{[1: 1: 1]}=1$ and $(C \cdot D)_{[0: 1: 0]}=2$. Therefore $C \cdot D=6$.

Case where $Y=\mathbb{P}^{2}$

On \mathbb{P}^{2}, the divisor class of a divisor is given by its degree.

Bezout's theorem

If two plane algebraic curves C and D of degrees n_{1} and n_{2} have no component in common, they have $n_{1} n_{2}$ intersection points, counted with their multiplicity,

Case where $Y=\mathbb{P}^{2}$

On \mathbb{P}^{2}, the divisor class of a divisor is given by its degree.

Bezout's theorem

If two plane algebraic curves C and D of degrees n_{1} and n_{2} have no component in common, they have $n_{1} n_{2}$ intersection points, counted with their multiplicity,

Therefore, the intersection pairing in \mathbb{P}^{2} is given by

$$
\begin{aligned}
\operatorname{Div}\left(\mathbb{P}^{2}\right) \times \operatorname{Div}\left(\mathbb{P}^{2}\right) & \longrightarrow \mathbb{Z} \\
\left(D_{1}, D_{2}\right) & \longmapsto \operatorname{deg}\left(D_{1}\right) \operatorname{deg}\left(D_{2}\right)
\end{aligned}
$$

and therefore, this pairing over $\operatorname{Pic}\left(\mathbb{P}^{2}\right)=\mathbb{Z}$ is multiplication.

How can we define an intersection pair in a general case?

Intersection number
Let C and D be two curves that intersect transversely. Then,

$$
C \cdot D=\operatorname{deg}_{C}\left(\left.\mathcal{O}(D)\right|_{C}\right)
$$

In general, this allows us to extend the definition of intersection numbers to curves that do not intersect transversely, by generally defining

$$
C \cdot D=\operatorname{deg}_{C}\left(\left.\mathcal{O}(D)\right|_{C}\right)
$$

How can we define an intersection pair in a general case?

Proposition

$$
\operatorname{deg}_{C}\left(\left.\mathcal{O}(D)\right|_{C}\right)=\chi\left(\left.\mathcal{O}_{Y}(D)\right|_{C}\right)-\chi\left(\mathcal{O}_{C}\right)
$$

Proof

By Riemann-Roch, we have that for $\mathcal{O}_{\mathcal{Y}}(\mathcal{D})$ in C, we have the equality

$$
\chi\left(\mathcal{O}_{Y}(D)\right)=\operatorname{deg}(\mathcal{O}(D))+1-g(C)=\operatorname{deg}(\mathcal{O}(D))+\chi\left(\mathcal{O}_{C}\right)
$$

Theorem
For any two divisors $D_{1}, D_{2} \in \operatorname{Div}(Y)$,

$$
D_{1} \cdot D_{2}=\chi\left(\mathcal{O}_{Y}\right)-\chi\left(\mathcal{O}_{Y}\left(-D_{1}\right)\right)-\chi\left(\mathcal{O}_{Y}\left(-D_{2}\right)\right)+\chi\left(\mathcal{O}_{Y}\left(-D_{1}-D_{2}\right)\right)
$$

Behaviour of intersections under maps

Proposition

Let $\varphi: Y \rightarrow Z$. For $C \in \operatorname{Div}(Y)$ and $D \in \operatorname{Div}(Z)$,

$$
C \cdot \varphi^{*}(D)=\varphi_{*}(C) \cdot D
$$

Numerical equivalence

Numerical equivalence

We say that two divisors D_{1} and D_{2} of Y are numerically equivalent if $D_{1} \cdot C=D_{2} \cdot C$ for every $C \in \operatorname{Div}(Y)$.

Numerical equivalence

Numerical equivalence

We say that two divisors D_{1} and D_{2} of Y are numerically equivalent if $D_{1} \cdot C=D_{2} \cdot C$ for every $C \in \operatorname{Div}(Y)$.

Néron-Severi group... according to Raskin

The Néron-Severi group of $Y, \mathrm{NS}(Y)$ is defined to be the set of all divisors of Y up to numerical equivalence.

Numerical equivalence

Numerical equivalence

We say that two divisors D_{1} and D_{2} of Y are numerically equivalent if $D_{1} \cdot C=D_{2} \cdot C$ for every $C \in \operatorname{Div}(Y)$.

Néron-Severi group

The Néron-Severi group of $Y, \mathrm{NS}(Y)$ is defined to be the set of all divisors of Y up to algebraic equivalence.

Numerical equivalence

Numerical equivalence

We say that two divisors D_{1} and D_{2} of Y are numerically equivalent if $D_{1} \cdot C=D_{2} \cdot C$ for every $C \in \operatorname{Div}(Y)$.

Now...

Let Num (Y) denote the set of all divisors of Y up to numerical equivalence. Then, $\operatorname{Num}(Y)$ is the quotient of $\mathrm{NS}(Y)$ by its torsion subgroup.

The intersection form descends to give a nondegenerate symmetric bilinear form $\operatorname{Num}(Y) \times \operatorname{Num}(Y) \rightarrow \mathbb{Z}$. In particular, $\operatorname{Num}(Y)$ is a torsion-free abelian group that has a lattice associated to it that gives us lots of information about Y.

Jhuts all Joles!

