MA475 Example Sheet 3 12 February 2019

- 1. Let f and g be nonconstant maps defined in connected domains in \mathbb{C} . Show the chain rule for valence: $v_{fg}(w) = v_f(g(w)) \cdot v_g(w)$.
- 2. Let $D = \{z : 0 < |z| < 1\}$. Let G be the group generated by $z \mapsto z \exp(2\pi i/n)$ for some fixed n. Identify D/G up to conformal equivalence.
- 3. Let $D = \mathbb{C} \{0\}$ and let G be generated by $g : z \mapsto z/2$. Show that D/G is a torus.
- 4. Show that the surfaces \mathbb{C}_{∞} , S and \mathbb{CP}^1 are conformally equivalent.
- 5. Give \mathbb{C} two atlases \mathcal{A}_1 consisting only of the identity map and \mathcal{A}_2 consisting of the map $h(z) = \overline{z}$. Show that \mathcal{A}_1 and \mathcal{A}_2 determine different conformal structures on \mathbb{C} but that $h : (\mathbb{C}, \mathcal{A}_1) \to (\mathbb{C}, \mathcal{A}_2)$ is a holomorphic equivalence.
- 6. Let S be the metric space defined by $S = \{(z, w) \in \mathbb{C}_{\infty} \times \mathbb{C}_{\infty} : z = w^n\}$. Show that S is a surface and that $S \cup \{(\infty, \infty)\}$ is homeomorphic to \mathbb{C}_{∞} .
- 7. Derive the identity

$$\left(\frac{\pi}{\sin \pi z}\right)^2 = \sum_{n=-\infty}^{+\infty} \frac{1}{(z-n)^2}$$

as follows.

- (a) Show that the difference d(z) between the two sides is holomorphic in \mathbb{C} and satisfies d(z+1) = d(z).
- (b) Show that $d(x + iy) \to 0$ as $|y| \to +\infty$ uniformly in x.
- (c) Deduce that d is constant and hence zero in \mathbb{C} .