


Context: zeta functions of schemes

Let X be a scheme of finite type over Fq, let |X| denote the set of closed points
of X and let kx denote the residue field of X at a point x ∈ X .

Zeta function of X

The zeta function of X is defined as

Z(X , t) =
∏
x∈|X|

(1− tdeg(x))−1

where if |kx| = qn, we define the degree of x to be deg(x) = n.



The zeta function of a scheme

Zeta function of X

The zeta function of X is defined as

Z(X , t) =
∏
x∈|X|

(1− tdeg(x))−1

where if |kx| = qn, we define the degree of x to be deg(x) = n.

• Z(X , q−s) defines an analytic function on compact subsets U ⊂ C.

• With a change of variables Z(X , t) can be related to the generating function
for the numbers |X(Fqn)| of points of X over finite extensions of Fq.



The Weil conjectures

Let’s assume that X is a smooth projective curve over Fq (more generally, let X
be a projective scheme over Fq with X ×Spec(Fq) Spec(Fq) irreducible and
non-singular). Then, Z(X , t) has the following properties:

Rationality

Z(X , t) is the formal power series expansion of a rational function of t.

Functional equation

Z(X , t) satisfies an identity of the form

Z(X , q−1t−1) = q1−gt2−2gZ(X , t)
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The Weil conjectures

Riemann Hypothesis

Z(X , t) is of the form

Z(X , t) =
∏2g

i=1(1− ωit)

(1− t)(1− qt)

where |ωi| = q1/2 for all i.



Proving the Riemann Hypothesis

Sketch of the proof of the Riemann Hypothesis

1 Prove that this conjecture is equivalent to a statement about the growth of
|X(Fqn)| as n → ∞.

2 Relate the quantity |X(Fqn)| to the intersection number of two divisors of
Y = X ×Spec(Fq)

X defined as pull-backs of divisors along the Frobenius
endomorphism of X .
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Objectives of today

1 Understand how divisors transform under morphisms between
schemes.

2 Discuss how to define an intersection number for curves in
surfaces.



Ramification index

Let ϕ : Y −→ Z be a finite surjective morphism between two integral schemes
of finite type over a field k.

Let y ∈ Y be a codimension 1 point such that ϕ(y) = z has codimension 1 in Z .
We naturally have an inclusion of the discrete valuation rings OZ ,z ↪→ OY , y.

Ramification index

The ramification index at y is defined as

e(y) =

{
0 if z = ϕ(y) has codimension greater than 1

vz(t) if z = ϕ(y) has codimension 1

where t is a uniformiser of OY , y and vz is the natural valuation defined in OZ ,z .



Example of ramification

Let’s consider the map ϕ : A1
k −→ A1

k induced in Spec(k[x]) −→ Spec(k[t]) from
the ring homomorphism

φ : k[t] −→ k[x]

t 7−→ x2



Example of ramification

Spec(k[x]) −→ Spec(k[t])
(x) 7−→ (t)

(x− 2) 7−→ (t− 4)

OSpec(k[t]),(t) = k[t](t) −→ k[x](x) = OSpec(k[x]),(x)

t 7−→ x2

Therefore e([x]) = vx(x
2) = 2.



Example of ramification

Spec(k[x]) −→ Spec(k[t])
(x) 7−→ (t)

(x− 2) 7−→ (t− 4)

OSpec(k[t]),(t) = k[t](t−4) −→ k[x](x−2) = OSpec(k[x]),(x−2)

t− 4 7−→ x2 − 4 = (x− 2)(x+ 2)

Therefore e([x− 2]) = vx−2(x
2 − 4) = 1.



Pull-back

For y a point of codimension 1, we denote by [y] = {y} the corresponding prime
divisor.

Pull-backs

Let ϕ : Y −→ Z as before and let D =
∑

nz[z] be a divisor of Z . The pull-back
of D along ϕ is defined as:

ϕ∗(D) =
∑

nz ϕ
∗([z]) =

∑
nz

∑
ϕ(y)=z

e(y)[y].



Example of pullback

Let ϕ : A1
k −→ A1

k as before, and let D = −3[t] + [t− 4] ∈ Div)(A1
k). Then,

ϕ∗(D) = −3ϕ∗([t]) + ϕ∗([t− 4])

= −3e([x])[x] + e([x− 2])[x− 2] + e([x+ 2])[x+ 2]

= −6[x] + [x− 2] + [x+ 2]



Pull-backs

Let k(Z) = OZ ,(0) denote the field of rational functions of Z . Then ϕ induces a
morphism of sheaf of rings ϕ : OZ → ϕ∗OY , which, by localising, gives us a map
k(Z) → k(Y ).

Let f ∈ k(Z)∗, we will denote by (f) the divisor defined by f .

Proposition

Let f̃ be the image of f under the inclusion k(Z) → k(Y ) induced by ϕ.
Then, (f̃) = ϕ∗((f)).



Pull-backs

Corollary

Pull-backs send principal divisors to principal divisors and therefore define a
map Pic(Z) −→ Pic(Y ).

In our previous example the induced map between function fields is given by

k(t) −→ k(x)
f(t)
g(t)

7−→ f(x2)
g(x2)

As Pic(A2) = {0}, the map between Pic(A2) → Pic(A2) is uninteresting. A
similar map over Pic(P2) → Pic(P2), would give us a group homomorphism
Z → Z that can be checked to be multiplication by 2.



Push-forwards

Degree

The degree of the morphism ϕ is the degree of the field extension k(Y ) over
k(Z), that is,

deg(ϕ) = [k(Y ) : k(Z)]

In our example, k(t) ↪→ k(x) as the set of rational functions over x2. This shows
that k(x) can be understood as the extension of k(t) by an element x satisfying
x2 − t = 0. This is a degree 2 extension of k(t), so

deg(ϕ) = [k(x) : k(t)] = 2
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Push-forwards

Let ky and kz denote the residue fields of OY ,y and OZ ,z respectively

Push-forward

Let D =
∑

ny[y] ∈ Div(Y ). Then the push-forward of D by ϕ is the divisor
D =

∑
nyϕ∗([y]) where

ϕ∗([y]) =

{
0 if z = ϕ(y) has codimension greater than 1

[kz : ky][z] if z = ϕ(y) has codimension 1

In our example the residue fields of k[x](x−α), k[t](t−β) are k for all points, so
ϕ∗([x− α]) = [t− α2] for every α.
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Push-forwards

Proposition

Let g ∈ k(Y ). Then, ϕ∗((g)) = (Nk(Y )/k(Z)(g)), where
Nk(Y )/k(Z) : k(Y ) −→ k(Z) denotes the norm map.

Corollary

Push forwards preserve linear equivalence and therefore descend to give a map
Pic(Y ) −→ Pic(Z).

In our example, for instance,

ϕ∗
((

x
1+x

))
=

(
Nk(x)/k(t)

(
x

1+x

))
=

(
Nk(x)/k(t)

(
x(1−x)

(1+x)(1−x)

))
=

(
Nk(x)/k(t)

( −t
1−t

+ x 1
1−t

))
=

(( −t
1−t

)2 − t
(

1
1−t

)2)
=

( −t
1−t

)
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Combining pull-backs and push-forwards

Combining ϕ∗ and ϕ∗ gives us endomorphisms of Div(Y ) and Div(Z).

Proposition

The endomorphism ϕ∗ϕ
∗ of Div(Z) acts by D 7→ deg(ϕ) ·D.



Why do we need an intersection theory for surfaces?

• Cohomological techniques were shown to be very strong tools
to prove analogue results to the Riemann hypothesis for Kahler
manifolds.

• Intersection theory represents something about the
cohomological structure of a variety.



Intuition behind intersection numbers

Given Y a non-singular projective surface, we are interested in finding a way to
count the number of points of intersection of two irreducible curves C ,D ⊂ S in
a consistent way.



What is the easiest case of intersection that we can consider?

Transversal intersection

Two smooth curves C and D in Y intersect transversely at P ∈ Y if there are
regular functions f and g defined in a neighborhood of P in Y , so that C is given
locally near P as the zeros of f and D by g, and such that the images of f and g
in OY ,P generate the maximal ideal.



Transversal divisor

Transversal divisor

Two smooth curves C and D in Y intersect transversely at P ∈ Y if there are
uniformisers f ∈ OC ,P , g ∈ OD,P such that the images of f and g in OY ,P
generate the maximal ideal.

We say that C and D intersect transversely if they do so at every point of their
intersection.



Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

Div(Y )× Div(Y ) −→ Z
(D1, D2) 7−→ D1 ·D2

satisfying the following properties:

1 D1 ·D2 is a bilinear and symmetric pairing.
2 D1 ·D2 depends on D1 and D2 only up to linear equivalence, i.e.

D1
lin∼ D1 =⇒ D1 ·D2 = D′

1 ·D2
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Intersection numbers

Let Y be a smooth projective surface. Then, there exists a pairing

Pic(Y )× Pic(Y ) −→ Z
(D1, D2) 7−→ D1 ·D2

satisfying the following properties:
1 D1 ·D2 is a bilinear and symmetric pairing.
2 D1 ·D2 depends on D1 and D2 only up to linear equivalence, i.e.

D1
lin∼ D1 =⇒ D1 ·D2 = D′

1 ·D2

3 If C and D are smooth curves that do not have any common components,

C ·D =
∑

P∈C∩D

(C ·D)P

where (C ·D)P = dimk OY ,P/(f , g).



Example

In P2

C : ZY 2 = X3 D : ZY = X2

(C ·D)[0:0:1] = dimk

k[X ,Y ,Z][0:0:1]
(ZY −X3,ZY −X2)

= dimk

k[x, y](0,0)
(y − x2, y2 − x3)

= dimk

k[x](0)
((x− 1)x3)

= dimk

k[x](0)
(x3)

= dimk(k ⊕ kx⊕ kx2) = 3

Similarly (C ·D)[1:1:1] = 1 and (C ·D)[0:1:0] = 2. Therefore C ·D = 6.



Case where Y = P2

On P2, the divisor class of a divisor is given by its degree.

Bezout’s theorem

If two plane algebraic curves C and D of degrees n1 and n2 have no component
in common, they have n1n2 intersection points, counted with their multiplicity,

Therefore, the intersection pairing in P2 is given by

Div(P2)× Div(P2) −→ Z
(D1, D2) 7−→ deg(D1)deg(D2)

and therefore, this pairing over Pic(P2) = Z is multiplication.



Case where Y = P2

On P2, the divisor class of a divisor is given by its degree.

Bezout’s theorem

If two plane algebraic curves C and D of degrees n1 and n2 have no component
in common, they have n1n2 intersection points, counted with their multiplicity,

Therefore, the intersection pairing in P2 is given by

Div(P2)× Div(P2) −→ Z
(D1, D2) 7−→ deg(D1)deg(D2)

and therefore, this pairing over Pic(P2) = Z is multiplication.



How can we define an intersection pair in a general case?

Intersection number

Let C and D be two curves that intersect transversely. Then,

C ·D = degC(O(D)|C).

In general, this allows us to extend the definition of intersection numbers to
curves that do not intersect transversely, by generally defining

C ·D = degC(O(D)|C)



How can we define an intersection pair in a general case?

Proposition

degC(O(D)|C) = χ(OY (D)|C)− χ(OC)

Proof

By Riemann-Roch, we have that for OY(D) in C , we have the equality

χ(OY (D)) = deg(O(D)) + 1− g(C) = deg(O(D)) + χ(OC)



Characterisation of the intersection number in terms of χ

Theorem

For any two divisors D1,D2 ∈ Div(Y ),

D1 ·D2 = χ(OY )− χ(OY (−D1))− χ(OY (−D2)) + χ(OY (−D1 −D2))



Behaviour of intersections under maps

Proposition

Let ϕ : Y → Z . For C ∈ Div(Y ) and D ∈ Div(Z),

C · ϕ∗(D) = ϕ∗(C) ·D



Numerical equivalence

Numerical equivalence

We say that two divisors D1 and D2 of Y are numerically equivalent if
D1 · C = D2 · C for every C ∈ Div(Y ).

Néron-Severi group… according to Raskin

The Néron-Severi group of Y , NS(Y ) is defined to be the set of all divisors of
Y up to numerical equivalence.
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Numerical equivalence

Numerical equivalence

We say that two divisors D1 and D2 of Y are numerically equivalent if
D1 · C = D2 · C for every C ∈ Div(Y ).

Now…

Let Num(Y ) denote the set of all divisors of Y up to numerical equivalence.
Then, Num(Y ) is the quotient of NS(Y ) by its torsion subgroup.



Why do we care about this group?

The intersection form descends to give a nondegenerate symmetric
bilinear form Num(Y )× Num(Y ) → Z. In particular, Num(Y ) is a
torsion-free abelian group that has a lattice associated to it that
gives us lots of information about Y .
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