MA475 Example Sheet 1

14 January 2020

1. A consequence of Cauchy's theorem is that

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{n+1}} dw.$$

Deduce from this that power series expressions for holomorphic functions can be differentiated term by term.

2. As sequence if functions f_n converges locally uniformly to f in a domain D if $f_n \to f$ on each compact subset of D. Morera's theorem shows that if the holomorphic functions f_n converge locally uniformly then the limit is holomorphic.

Show that the series

$$\sum_{|n|>N} \left(\frac{1}{z-n} + \frac{1}{n} \right)$$

converges uniformly in the disc $\{z : |z| < N\}$.

Deduce that

$$\frac{1}{z} + \sum_{n \neq 0} \left(\frac{1}{z - n} + \frac{1}{n} \right)$$

converges to a holomorphic function in $\mathbb{C} - \mathbb{Z}$. Find the derivative of this function.

- 3. Let D be an open disc divided by a diameter into two half discs D_1 and D_2 . Use Morera's theorem to show that if f is holomorphic in each open half-disk and f is continuous on the entire disk then f is holomorphic on the entire disk. (This argument shows that overlap functions are holomorphic in the construction of atlases for polyhedra.)
- 4. Give \mathbb{C} two atlases \mathcal{A}_1 consisting only of the identity map and \mathcal{A}_2 consisting of the map $h(z) = \bar{z}$. Show that \mathcal{A}_1 and \mathcal{A}_2 determine different conformal structures on \mathbb{C} but that $h: (\mathbb{C}, \mathcal{A}_1) \to (\mathbb{C}, \mathcal{A}_2)$ is a holomorphic equivalence.

- 5. Let V be a real vector space and let $J:V\to V$ be a real linear transformation satisfying $J^2=-I$. Consider the sub-ring of the matrix ring generated by real linear combinations of I and J. Show that this subring is isomorphic to $\mathbb C$ and that, as a module over this subring, V becomes a complex vector space.
- 6. Let S^2 be the unit sphere in \mathbb{R}^3 . Let $p \in S^2$. Let T_p be the tangent space to S^2 at p. Define $J: T_p \to T_p$ by $J(v) = p \times v$. Show that J defines a complex structure on T_p . Show that the notion of angle that comes from this complex structure is the same as the notion of angle that comes from restricting the metric on \mathbb{R}^3 to T_p .