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1 Introduction

1.1 Background and motivation

Lie algebra cohomology was introduced as a way to study properties of Lie groups. This
is achieved by relating the so-called de Rham cohomology of the Lie group to the Lie
algebra cohomology of the associated Lie algebra. A sketch of the relation is as follows
(see e.g. [1, Section 2.1]).

Let G be a Lie group with Lie algebra g. Then one can define the co-chain complex

Ω•(G)

consisting of differential forms on G, with the exterior derivative as the differential. This
is known as the de Rham complex of G. Now, we have a diffeomorphism on G given by
left translation,

Lg : G→ G, Lg(h) := gh

for all g ∈ G, h ∈ G. This induces a linear map on the tangent space of G at each point
h ∈ G:

(dLg)h : ThG→ TghG.

Now, given a differential q−form, ω ∈ Ωq(G), that is, for each g ∈ G, ω gives a map

ωg :
∧q

TgG→ R

we have a pullback on ω induced by dLg given by(
dL∗g · ω

)
h
(x1, ..., xq) := ωgh(dLg(x1), ..., dLg(xq)).

where (x1, ..., xq) ∈
∧q

ThG. We say ω ∈ Ω•(G) is left invariant if dL∗g · ω = ω for all

g ∈ G. We denote the space of left invariant differential q−forms by Ωq
L(G). In fact one

obtains a sub-complex
Ω•L(G) ⊂ Ω•(G).

Let g = Lie(G), then the so-called Chevalley-Eilenburg complex of g is

C•(g) = Hom(
∧•

g,R),

with differential given as in Section 2.1. Given ω ∈ Cq(g), we define a differential q−form,
which we denote Fω, as follows;

(Fω)g(x1, ..., xq︸ ︷︷ ︸
∈

∧q TgG
) := ω(dLg−1(x1), ..., dLg−1(xq)︸ ︷︷ ︸

∈
∧q TeG∼=∧q g

).

One finds that Fω is a left invariant differential form. Moreover we have an isomorphism

C•(g) ∼= Ω•L(G).
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Now, let K be a closed connected subgroup of G, let D = G�K, k = Lie(K), and let
(ρ, V ) be a smooth representation of G. One can see in e.g. [2, Chapter I, Section 1.6]
that the above isomorphism of complexes can be extended to an isomorphism between

C•(g, k;V ) = Homk

(∧•
g�k , V

)
=
[
V ⊗

∧•
g�k
∗
]k

and

Ω•
(
D;V

)G
= Ω•

(
G�K;V

)G
,

the space of G-invariant V−valued differential forms on D, where the group G operates
on ω ∈ Ωq(D,V ) via(

g · ω
)
h

(
x1, ..., xq) = ρ(g−1)ωgh

(
dLg(x1), ..., dLg(xq)

)
for all g ∈ G, h ∈ D and (x1, ..., xq) ∈

∧q ThD. Analogous to before, we say ω is
G−invariant if g ·ω = ω for all g ∈ G. Moreover,

(
see [2, Chapter I, Section 5]

)
if G is a

Lie group with finitely many connected components; K is a maximal compact subgroup
of G with identity component K0; and V is a smooth representation of G, then we define

C•(g,K;V ) := HomK

(∧•
g�k , V

)
=
[
V ⊗

∧•
g�k
∗
]K

where K acts via the adjoint action on g�k. We have

C•(g,K;V ) = C•(g, k;V )K/K0 and H•(g,K;V ) = H•(g, k;V )K/K0 .

In this report we will consider the case where G = SO0(p, 1), the connected component of
the identity of O(p, 1), where O(p, 1) is the indefinite orthogonal group of the real vector
space V with signature (p, 1); K = SO(p) × SO(1), the maximal compact (connected)
subgroup of G; g = o(p, 1); k ∼= so(p); and our representation space is F ⊗ Syml(V ),
where F = C[z1, ..., zp, zp+1] is the Fock model of the Weil representation (see Section
2.2). There exists an isomorphism between F and S(V ) ⊂ S (V ), where S (V ) denotes
the space of “rapidly decaying” functions f : V → C given by sending 1 ∈ F to (a

multiple of) the Gaussian ϕ0 := e−π
∑p+1
i=1 v

2
i and zα to

(
vα − 1

2π
∂
∂vα

)
ϕ0. This gives an

isomorphism

Cq
(
g,K;F

) ∼= [S(V )⊗
∧q

g�k
∗
]K ∼= Ω

(
G�K; S(V )

)G
.

We may extend this to an isomorphism

Cq
(
g,K;F ⊗ Syml(V )

)
∼= Ω

(
G�K; S(V )⊗ Syml(V )

)G
.

One may use this isomorphism, along with the so called “theta correspondence” to

construct automorphic forms on suitable quotients of SL(2,R)�U(n). For more details

see [3, Section 1.0.9, The theta correspondence] and [4].
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1.2 Statement of results and overview

Let G = SO0(p, 1); K = SO(p) × SO(1); g = Lie(G) = o(p, 1); k = Lie(K) ∼= so(p).
Furthermore, let F be the Fock model of the Weil representation and V be the standard
representation of G. In this report we will reproduce the following result found in [3,
Theorem 4.1.1, k=1], as well as give a result on the sl(2)−module structure of the
cohomology groups.

Theorem 1.1.

H i(g,K;F) =



∞⊕
k=0

〈[
(r2)k ·

p∑
α=1

zα ⊗ ωα
]〉

if i = 1

∞⊕
l=0

〈[
zlp+1 ⊗ Ω

]〉 ⊕ ∞⊕
k=1

〈[
(r2)k ⊗ Ω

]〉
if i = p

0 otherwise,

where Ω := ω1 ∧ ω2 ∧ ... ∧ ωp.

Theorem 1.2. The cohomology groups have the following sl(2)−module structure (no-
tation from Theorem 3.10):

1.
∞⊕
k=0

〈[
(r2)k ·

p∑
α=1

zα ⊗ ωα
]〉
'
([
◦
)
.

2.
∞⊕
l=0

〈[
z2l+1
p+1 ⊗ Ω

]〉
'


(
◦
]
◦
])

if p is odd.(
◦
])

if p is even.

3.

∞⊕
l=0

〈[
z2lp+1 ⊗ Ω

]〉 ⊕ ∞⊕
k=1

〈[
(r2)k ⊗ Ω

]〉
'


(
◦
)

if p is odd.(
◦
]
◦
)

if p is even.

Furthermore, we will prove analogous results for H•(g,K;F ⊗ V ). These are as
follows:

Theorem 1.3.

H i
(
g,K;F ⊗ V

)

=



∞⊕
k=0

〈[
(r2)k ·

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ
]〉

if i = 1

∞⊕
l=0

〈[
zlp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉 ⊕ ∞⊕

k=1

〈[
(r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉

if i = p

unknown if i = p− 1

0 otherwise,

where Ω := ω1 ∧ ω2 ∧ ... ∧ ωp.
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Theorem 1.4. The cohomology groups have sl(2)−module structure:

1.

∞⊕
k=0

〈[
(r2)k ·

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ
]〉
'
([
◦
)
.

2.
∞⊕
l=0

〈[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉
'


(
◦
]
◦
])

if p is odd.(
◦
])

if p is even.

3.
∞⊕
l=0

〈[
z2lp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉 ⊕ ∞⊕

k=1

〈
[
(r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]
〉

'


(
◦
)

f p is odd.(
◦
]
◦
)

if p is even.

Finally, we will prove the following general result:

Theorem 1.5. For all l ≥ 1, and all 3 ≤ i ≤ p− 3 we have:

H i
(
g,K;F ⊗ Syml(V )

)
= {0}.

Overview

In Section 2 we will define Lie algebra cohomology using the Chevalley-Eilenberg complex
and introduce the Fock model of the Weil representation, (ω,F), of o(p, 1) × sl(2). We
will then discuss the complexes with coefficients involving the Weil representation which
will be of interest to us in this report.

In Section 3 we will describe a structure theorem for sl(2)−modules which satisfy cer-
tain properties. We will then observe in Section 5 that the cohomology groups computed
in this report are in fact sl(2)−modules which satisfy these properties. The theorem given
in this section will therefore allow us to easily describe the sl(2)−module structure of
the cohomology groups.

Section 4 will see us develop the necessary weight theory for so(m) representations to
state a decomposition rule for the tensor product of irreducible so(m) representations.
In particular, we will discuss the decomposition of Symd(Cm) into irreducible represen-
tations and provide an explicit formula for the decomposition of Syma(Cm)⊗ Symb(Cm)
into irreducible representations. We will use this result to calculate dimensions of sub-

spaces of Cil =
[
F ⊗

∧i p∗ ⊗ Syml(V )
]K

, which appear in Section 5.
In Section 5 we will calculate the relative Lie algebra cohomology of the Weil represen-

tation with coefficients in Syml(V ), that is, the cohomology associated to the complexes

C•l =
[
F ⊗

∧• p∗ ⊗ Syml(V )
]K

for l = 0, 1. We will give a complete description of all
cohomology groups for l = 0 and an almost complete description in the case l = 1. We
will observe that the cohomology groups are sl(2)−modules, and we will describe the
structure of these modules. Finally, we will briefly discuss the general case of l ∈ Z≥0, in
particular, we will show that the cohomology groups are {0} in the case that 3 ≤ i ≤ p−3
for all l ∈ Z≥0.
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2 Relative Lie algebra cohomology and the Weil represen-
tation

2.1 What is relative Lie algebra cohomology?

This subsection follows [2, Chapter 1.1]. Given a Lie algebra g over a field k (usually
k = R or C) and a representation V of g, we can form a sequence of vector spaces

C• := C•(g;V ) :=
[
V ⊗

∧•
g∗
]
∼= Homk

(∧•
g, V

)
.

We have linear maps

di : Ci = Homk

(∧i
g, V

)
−→ Ci+1 = Homk

(∧i+1
g, V

)
given by

(dif)(x1, ..., xi+1) =

i+1∑
k=1

(−1)kxk · f(x1, ..., x̂k, ..., xi)

+
∑
k<l

(−1)k+lf([xk, xl], x1, ..., x̂k, ..., x̂l, ..., xi),

where x̂k denotes the omission of the entry xk and where [xk, xl] denotes the Lie bracket
of xk and xl.

Lemma 2.1. d2 := di+1 ◦ di : Ci −→ Ci+2 ≡ 0 for all i ∈ Z≥0.

Proof. See [5, Chapter IV].

Thus, (C•(g;V ), d) is a co-chain complex. This complex is commonly referred to as
the Chevalley-Eilenburg complex and the linear maps, d, are referred to as differentials.
We define the ith cohomology group of this complex as follows:

Definition 2.2. The ith cohomology group, denoted H i(g;V ), is the quotient group

H i(g;V ) = ker
(
di : Ci −→ Ci+1

)
�im

(
di−1 : Ci−1 −→ Ci

).
This cohomology is known as the Lie algebra cohomology of g with coefficients in V .

Furthermore, given a Lie subalgebra k ⊂ g we consider the sequence of spaces

C•(g, k;V ) :=
[
V ⊗

∧• (
g�k
)∗]k ∼= Homk

(∧• (
g�k
)
, V
)
.

The above differentials di restrict to differentials di : Ci(g, k;V ) −→ Ci+1(g, k;V ), and
so we obtain a new co-chain complex (C•(g, k;V ), d). The ith cohomology group of this
co-chain complex is given as follows:
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Definition 2.3.

H i
(
g, k;V

)
=

ker
(
di : Ci(g, k;V )→ Ci+1(g, k;V )

)
�

im
(
di−1 : Ci−1(g, k;V )→ Ci(g, k;V )

)
.

This cohomology is known as the Lie algebra cohomology of g relative to k with coeffi-
cients in V .

Now, let G be a Lie group with g = Lie(G), and let K be the maximal compact
subgroup of G with k = Lie(K). We define

C•(g,K;V ) := HomK

(∧• (
g�k
)
, V
)
.

If K is connected we have [2, Chapter I, Section 5.1]:

C•(g, k;V ) = C•(g,K;V )

and
H•(g, k;V ) = H•(g,K;V ).

2.2 The Weil representation of o(p, 1)× sl(2)

In this subsection we will introduce the Fock model of the Weil representation, (ω,F),
of the reductive dual pair o(p, 1)× sl(2). We follow [6, Appendix A] and [4, Chapter 7].

Remark 2.4. Throughout this report we will use “early Greek letters”, e.g. α, β, γ, to
denote values from 1 to p, unless stated otherwise.

Let
(
V, (·, ·)

)
be a real quadratic space of signature (p, 1) with orthonormal basis

{e1, e2, ..., ep, ep+1}, that is:

(eα, eα) = 1 for 1 ≤ α ≤ p, (ep+1, ep+1) = −1.

Then,

o(V ) = o(p, 1) =
{
X ∈ gl(p+ 1,R)

∣∣ (Xv,w) + (v,Xw) = 0 for all v, w ∈ V
}

=
{
X ∈ gl(p+ 1,R)

∣∣ XT Ip,1 + Ip,1X = 0
}
.

where Ip,1 = diag(1, ..., 1︸ ︷︷ ︸
p times

,−1). Let Ep,q denote the matrix with a 1 in entry (p, q) and

0s elsewhere. An explicit calculation shows that

o(p, 1) = 〈Xα,β , Xγ,p+1〉R, 1 ≤ α < β ≤ p, 1 ≤ γ ≤ p,

where Xα,β = −Eα,β +Eβ,α, Xγ,p+1 = Eγ,p+1 +Ep+1,γ , and 〈 · 〉R denotes the real span.
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Example 2.5. Let p = 3, then examples of matrices in o(3, 1) are:

X1,2 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , X2,4 = X2,p+1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


Lemma 2.6. Let θ(X) = −XT , then we have the following eigenspace decomposition
with respect to θ:

o(p, 1) = k⊕ p0

where
k = 〈Xα,β | 1 ≤ α < β ≤ p 〉 is the + 1 eigenspace

and
p0 = 〈Xγ,p+1 | 1 ≤ γ ≤ p 〉 is the − 1 eigenspace.

Now, let sl(2,C) have basis

H =

(
0 1
−1 0

)
, R =

1

2

(
1 i
i −1

)
, L =

1

2

(
1 −i
−i −1

)
.

We have Lie bracket relations [R,L] = −iH, [H,R] = 2iR, [H,L] = −2iL. Let
F = C[z1, z2, ...zp+1] be the space of complex polynomials in variables z1, z2, ..., zp+1.
Then we have the following actions of o(p, 1) and sl(2;C) on F , where the formulae are
given, up to scaling, as in [6, Lemma A.1, Lemma A.2] after applying the change of
variable zi 7→

√
2zi (for convenience) and letting λ = i.

Definition 2.7. The Weil representation of o(p, 1) × sl(2,C), denoted (ω,F), is given
by the following actions on F :

1. The action of o(p, 1) on F is given by:

ω(Xα,β) = −zα
∂

∂zβ
+ zβ

∂

∂zα

ω(Xα,p+1) = − ∂2

∂zα∂zp+1
+ zαzp+1.

2. The action of sl(2,C) on F is given by:

ω(H) = i

[
p∑

α=1

zα
∂

∂zα
− zp+1

∂

∂zp+1

]
+

(p− 1)i

2

ω(R) =
1

2

p∑
α=1

z2α −
1

2

∂2

∂z2p+1

ω(L) = −1

2

p∑
α=1

∂2

∂z2α
+

1

2
z2p+1.
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Proposition 2.8. (ω,F) is a representation of o(p, 1)× sl(2,C).

Proof. There are three things to show, namely:

1. ω
(
[X,Y ]

)
=
[
ω(X), ω(Y )

]
for all X,Y ∈ o(p, 1).

2. ω
(
[X,Y ]

)
=
[
ω(X), ω(Y )

]
for all X,Y ∈ sl(2,C).

3. The actions of o(p, 1) and sl(2,C) commute. That is: ω(X)ω(Y ) = ω(Y )ω(X) for
all X ∈ o(p, 1), Y ∈ sl(2,C).

As both the Lie bracket and ω are linear, we only need to prove the relations for the
basis elements of o(p, 1) and sl(2,C).

1. Let Xα,β ∈ k, Xγ,δ ∈ k, then we have:

[Xα,β, Xγ,δ] = (Xα,β) · (Xγ,δ)− (Xγ,δ) · (Xα,β)

= (−Eα,β + Eβ,α) · (−Eγ,δ + Eδ,γ)− (−Eγ,δ + Eδ,γ) · (−Eα,β + Eβ,α)

=
(
Eα,δδβ,γ − Eα,γδβ,δ − Eβ,δδα,γ + Eβ,γδα,δ

)
−
(
Eγ,βδα,δ − Eγ,αδδ,β − Eδ,βδγ,α + Eδ,αδγ,β

)
= Xα,γδβ,δ +Xδ,αδγ,β +Xγ,βδα,δ +Xβ,δδα,γ

=⇒ ω
(
[Xα,β, Xγ,δ]

)
= ω(Xα,γ)δβ,δ + ω(Xδ,α)δγ,β + ω(Xγ,β)δα,δ + ω(Xβ,δ)δα,γ .

On the other hand,

ω(Xα,β) · ω(Xγ,δ) =

(
− zα

∂

∂zβ
+ zβ

∂

∂zα

)
·
(
− zγ

∂

∂zδ
+ zδ

∂

∂zγ

)
= zα

∂

∂zδ
δβ,γ + zαzγ

∂2

∂zβ∂zδ
− zα

∂

∂zγ
δβ,δ − zαzδ

∂2

∂zβ∂zγ

− zβ
∂

∂zδ
δα,γ − zβzγ

∂2

∂zα∂zδ
+ zβ

∂

∂zγ
δα,δ + zβzδ

∂2

∂zα∂zγ

ω(Xγ,δ) · ω(Xα,β) =

(
− zγ

∂

∂zδ
+ zδ

∂

∂zγ

)
·
(
− zα

∂

∂zβ
+ zβ

∂

∂zα

)
= zγ

∂

∂zβ
δδ,α + zγzα

∂2

∂zδ∂zβ
− zγ

∂

∂zα
δδ,β − zγzβ

∂2

∂zδ∂zα

− zδ
∂

∂zβ
δγ,α − zδzα

∂2

∂zγ∂zβ
+ zδ

∂

∂zα
δγ,β + zδzβ

∂2

∂zγ∂zα

Thus,[
ω(Xα,β), ω(Xγ,δ)

]
=

(
− zα

∂

∂zγ
+ zγ

∂

∂zα

)
δβ,δ +

(
− zδ

∂

∂zα
+ zα

∂

∂zδ

)
δβ,γ

+

(
− zγ

∂

∂zβ
+ zβ

∂

∂zγ

)
δα,δ +

(
− zβ

∂

∂zδ
+ zδ

∂

∂zβ

)
δα,γ

= ω
(
[Xα,β, Xγ,δ]

)
11



Similarly, one can show the relation holds for Xα,β ∈ k, Xα,p+1 ∈ p0 and also for
Xα,p+1 ∈ p0, Xβ,p+1 ∈ p0.

2. We will show that ω
(
[R,L]

)
=
[
ω(R), ω(L)

]
, other relations can be similarly shown.

ω(R) · ω(L) =
1

4

((
p∑

α=1

z2α −
∂2

∂z2p+1

)
·
(
−

p∑
β=1

∂2

∂z2β
+ z2p+1

))

=
1

4

(
−

p∑
α,β=1

z2α
∂2

∂z2β
+

p∑
α=1

z2αz
2
p+1 +

p∑
β=1

∂4

∂z2p+1∂z
2
β

− ∂2

∂z2p+1

z2p+1

)
.

Similarly, we have

ω(L) · ω(R) =
1

4

((
−

p∑
β=1

∂2

∂z2β
+ z2p+1

)
·
( p∑
α=1

z2α −
∂2

∂z2p+1

))

=
1

4

(
−

p∑
α,β=1

∂2

∂z2β
z2α +

p∑
β=1

∂4

∂z2β∂z
2
p+1

+

p∑
α=1

z2p+1z
2
α − z2p+1

∂2

∂z2p+1

)
.

Now, we have the relation

∂2

∂z2β
z2α = 2δα,β + 4zαδα,β

∂

∂zβ
+ z2α

∂2

∂z2β
,

thus, we obtain[
ω(R), ω(L)

]
= ω(R) · ω(L)− ω(L) · ω(R)

=
1

4

(
p∑

α=1

(
2 + 4zα

∂

∂zα

)
− 2− 4zp+1

∂

∂zp+1

)

=

p∑
α=1

zα
∂

∂zα
− zp+1

∂

∂zp+1
+
p− 1

2

= −i

(
i

[
p∑

α=1

zα
∂

∂zα
− zp+1

∂

∂zp+1

]
+

(p− 1)i

2

)
= −i ω(H) = ω(−iH)

= ω
(
[R,L]

)
.

3. We will show that the action of Xα,β ∈ o(p, 1) and H ∈ sl(2,C) commute. The

12



relation can be similarly shown for all other pairs.

ω(Xα,β) · ω(H)

= i

(
− zα

∂

∂zβ
+ zβ

∂

∂zα

)
·

(
p∑

γ=1

zγ
∂

∂zγ
− zp+1

∂

∂zp+1

)
+

(p− 1)i

2
ω(Xα,β)

= i

(
p∑

γ=1

(
− zα

∂

∂zβ
zγ

∂

∂zγ
+ zβ

∂

∂zα
zγ

∂

∂zγ

)
+ zα

∂

∂zβ
zp+1

∂

∂zp+1
− zβ

∂

∂zα
zp+1

∂

∂zp+1

)

+
(p− 1)i

2
ω(Xα,β)

= i

(
− zα

∂

∂zβ
−

p∑
γ=1

zαzγ
∂2

∂zβ∂zγ
+ zβ

∂

∂zα
+

p∑
γ=1

zβzγ
∂2

∂zα∂zγ

+ zαzp+1
∂2

∂zβ∂zp+1
− zβzp+1

∂2

∂zα∂zp+1

)
+

(p− 1)i

2
ω(Xα,β).

ω(H) · ω(Xα,β)

= i

(
p∑

γ=1

zγ
∂

∂zγ
− zp+1

∂

∂zp+1

)
·

(
− zα

∂

∂zβ
+ zβ

∂

∂zα

)
+

(p− 1)i

2
ω(Xα,β)

= i

(
p∑

γ=1

(
− zγ

∂

∂zγ
zα

∂

∂zβ
+ zγ

∂

∂zγ
zβ

∂

∂zα

)
+ zp+1

∂

∂zp+1
zα

∂

∂zβ
− zp+1

∂

∂zp+1
zβ

∂

∂zα

)

+
(p− 1)i

2
ω(Xα,β)

= i

(
− zα

∂

∂zβ
−

p∑
γ=1

zγzα
∂2

∂zγ∂zβ
+ zβ

∂

∂zα
+

p∑
γ=1

zγzβ
∂2

∂zγ∂zα

+ zp+1zα
∂2

∂zp+1∂zβ
− zp+1zβ

∂2

∂zp+1∂zα

)
+

(p− 1)i

2
ω(Xα,β).

From which one observes that indeed ω(Xα,β) · ω(H) = ω(H) · ω(Xα,β).

2.3 Complexes with coefficients involving the Weil representation

We will now introduce the complexes of interest in this report. Let G = SO0(p, 1), the
connected component to the identity of O(p, 1). Let K = SO(p)× SO(1), the maximal
compact subgroup of G. Then g = Lie(G) = o(p, 1), k = Lie(K) = so(p)⊕ so(1) ∼= so(p).
Recall that we have the decomposition g = k ⊕ p0, and also recall that p0 has basis
{Xα,p+1}pα=1. Let p∗0 have canonical basis {ωα}pα=1 such that ωα(Xβ,p+1) = δαβ.

13



Consider the sequence of spaces

C•(g,K;F) =
[
F ⊗

∧• (
g�k
)∗]K

=
[
F ⊗

∧•
p∗0

]K
= 1
[
F ⊗

∧•
p∗0

]k
with differential given by [3, Theorem 2.1.3]

d =

p∑
α=1

ω(Xα,p+1)⊗A(ωα) =

p∑
α=1

(
− ∂2

∂zα∂zp+1
+ zαzp+1

)
⊗A(ωα),

where A(ωα) denotes left exterior multiplication on
∧i p∗0 by ωα ∈ p∗0. This complex will

enable us to compute the Lie algebra cohomology of g relative to k (or K) with coefficients
in the Weil representation, otherwise known as the relative Lie algebra cohomology of
the Weil representation with trivial coefficients.

Furthermore, if we let V denote the standard representation of SO0(p, 1), then we
may consider the sequence of spaces

C•
(
g,K;F ⊗ Syml(V )

)
=
[
F ⊗

∧•
p∗0 ⊗ Syml(V )

]K
.

In this case the differential is given by [6, Section 5.1]

d = dS + dV

where

dS =

p∑
α=1

ω(Xα,p+1)⊗A(ωα)⊗ 1, dV =

p∑
α=1

1⊗A(ωα)⊗Dρ(Xα,p+1)

where Dρ is the derived action of p ⊂ g = Lie(G) on Syml(V ). This complex will allow
us to compute the Lie algebra cohomology of g relative to k (or K) with coefficients
in F ⊗ Syml(V ), otherwise known as the relative Lie algebra cohomology of the Weil
representation with coefficients in Syml(V ).

Remark 2.9. Observe that for l = 0, dV ≡ 0 and the latter complex reduces to the
former.

Now let p denote the complexification of p0, that is, p = p0 ⊗ C. Also let
KC = SO(p,C)× SO(1,C). We have the following isomorphism [3, Chapter 2.2]

C• (g,K;F) ∼= C•
(
o(p, 1,C),KC,F

)
.

This extends to an isomorphism

C•
(
g,K;F ⊗ Syml(V )

)
∼= C•

(
o(p, 1,C),KC;F ⊗ Syml(V ⊗ C)

)
where

C•
(
o(p, 1,C),KC,F ⊗ Syml(V ⊗ C)

)
=
[
F ⊗

∧•
p∗ ⊗ Syml(V ⊗ C)

]SO(p,C)
.

We will make use of this isomorphism in Section 5.
1As K is connected these spaces are equal, see [2, Chapter I, Section 5.1].
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3 A structure theorem for sl(2)−modules

We will see in Section 5 that the cohomology groups arising from the complexes

Ci
(
o(p, 1,C),KC,F ⊗ Syml(V ⊗ C)

)
are in fact sl(2)−modules. These modules will be infinite dimensional and so in order
to classify them we will state and describe a structure theorem for sl(2)−modules. This
section will follow [7, Section II, Chapter 1]. We will discuss the result as it is found
in [7], that is, a result about sl(2,R)−modules. We will then extend this result to a
result about sl(2,C)−modules using complexification. Before we state the theorem we
will introduce some terminology.

3.1 Definitions and terminology

We begin by remarking that the definitions and terminology in this section apply to both
sl(2,R) and sl(2,C), therefore we will simply write sl(2). We will also use the terms
“sl(2)−module” and “representation of sl(2)” interchangeably throughout the section
(and throughout the report).

Definition 3.1 (Standard basis of sl(2)). Let sl(2) have basis {h, e, f}. We say {h, e, f}
is a standard basis of sl(2) if it satisfies the following Lie bracket relations:

[f, e] = h, [h, e] = −2e, [h, f ] = 2f.

Definition 3.2 (h-semisimple module). Let (ρ, V ) be a representation of sl(2). If V has
a decomposition

V =
⊕
λ

Vλ

where
Vλ = {v ∈ V : ρ(h)v = λv}

and each Vλ is finite-dimensional then we say (ρ, V ) is h-semisimple. We say λ are the
weights of the representation V ; the v ∈ Vλ are weight vectors corresponding to the
weight λ; and the Vλ are weight spaces.

Example 3.3. Consider sl(2,R) with standard basis

h =

(
1 0
0 −1

)
, e =

(
0 0
1 0

)
, f =

(
0 1
0 0

)
and let (ρ, V ) = (ρ,R2) be the standard representation of sl(2), where R2 has standard
basis {e1, e2}. Then

V = V1 ⊕ V−1
where

V1 = {v ∈ V : ρ(h)v = v} = R · e1
and

V−1 = {v ∈ V : ρ(h)v = −v} = R · e2.

15



Definition 3.4 (h multiplicity free sl(2)−module). Let (ρ, V ) be a representation of
sl(2) and suppose V is h-semisimple, that is,

V =
⊕
λ

Vλ

where Vλ = {v ∈ V : ρ(h)v = λv}. Then we say V is h multiplicity free if for all λ such
that Vλ 6= {0} we have

dim(Vλ) = 1.

Definition 3.5 (Indecomposable sl(2)−module). Let (ρ, V ) be a representation of sl(2).
We say V is indecomposable if V 6= {0} and V cannot be expressed as a direct sum,
V = U1 ⊕ U2, of two non-zero subrepresentations of V .

Remark 3.6. If V is irreducible then V is indecomposable. The converse is not true.

Definition 3.7 (Casimir operator and quasisimple sl(2)−modules). Let sl(2) have stan-
dard basis {h, e, f}, then we define the Casimir operator as

C = h2 + 2ef + 2fe.

Furthermore, let (ρ, V ) be a representation of sl(2), then we say that V is quasisimple
if C acts as a multiple of the identity on V , i.e.

C · v =
(
ρ(h)ρ(h) + 2ρ(e)ρ(f) + 2ρ(f)ρ(e)

)
· v = λv

for all v ∈ V , where λ is a scalar depending on v.

Proposition 3.8. [7, Proposition 1.1.4] Let (ρ, V ) be a representation of sl(2) and let
sl(2) have standard basis {h, e, f}. If v ∈ V is a weight vector with weight λ, then:

1. ρ(f)kv, k ∈ Z≥0 is either zero or a weight vector with weight λ+ 2k.

2. ρ(e)kv, k ∈ Z≥0 is either zero or a weight vector with weight λ− 2k.

Thus, sl(2) · v ⊆ V , the sl(2)−module generated by v, is h-semisimple and h multiplicity
free.

Furthermore, suppose that v is an eigenvalue for C, that is

C · v = µv

for some scalar µ. Then sl(2) · v is also quasisimple.

Definition 3.9. If {h, e, f} is a standard basis for sl(2) then we call e the lowering
operator and f the raising operator (as they lower/raise the weight of weight vectors by
±2). Furthermore, if v ∈ V is a weight vector, i.e. h · v = λ · v for some λ ∈ C, then we
say v is a highest weight vector if f · v = 0. Similarly, we say v a lowest weight vector if
e · v = 0.

With these definitions we can now present a structure theorem for indecomposable,
quasisimple, h-semisimple, h multiplicity free sl(2)−modules.
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3.2 The structure theorem

The following theorem gives a pictorial way to view the isomorphism classes of indecom-
posable, quasisimple, h-semisimple, h multiplicity free sl(2)−modules.

The dots, ◦, on the diagrams below denote h-weight spaces ordered with increasing
weights from left to right. A left bracket “[” indicates that the weight vectors in the
weight space to the immediate right are killed by applying the lowering operator e, but
that the weight vectors to the immediate left are not killed by applying the raising
operator f . We analogously define the right bracket “]”.

Theorem 3.10. [7, Theorem 1.1.13] If V is an indecomposable, quasisimple, h-semisimple,
h multiplicity free sl(2)-module then the isomorphism class of V is given by one of the
following:

(◦) V ' · · · ◦ ◦ ◦ ◦ ◦ ◦ · · ·(
◦
]
◦
)

V ' · · · ◦ ◦ · · · ◦
]
◦ ◦ · · ·(

◦
])

V ' · · · ◦ ◦ · · · ◦
]

(
◦
[
◦
)

V ' · · · ◦ ◦
[
◦ · · · ◦ ◦ · · ·([

◦
)

V '
[
◦ · · · ◦ ◦ · · ·

(◦
[
◦
]
◦) V ' · · · ◦

[
◦ · · · ◦

]
◦ · · ·

(◦
[
◦
]
) V ' · · · ◦

[
◦ · · · ◦

]
(
[
◦
]
◦) V '

[
◦ · · · ◦

]
◦ · · ·

(
[
◦
]
) V '

[
◦ · · · ◦

]
(◦
]
◦
]
◦) V ' · · · ◦

]
◦ · · · ◦

]
◦ · · ·

(◦
]
◦
]
) V ' · · · ◦

]
◦ · · · ◦

]
(◦
[
◦
[
◦) V ' · · · ◦

[
◦ · · · ◦

[
◦ · · ·

(
[
◦
[
◦) V '

[
◦ · · · ◦

[
◦ · · ·

(◦
]
◦
[
◦) V ' · · · ◦

]
◦ · · · ◦

[
◦ · · ·
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Remark 3.11. In [7], this theorem is given for sl(2,R)−modules. However, every R-
linear representation of sl(2,R) extends uniquely to a C-linear representation of
sl(2,R)⊗R C = sl(2,C), so the theorem holds for C-linear representations of sl(2,C)
also.

Recall that we stated this theorem in order to help us to describe the sl(2)−module
structure of the cohomology groups which will arise in Section 5 of the report. However,
much of the exposition in [7] (which has been omitted) leading up to the structure
theorem uses that {h, e, f} is a standard basis of sl(2). Recall that in Section 2 we let
sl(2,C) have the basis

H =

(
0 1
−1 0

)
, R =

1

2

(
1 i
i −1

)
, L =

1

2

(
1 −i
−i −1

)
with Lie bracket relations [R,L] = −iH, [H,R] = 2iR, [H,L] = −2iL. This is, of course,
not a standard basis of sl(2,C), however if we define

Ĥ := −iH

then {Ĥ, L,R} is a standard basis for sl(2,C). Now, the scaling of H will not affect the
weight spaces, thus

V is Ĥ − semisimple ⇐⇒ V is H − semisimple

and
V is Ĥ multiplicity free ⇐⇒ V is H − multiplicity free.

Moreover, as {Ĥ, L,R} is a standard basis of sl(2,C), the Casimir operator is given as
in Definition 3.7, that is

C = Ĥ2 + 2LR+ 2RL.

This implies that the Casimir operator for the basis {H,L,R} is given by

C′ = −H2 + 2LR+ 2RL.

Thus, with respect to the basis {H,L,R}, we say that V is quasisimple if C′ acts as a
multiple of the identity on V . Finally, the scaling of H will not affect the isomorphism
classes occurring in Theorem 3.10, so the result will still hold for sl(2,C)−modules where
sl(2,C) has basis {H,L,R}. We will refer to L as the lowering operator and R as the
raising operator (as they lower/raise the weight by ±2i).
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4 The representation theory of so(m)

In this section we develop the representation theory of so(m) using the theory of weights.
This will give us an explicit way to describe irreducible representations of a given highest
weight. In order to describe these irreducible representations we will need to introduce
the so-called Schur functors. We will then give a decomposition rule for tensor products
of irreducible representations of so(m), and conclude the section by giving an explicit
formula for the decomposition of the representation Syma(V )⊗Symb(V ) of so(m), where
V is the standard representation of so(m).

This section will closely follow [8, Fulton and Harris], we will give more specific
references throughout where applicable.

4.1 Weight theory of so(m)

This subsection will follow [8, Chapter 17]. We will now introduce the weight theory
of so(m,C). This theory will give us a very efficient way to describe the irreducible
representations of so(m,C).

Let V be an m-dimensional complex vector space and let (·, ·) : V × V → C be a
non-degenerate, symmetric bilinear form on V . The orthogonal Lie algebra so(m) is
given as follows:

so(m) =
{
A ∈ gl(m,C)

∣∣ (Av,w) + (v,Aw) = 0 ∀ v, w ∈ V
}
.

We now wish to introduce a basis for V and express (·, ·) in terms of this basis. Unfor-
tunately, the cases where m is odd and where m is even differ slightly and so must be
considered separately. When m is even, say m = 2n, let {e1, e2, ..., e2n} be a basis for
V , then the quadratic form (·, ·) is given by

(ei, en+i) = (en+i, ei) = 1, 1 ≤ i ≤ n, (ei, ej) = 0 if j 6≡ i mod (n).

We may express the bilinear form as

(x, y) = xTMy

for all x, y ∈ V where M =

(
0 In
In 0

)
∈M2n×2n(C).

Remark 4.1. Had we chosen the “obvious” bilinear form, namely (ei, ej) = δij , then
so(m) would consist of skew-symmetric matrices. Our choice of (·, ·) means that we will
be able to choose the set of diagonal matrices as our Cartan subalgebra, which will make
the process of defining the weights and weight spaces much more straightforward.

With respect to our chosen bilinear form so(2n) corresponds to the set of matrices
X ∈ gl(m,C) satisfying:

XT ·M +M ·X = 0.
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Direct calculation shows that

so(2n) =

{(
A B
C D

)
∈ gl(2n,C)

∣∣∣ A = −DT , B = −BT , C = −CT
}

where A,B,C,D ∈Mn×n(C).
When m is odd, say m = 2n+ 1, we let V have basis {e1, e2, ..., e2n, e2n+1}, then the

bilinear form (·, ·) satisfies the relations:

(ei, en+i) = (en+i, ei) = 1, 1 ≤ i ≤ n, (e2n+1, e2n+1) = 1

and (ei, ej) = 0 for all other pairs i, j. We may express the bilinear form as

(x, y) = xTMy

where M =

 0 In 0
In 0 0
0 0 1

 ∈ GL(2n + 1,C). Exactly as in the even case, we have that

so(2n+ 1) corresponds to the set of matrices X satisfying

XT ·M +M ·X = 0.

Direct calculation gives us that

so(2n+ 1) =


A B E
C D F
G H J

 ∈ gl(2n+ 1,C)
∣∣∣ A = −DT , B = −BT ,

C = −CT , E = −HT , F = −GT , J = 0.


where A,B,C,D ∈Mn×n(C). E,F ∈Mn×1(C), G,H ∈M1×n(C). J ∈M1×1(C) ∼= C.

Now, in both the odd and the even cases we may take our Cartan subalgebra h to be
the subalgebra of diagonal matrices. Recall that we defined Eij to be the matrix with a
1 in entry (i, j) and 0s elsewhere. Then h is generated by the n m×m matrices

Hi := Ei,i − En+i,n+i.

Note that h is the same in both the odd and even case. Observe that the action of Hi

on V fixes ei, sends en+i to it’s negative and kills all other basis vectors. Finally, we will
let h∗, the space of linear functionals on h, have basis {Lj}nj=1 such that Lj(Hi) = δij .

Definition 4.2. Let h act on so(m) via the adjoint action. We call X ∈ so(m) a root
vector if

[H,X] = α(H)X

for all H ∈ h, where α ∈ h∗. We call α ∈ h∗ a root if there exists a non-zero vector
X ∈ so(m) such that [H,X] = α(H)X for all H ∈ h.
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Lemma 4.3. [8, Chapter 18.1, page 270.] Let h ∈ so(m) be the Cartan subalgebra as
above. Let h act on so(m) via the adjoint action. Then we have the following:

1. Let m = 2n be even, then the root vectors are

{Xi,j , Yi,j , Zi,j , 1 ≤ i, j ≤ n}

where Xi,j = Ei,j − En+j,n+i, Yi,j = Ei,n+j − Ej,n+i, Zi,j = En+i,j − En+j,i with
roots {±Li ± Lj}i 6=j ⊂ h∗.

2. Let m = 2n + 1, then all root vectors of so(2n), when viewed as elements of
so(2n + 1) via the upper left block inclusion, are still root vectors with the same
roots. In addition we have root vectors

{Ui, Vi, 1 ≤ i ≤ n}

where Ui = Ei,2n+1 − E2n+1,n+i, Vi = En+i,2n+1 − E2n+1,i with roots {±Li} ∈ h∗.

We may choose an ordering on the roots R by defining a linear functional l on h∗ as
follows:

l

(
n∑
i=1

aiLi

)
= c1a1 + ...+ cnan

where c1 > c2 > ... > cn. We call a root α positive if l(α) > 0. With respect to this
linear functional so(m) has positive roots given as follows:

1. If m = 2n then the positive roots are

R+ = {Li + Lj}i<j ∪ {Li − Lj}i<j .

2. If m = 2n+ 1 then the positive roots are

R+ = {Li + Lj}i<j ∪ {Li − Lj}i<j ∪ {Li}i.

A root vector with a positive root is known as a positive root vector.

Definition 4.4. Let V be a representation of so(m). We call v ∈ V a weight vector if

H · v = α(H)v

for all H ∈ h, where α ∈ h∗. We say α ∈ h∗ is a weight of the representation if there
exists a vector v ∈ V such that H · v = α(H)v. Furthermore, if α ∈ h∗ is a weight, then
we define the weight space of α, denoted Vα, as

Vα =
{
v ∈ V |H · v = α(H)v

}
.

Finally, we say α ∈ h∗ is a highest weight if for every positive root vector R ∈ h we have

H ·R(v) = 0.

for all v ∈ Vα. We call v a highest weight vector.
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Remark 4.5. A root (vector) is a weight (vector) in the case that V = so(m) is the
adjoint representation.

Let m = 2n or 2n+ 1, then we have seen that {Li}ni=1 form a basis for h∗. Thus we
can express any weight in the form

λ1L1 + λ2L2 + ...+ λnLn ∈ h∗.

We can write this as a partition, namely λ = (λ1, ..., λn). We now state the following
result:

Proposition 4.6. [8, Theorem 19.22] Given a partition λ = (λ1, λ2, ..., λn) such that
λ1 ≥ ... ≥ λn ≥ 0, there exists an irreducible representation of so(m) with highest weight
λ1L1 + ...+ λnLn.

Furthermore, when m = 2n we have that for every λ = (λ1, λ2, ..., λn) such that
λ1 ≥ ... ≥ λn−1 ≥ |λn|, there exists an irreducible representation of so(m) with highest
weight λ1L1 + ...+ λnLn.

Remark 4.7. This does not give us all the irreducible representations of so(m). There
exist so-called spin representations which we have not mentioned. However these will
not appear in the report so we have omitted any discussion about them.

4.2 Schur functors and the irreducible representations of so(m)

In this subsection we define Young symmetrisers and Schur functors, and give a con-
struction of the irreducible representations of so(m). We follow [8, Chapter 4] for the
definition of Young symmetrisers, [8, Chapter 6] for Schur functors, and [8, Chapter 17.3]
for the construction of the irreducible representations.

Definition 4.8 (Young Diagram). Given a partition λ = (λ1, λ2, ..., λn) such that
λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0 we may associate to it a Young diagram of shape λ. That is, a
diagram with λi boxes in the ith row such that the rows of boxes line up on the left.

Example 4.9. Let λ = (5, 3, 2). Then the associated Young diagram is

Given a Young diagram of a partition of d, we may number the boxes in ascending
order from the top left to the bottom right. For example, for the Young diagram above,
which is a partition of 5 + 3 + 2 = 10, we number it as follows:

1 2 3 4 5

6 7 8

9 10
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Now, given a numbered Young diagram of a partition of d, we define two subgroups
of Sd, the symmetric group on d elements, denoted Pλ and Qλ, as follows:

Pλ := {σ ∈ Sd : σ preserves the numbers in each row of the diagram},

Qλ := {σ ∈ Sd : σ preserves the numbers in each column of the diagram}.

Given Pλ and Qλ we define two elements of the group algebra C[Sd] as follows:

aλ :=
∑
σ∈Pλ

eσ and bλ :=
∑
σ∈Qλ

sgn(σ)eσ.

We now define the Young symmetriser of a partition.

Definition 4.10 (Young symmetriser). For a partition λ, let aλ and bλ be defined as
above. Then

cλ = aλ · bλ ∈ C[Sd]

is the Young symmetriser of λ.

Example 4.11. We now give a full example of the construction of the Young sym-
metriser for a given partition λ. For large d the Young symmetriser will contain a vast
number of terms. With this in mind let λ = (2, 2, 1) be a partition of d = 5. Then λ has
associated numbered Young diagram:

1 2

3 4

5

Now, Pλ, Qλ, aλ and bλ are given as follows:

Pλ =
{

(1), (12), (34)
}
,

Qλ =
{

(1), (13), (15), (35), (135), (153), (24)
}
,

aλ =
∑
σ∈Pλ

eσ = e(1) + e(12) + e(34),

bλ =
∑
σ∈Qλ

sgn(σ)eσ = e(1) − e(13) − e(15) − e(35) − e(24) + e(135) + e(153).

Thus, we have that the Young symmetriser of λ = (2, 2, 1) is

cλ = aλ · bλ =
∑
σ∈Pλ

eσ ·
∑
τ∈Qλ

sgn(τ)eτ

= e(1) − e(13) − e(15) − e(35) − e(24) + e(135) + e(153)

+ e(12) − e(132) − e(152) − e(12)(35) − e(124) + e(1352) + e(1532)

+ e(34) − e(143) − e(34)(15) − e(354) − e(234) + e(1435) + e(1543).
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Now, having defined the Young symmetriser we turn to the definition of the Schur
functor, we follow [8, Chapter 6]. Let V be a complex vector space, then V is a repre-
sentation of GL(V ) by definition. Now consider V ⊗d := V ⊗ V ⊗ ...⊗ V︸ ︷︷ ︸

d times

, then Sd acts

on V ⊗d on the right2 by permuting factors:

(v1 ⊗ v2 ⊗ ...⊗ vd) · σ = vσ(1) ⊗ σσ(2) ⊗ ...⊗ vσ(d)

for all σ ∈ Sd, v1 ⊗ v2 ⊗ ... ⊗ vd ∈ V ⊗d. Note that the action of Sd commutes with the
left action of GL(V ). We now give the following definition:

Definition 4.12 (Schur functor). Let λ be a partition of d and let cλ be the Young
symmetriser of λ. Then cλ acts on V ⊗d on the right as above and we define

Sλ(V ) = im
(
cλ : V ⊗d → V ⊗d

)
.

Sλ(V ) is known as a Schur functor and is also a representation of GL(V ), since the
action of Sd commutes with the action of GL(V ) on V ⊗d.

Example 4.13. Let V = Cn with basis {e1, e2, ..., en}. Fix d ∈ Z≥0.

1. Let λ = (d). Then

cλ = c(d) = a(d) =
∑
σ∈Sd

eσ

and so S(d)(V ) is the subspace of V ⊗d given by elements of the form∑
σ∈Sd

vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(d).

Thus, S(d)(V ) = Symd(V ).

2. Let λ = (1, 1, ..., 1︸ ︷︷ ︸
d times

). Then

cλ = c(1,1,..,1) = b(1,1,...1) =
∑
σ∈Sd

sgn(σ)eσ

and S(1,1,...,1)(V ) is the subspace of V ⊗d given by elements of the form∑
σ∈Sd

sgn(σ)vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(d).

Thus S(1,1,...,1)(V ) =
∧d(V ).

2We act on the right as acting with the analogous left action involves taking inverses - something we
happily avoid.
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We now turn to the last objective of this subsection, namely describing the irreducible
representations of so(m) which will be of interest to us in this report. This description is
known as “Weyl’s construction for Orthogonal groups” and we follow [8, Chapter 19.5].

For the remainder of this subsection we let V = Cm. Given a bilinear form (·, ·) and
a pair (i, j) with 1 ≤ i < j ≤ d we may define a contraction from V ⊗d to V ⊗(d−2) as
follows:

Ψi,j : V ⊗d −→ V ⊗(d−2)

v1 ⊗ ...⊗ vd 7−→ (vi, vj)v1 ⊗ ...v̂i ⊗ ...⊗ v̂j ⊗ ...⊗ vd

where v̂i denotes the omission of the entry vi. We also define

V [d] :=
⋂

1≤i<j≤d
ker (Ψi,j) ,

that is, V [d] is the intersection of the kernels of all possible contractions from V ⊗d to
V ⊗(d−2). Now, for any partition λ = (λ1, λ2, ..., λn) of d such that λ1 ≥ λ2 ≥ ... ≥ λn ≥ 0
let

S[λ](V ) := V [d] ∩ Sλ(V ).

Now, one sees that the contractions Ψi,j are so(m,C)-homomorphisms, therefore V [d] is
a representation of so(m,C), as is Sλ(V ), thus S[λ](V ) is a representation of so(m,C).
We conclude this subsection with the following three results:

Proposition 4.14. [8, Exercise 19.21]

1. The kernel of the contraction from Symd(V ) to Symd−2(V ) is the representation
S[d](V ) of so(m,C) with highest weight dL1.

2. We have the decomposition

Symd(V ) = S[d](V )⊕ S[d−2](V )⊕ ...⊕ S[d−2p](V )

where p is the largest integer such that p ≤ d
2 .

Proof. As this result is given as an exercise in Fulton & Harris we provide a proof.

1. Let v1v2...vd denote the element
∑
σ∈Sd

vσ(1) ⊗ vσ(2) ⊗ ... ⊗ vσ(d) ∈ Symd(V ). Then

the contraction, Ψ, from Symd(V ) to Symd−2(V ) is given by

Ψ(v1v2...vd) = (v1, v2)v3...vd

or equivalently

Ψ

( ∑
σ∈Sd

vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(d)

)
=
∑
σ∈Sd

(
vσ(1), vσ(2)

)
vσ(3) ⊗ ...⊗ vσ(d).
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We know that S[d](V ) = V [d]∩Sd(V ) = V [d]∩Symd(V ). Let K ⊂ Symd(V ) denote

the kernel of the contraction Ψ. We will show that K = V [d] ∩ Symd(V ).

Firstly, we show V [d] ∩ Symd(V ) ⊂ K. Indeed, if v1v2...vd ∈ V [d] then for any pair
(i, j) such that 1 ≤ i < j ≤ d we have by linearity∑

σ∈Sd

(
vσ(i), vσ(j)

)
vσ(1) ⊗ vσ(2) ⊗ ...⊗ v̂σ(i) ⊗ ...⊗ v̂σ(j)...⊗ vσ(d) = 0.

In particular for (i, j) = (1, 2) we have∑
σ∈Sd

(
vσ(1), vσ(2)

)
vσ(3)...⊗ vσ(d) = 0,

therefore v1v2...vd ∈ K.

Conversely, suppose v1v2...vd =
∑
σ∈Sd

vσ(1) ⊗ vσ(2) ⊗ ...⊗ vσ(d) ∈ K, then

∑
σ∈Sd

(
vσ(1), vσ(2)

)
vσ(3) ⊗ ...⊗ vσ(d) = 0

so certainly v1v2...vd ∈ ker(Ψ1,2).Now, given (i, j), set τ =
(
σ(1), σ(i)

)(
σ(2), σ(j)

)
σ

then we have∑
σ∈Sd

(
vσ(i), vσ(j)

)
vσ(1) ⊗ vσ(2) ⊗ ...⊗ v̂σ(i) ⊗ ...⊗ v̂σ(j)...⊗ vσ(d)

=
∑
τ∈Sd

(
vτ(1), vτ(2)

)
vτ(i) ⊗ vτ(j) ⊗ vτ(3) ⊗ ...⊗ vτ(d)

=
∑
τ ′∈Sd

(
vτ ′(1), vτ ′(2)

)
vτ ′(3) ⊗ ...⊗ vτ ′(d)

=
∑
σ∈Sd

(
vσ(1), vσ(2)

)
vσ(3) ⊗ ...⊗ vσ(d) = 0

where τ ′ = rτ where r ∈ Sd is such that(
τ(i), τ(j), τ(3), ..., τ(d)

) r7−→
(
τ(3), τ(4), ..., τ(d)

)
.

Thus v1v2...vd ∈ ker(Ψi,j) for all (i, j) and so K ⊂ V [d] ∩ Symd(V ).

We conclude by observing that e1e1...e1 ∈ K has weight dL1, thus K = S[d](V ) is
indeed the representation with highest weight dL1, as required.

2. This follows from induction and part 1, which tells us that since the contraction is
surjective we have Symd(V ) = S[d](V )⊕ Symd−2(V ) as representations.
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Proposition 4.15. [8, Theorem 19.22]

1. If m = 2n+1 and λ = (λ1, ..., λn), λ1 ≥ ... ≥ λn ≥ 0, then S[λ](V ) is the irreducible
representation with highest weight λ1L1 + ...+ λnLn.

2. If m = 2n and λ = (λ1, ..., λn), λ1 ≥ ... ≥ λn−1 ≥ 0, λn = 0 then S[λ](V ) is the
irreducible representation with highest weight λ1L1 + ...+ λn−1Ln−1.

3. If m = 2n and λ = (λ1, ..., λn), λ1 ≥ ... ≥ λn > 0, then S[λ](V ) decomposes into
the direct sum of two irreducible representations with highest weights
λ1L1 + ...+ λnLn and λ1L1 + ...+ λn−1Ln−1 − λnLn.

Proposition 4.16. [8, Theorem 19.2, Theorem 19.14]

1. Let m = 2n + 1 be odd. Then for k = 1, ..., n, the exterior power
∧k(V ) of the

standard representation V of so(m,C) is the irreducible representation with highest
weight L1 + ...+ Lk.

2. Let m = 2n be even then:

(a) If k = 1, 2, ..., n − 1 then the exterior power
∧k(V ) of the standard repre-

sentation V of so(m,C) is the irreducible representation with highest weight
L1 + ...+ Lk .

(b) If k = n, then
∧k(V ) has exactly two irreducible factors. (Note: Proposition

4.15 exactly describes these irreducible factors.)

4.3 A decomposition rule for tensor products of irreducible represen-
tations

We have now developed a way to describe the irreducible representations of so(m) which
are of interest to us. We now look towards the final part of the section, namely, looking
at a decomposition rule for tensor products of irreducible representations.

Definition 4.17 (Littlewood-Richardson coefficients). [8, Appendix A, Page 456.] Let
λ, µ and ν be partitions. We define the Littlewood-Richardson coefficient Mν

λ,µ to be
the number of ways to expand the Young diagram of λ to the Young diagram of ν using
a strict µ−expansion.

That is, if µ = (µ1, ..., µk) then a µ−expansion of a Young diagram is obtained by
first adding µ1 boxes to the diagram such that no two boxes are in the same column and
then putting a number 1 in them, then adding µ2 boxes to the diagram such that no
two of these boxes are in the same column and putting a number 2 in them and so on.

The expansion is called strict if when the integers in the boxes are listed from right
to left starting on the top row and working down and one considers the first t entries in
the list for any 1 ≤ t ≤ µ1 + ... + µk, then the number 1 occurs at least as many times
as the number 2 occurs, and the number 2 occurs at least as many times as the number
3 occurs, and so on.
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Example 4.18. We now see some examples of strict expansions of Young diagrams and
computing Littlewood-Richardson coefficients.

1. Let λ = (3, 2, 1), µ = (2, 1) and ν = (4, 2, 2). Then Mν
λµ = 0. Indeed, if we strictly

µ−expand the Young diagram of shape λ then we will have∑
i

λi +
∑
j

µj = (3 + 2 + 1) + (2 + 1) = 9

total boxes, however the Young diagram for ν only has ν1 +ν2 +ν3 = 4 + 2 + 2 = 8
boxes. Thus there is no way to µ−expand the Young diagram of shape λ to the
Young diagram of ν.

2. Let λ = (3, 2, 1), µ = (2, 1) and ν = (5, 2, 2). Then Mν
λµ = 1. Indeed we begin

with a Young diagram for λ and wish to add 2 boxes with a 1 in them, and 1 box
with a 2 in it according to the above criteria.

1 1 2

The Young diagrams we can end up with are as follows

1 1

2

1 1

2

1

1 2

1

2

1

1

1

2

1

1 2

As we can see the Young diagram for ν = (5, 2, 2) appears once, so indeed Mν
λµ = 1.

We are now ready to introduce the decomposition rule for tensor products of so(m)
representations. Using this we will develop a decomposition rule for representations of
the form Syma(V ) ⊗ Symb(V ). For the remainder of this section we let Γλ denote the
irreducible representation with highest weight λ. That is, Γλ = S[λ](V ), unless m = 2n
and λn > 0, in which case S[λ](V ) = Γλ ⊕ Γ(λ1,...,λn−1,−λn) (see Proposition 4.15).

Lemma 4.19. [8, Section 25.3] Let λ and µ be partitions such that λ1 ≥ ... ≥ λn ≥ 0
and µ1 ≥ ... ≥ µn ≥ 0. Then we have

Γλ ⊗ Γµ =
⊕
ν

Nν
λµΓν
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where
Nν
λµ =

∑
ζ,σ,τ

Mλ
ζσ M

µ
ζτ M

ν
στ

where the M ’s are Littlewood-Richardson coefficients, and where we sum over all possible
partitions ζ, σ, τ .

We now use this result to give an explicit decomposition for representations of the
form Syma(V )⊗ Symb(V ). We begin with the following definition.

Definition 4.20. Let Y (m,n, ζ) be the set of partitions of m + n − 2ζ such that the
first entry is greater than to equal to m − ζ, the second entry is less than or equal to
n− ζ and all other entries are 0.

Example 4.21. Y (4, 3, 1) = “the set of partitions of 5, such that the first entry is ≥ 3,
the second entry is ≤ 2, and all other entries are 0” = {(5), (4, 1), (3, 2)}.

Theorem 4.22. Let m ≥ 4 and V be the standard representation of so(m). Then we
have the following decomposition:

Syma(V )⊗ Symb(V ) =

l≤a
2⊕

l=0

 k≤ b
2⊕

k≥ b−(a−2l)
2

⊕
0≤ζ≤b−2k

⊕
α∈Y (a−2l,b−2k,ζ)

Γα

⊕ k<
b−(a−2l)

2⊕
k=0

⊕
0≤ζ≤a−2l

⊕
α∈Y (b−2k,a−2l,ζ)

Γα

.
Proof. We begin by finding the decomposition of Γλ ⊗ Γµ where λ = (p, 0, ..., 0) and
µ = (q, 0, .., 0). Note that Γλ = S[p](V ) and Γµ = S[q](V ). We assume w.l.o.g. that
p ≥ q. We have

Γλ ⊗ Γµ =
⊕
ν

Nν
λµΓν , Nν

λµ =
∑
ζ,σ,τ

Mλ
ζσ M

µ
ζτ M

ν
στ .

We now look for all ζ, σ, τ, ν such that Nν
λ,µ is non-zero.

• For Mλ
ζσ 6= 0 we require ζ = (ζ, 0, , , 0) 3, ζ ≤ p and σ = (p − ζ, 0, ..., 0), since

λ = (p, 0, ..., 0).

• For Mµ
ζτ 6= 0 we require ζ = (ζ, 0, , , 0), ζ ≤ q and τ = (q − ζ, 0, ..., 0), since

µ = (q, 0, ..., 0).

• As we assumed q ≤ p, we require ζ ≤ q. Note that σ and τ are fixed once ζ is
chosen. Suppose now we fix 0 ≤ ζ ≤ q.

3Abuse of notation: We will denote the partition and the first and potentially only non-zero value of
the partition with the same symbol.
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• Mν
στ is the number of ways to extend the Young diagram for σ = (p− ζ, 0, ..., 0)

via a strict τ -expansion to the Young diagram for ν, where τ = (q − ζ, 0..., 0).

. . . . . . . . .︸ ︷︷ ︸
p−ζ boxes

1 1 · · · 1︸ ︷︷ ︸
q−ζ boxes with a 1 in them

Thus, the partitions ν which can be achieved are exactly the partitions in Y (p, q, ζ),
that is, the set of partitions of p+q−2ζ such that the first entry is greater than to
equal to p− ζ, the second entry is less than or equal to q − ζ and all other entries
are 0. Note that each of these partitions appears exactly once.

• Altogether this gives us the decomposition

Γλ ⊗ Γµ = S[p](V )⊗ S[q](V ) =
⊕

0≤ζ≤q

⊕
ν∈Y (p,q,ζ)

Γν

Now, we recall that we have Symd(V ) =

l≤ d
2⊕

l=0

S[d−2l](V ). Thus,

Syma(V )⊗ Symb(V ) =

l≤a
2⊕

l=0

S[a−2l](V )

⊗k≤ b
2⊕

k=0

S[b−2k](V )


=

l≤a
2⊕

l=0

k≤ b
2⊕

k=0

S[a−2l](V )⊗ S[b−2k](V ).

We wish to substitute in our formula for the decomposition of S[p](V ) ⊗ S[q](V )
found above, but recall that we assumed p ≥ q, therefore we must split the above
double summation into two double summations, one where a − 2l ≥ b − 2k ⇐⇒
k ≥ b−(a−2l)

2 and the other where a− 2l < b− 2k ⇐⇒ k < b−(a−2l)
2 . This gives:

Syma(V )⊗ Symb(V ) =

l≤a
2⊕

l=0

 k≤ b
2⊕

k≥ b−(a−2l)
2

S[a−2l](V )⊗ S[b−2k](V )

⊕ k<
b−(a−2l)

2⊕
k=0

S[b−2k](V )⊗ S[a−2l](V )

.
Finally, substituting in the decompositions of S[a−2l](V )⊗ S[b−2k](V ) and
S[b−2k](V )⊗ S[a−2l](V ) gives the result.

30



5 Computing the relative Lie algebra cohomology of the
Weil representation of o(p, 1) × sl(2) with coefficients in
Syml(V )

Let G = SO0(p, 1); K = SO(p)× SO(1) ∼= SO(p), the maximal compact subgroup of
SO0(p, 1). Then g = Lie(G) = o(p, 1), k = Lie(K) = so(p)⊕ so(1) ∼= so(p). Recall that
we have the splitting g = k⊕ p0. Let p = p0 ⊗C be the complexification of p0. Further-
more, let F = C[z1, ..., zp, zp+1] denote the Fock model of the Weil representation; and
let V denote the standard representation of G. Recall from Section 2 that we have the
isomorphism:

Ci
(
g,K;F ⊗ Syml(V )

)
∼= Ci

(
o(p, 1,C),KC;F ⊗ Syml(V ⊗ C)

)
.

In this section we will compute the spaces

Cil := Ci
(
o(p, 1,C),KC;F ⊗ Syml(V ⊗ C)

)
=
[
F ⊗

∧i
p∗ ⊗ Syml(V ⊗ C)

]SO(p⊗C)

in the cases l = 0, 1 and subsequently compute the cohomology groups.

Remark 5.1. For ease of notation, throughout the section we will drop the “⊗C” with

the understanding that it is there. For example, when reading
[
F ⊗

∧i
p∗ ⊗ V

]SO(p)

,

one should interpret it as
[
F ⊗

∧i
p∗ ⊗ (V ⊗ C)

]SO(p⊗C)
.

We begin by discussing two k-isomorphisms which will be used extensively throughout
the section.

Lemma 5.2. We have the following isomorphism of k representations:

p0 ∼= V.

Remark 5.3. This implies that as kC representations we have p ∼= V ⊗ C.

Proof. Recall that p0 has basis {Xγ,p+1} and that k acts on p0 via the adjoint represen-
tation, ‘ad’. We have:

[Xα,β, Xγ,p+1] = −δβ,γ(Eα,p+1 + Ep+1,α) + δα,γ(Eβ,p+1 + Ep+1,β)

Thus

adXα,β (Xγ,p+1) = [Xα,β, Xγ,p+1] =


Xβ,p+1 if γ = α

−Xα,p+1 if γ = β

0 otherwise.

As V is the standard representation of k we have:

Xα,β · eγ =


eβ if γ = α

−eα if γ = β

0 otherwise.
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Let T be the linear map

T : p0 → V

Xα,p+1 7→ eα.

It is clear that T is an isomorphism of vector spaces. We also see that

T
([
Xα,β, Xγ,p+1

])
= Xα,β · T

(
Xγp+1

)
for all Xγ,p+1 ∈ p0, Xα,β ∈ k and so T is a k-isomorphism.

Definition 5.4 (Hodge star). Let p∗ have canonical ordered basis {ωα}pα=1. We define
the following map from

∧i p∗ to
∧p−i p∗:

? :
∧i

p∗ →
∧p−i

p∗

ω 7→ ?(ω)

such that ω ∧ ?(ω) = ω1 ∧ ω2 ∧ ... ∧ ωp ∈
∧p p∗ ∼= C.

We ultimately wish to show that ? is a k−isomorphism, but first we show the follow-
ing:

Lemma 5.5. Let ω = ωk1∧ωk2∧...∧ωki ∈
∧i

p∗ and suppose w.l.o.g. that k1 < k2 < ... < ki
then

?(ω) = (−1)εω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂ki ∧ ... ∧ ωp ∈
∧p−i

p∗

where ω̂ki denotes the omission of entry ωki and

ε =
(i− 3)i

2
+

i∑
j=1

kj .

Proof. Consider

(ωk1 ∧ ωk2 ∧ ... ∧ ωki) ∧ (ω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂ki ∧ ... ∧ ωp)

We wish to swap the entries so that the indices are in ascending order when reading
from left to right. We recall that by definition of the exterior power, we introduce a
‘− 1’ every time we swap two adjacent entries. We proceed by swapping term by term:

For ωk1 : We shift it (i− 1) + (k1 − 1) places to the right.

For ωk2 : We shift it (i− 2) + (k2 − 1) places to the right.

For ωk3 : We shift it (i− 3) + (k3 − 1) places to the right.

...

For ωki : We shift it 0 + (ki − 1) places to the right.
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Now we let

ε =
i∑

j=1

(i− j) + (kj − 1) =
i−1∑
j=0

j+
i∑

j=1

(kj − 1) =
(i− 1)i

2
− i+

i∑
j=1

kj =
(i− 3)i

2
+

i∑
j=1

kj .

Then, we have

(ωk1 ∧ ωk2 ∧ ... ∧ ωki)∧(ω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂ki ∧ ... ∧ ωp) = (−1)εω1∧ω2∧ ...∧ωp−1∧ωp
=⇒ ?(ω) = (−1)ε ω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂ki ∧ ... ∧ ωp.

Having now obtained an explicit formula for ?, we state and prove the following:

Lemma 5.6.

? :
∧i

p∗ →
∧p−i

p∗

is a k ∼= so(p) isomorphism.

Proof. It is clear that ? is an isomorphism of vector spaces as both vector spaces have the
same dimension and ? is easily seen to be injective. To see that ? is a k−isomorphism,
first recall that k acts on p via the adjoint action and this induces an action of k on p∗,
which is explicitly given by

Xα,β · ωγ = ad∗Xα,β (ωγ) =


ωβ, if γ = α

−ωα, if γ = β

0 , otherwise.

Now, fix Xα,β ∈ k and let ω = ωk1 ∧ ωk2 ∧ ... ∧ ωki . We consider the following 4 cases:

1. α ∈ {k1, k2, ..., ki} and β ∈ {k1, k2, ..., ki}.
In this case we have Xα,β · ω = 0, and so ?(Xα,β · ω) = 0. On the other hand we
have

Xα,β ·
(
? (ω)

)
= (−1)εXα,β · (ω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂ki ∧ ... ∧ ωp︸ ︷︷ ︸

ωα and ωβ appear with a hat.

) = 0

Thus, ? ·Xα,β = Xα,β · ? as operators.

2. The proof is similar if both α, β /∈ {k1, k2, ..., ki}.

3. Suppose α ∈ {k1, k2, ..., ki}, and β /∈ {k1, k2, ..., ki} then

?
(
Xα,β · (ωk1 ∧ ... ∧ ωα ∧ ... ∧ ωki︸ ︷︷ ︸

terms in order

)
)

= ?
(
ωk1 ∧ ... ∧ ωβ ∧ ... ∧ ωki︸ ︷︷ ︸

ωβ term out of order

)
= ?
(
(−1)γ ωk1 ∧ ... ∧ ωβ ∧ ... ∧ ωki︸ ︷︷ ︸

terms in order

)
where γ = #{ki | ki lies between α and β}

= (−1)γ ?
(
ωk1 ∧ ... ∧ ωβ ∧ ... ∧ ωki

)
= (−1)γ+ε

′
ω1 ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂β ∧ ... ∧ ω̂ki ∧ ... ∧ ωp

with ε′ =
(i− 3)i

2
+

i∑
j=1

kj − α+ β, (as we applied ? to ωk1 ∧ ... ∧ ωβ ∧ ... ∧ ωki
)
.
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Now, consider Xα,β · ?(ωk1 ∧ ... ∧ ωα ∧ ... ∧ ωki). We have:

Xα,β · ?(ωk1 ∧ ... ∧ ωα ∧ ... ∧ ωki)
=Xα,β ·

(
(−1)εω1 ∧ ... ∧ ωβ ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂α ∧ ... ∧ ω̂ki ∧ ... ∧ ωp

)
where ε =

(i− 3)i

2
+

i∑
j=1

kj

=(−1)εXα,β ·
(
ω1 ∧ ... ∧ ωβ ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂α ∧ ... ∧ ω̂ki ∧ ... ∧ ωp

)
=(−1)ε ω1 ∧ ... ∧ ωα ∧ ... ∧ ω̂k1 ∧ ... ∧ ω̂α ∧ ... ∧ ω̂ki ∧ ... ∧ ωp.

We now need to shift ωα to its correct place, which involves |β − α| − γ swaps,
where γ is as above. Thus:

Xα,β · ?(ωk1 ∧ ... ∧ ωki) = (−1)ε+|β−α|−γ ω1 ∧ ... ∧ ω̂k1 ∧ .. ∧ ω̂β ∧ .. ∧ ω̂ki ∧ .. ∧ ωp

Finally, observe that ε+ |β − α| − γ ≡ γ + ε′ mod (2) and so

? ·Xα,β = Xα,β · ? as operators.

4. The proof is analogous when α /∈ {k1, k2, ..., ki}, and β ∈ {k1, k2, ..., ki}

We now proceed to computing the complexes and subsequently the cohomology
groups for p ≥ 3 in the case l = 0 and p ≥ 5 in the case l = 1.

Remark 5.7. We only consider p ≥ 3 in the l = 0 case as for p = 2 we have that the
standard representation V = C2 of so(2) is irreducible. If p = 1 then k = so(1) = {0}
and so every vector in F ⊗

∧i p∗ will be in
[
F ⊗

∧i p∗
]K

as every vector is trivially
k/K invariant. In the l = 1 case we will additionally exclude the cases when p = 3 or
p = 4. We exclude p = 3 as the decomposition of Syma(V )⊗ Symb(V ) which was given
in Section 4 only holds for p ≥ 4, and we will make use of this decomposition in this
section. Finally, we exclude p = 4 because

∧2 p is reducible in this case. Of course,
the results given in this section can be made to fit these excluded cases, nevertheless we
exclude them as the analogous results for the excluded cases either do not hold for the
reasons given in this section or the set of k−invariant vectors given is not an exhaustive
list, e.g. in the case where p = 1, where we observe that every vector is k−invariant.
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5.1 l = 0

Observe that in the case l = 0 we have

Ci0 := Ci
(
g,K;F ⊗ Sym0(V )

)
=
[
F ⊗

∧i
p∗ ⊗ 1

]K ∼= [F ⊗∧i
p∗
]K

.

Thus, throughout this subsection we will omit “ ⊗ Sym0(V )” and refer to the complex
as C•(g,K;F), or simply C•. Recall from Section 2 that the differential is given by

d =

p∑
α=1

(
− ∂2

∂zα∂zp+1
+ zαzp+1

)
⊗A(ωα)

where A(ωα) denotes left exterior multiplication on
∧• p∗ by ωα ∈ p∗.

Remark 5.8. The results from this subsection are already known, and can be found
in [3, Theorem 4.1.1, k = 1]. We will reproduce the results here using a different method.

5.1.1 Computing C•(g,K;F)

We will now compute complex C•(g,K;F), our method will be as follows:

1. To begin with, we will only consider the spaces Ci where i ≤ p
2 . This is due

to the fact that
∧i p∗ is an irreducible representation of so(p) for i < p

2 , and we
completely understand its decomposition in the case i = p

2 .

2. We will restrict ourselves to Ci+ :=
[
F+ ⊗

∧i p∗
]SO(p)

, where F+ is the restriction

of F to the first p variables, that is, F+ = C[z1, ..., zp] ⊂ F .

3. We observe that the action of k on F preserves the degree of the polynomials, this
allows us to consider each degree in turn.

4. The observation in step 3 leads us to define Fn+, the restriction of F+ to homo-
geneous polynomials of degree n only. We then observe that as k representations
we have Fn+ ∼= Symn(V+), where V+ = 〈e1, ..., ep〉 is the standard representation
of so(p).

5. We then define Ci|n+ :=
[
Fn+ ⊗

∧i p∗
]SO(p) ∼=

[
Symn(V+)⊗

∧i p∗
]SO(p)

6. We can compute the dimension of Ci|n+, since we have

dim
(
Ci|n+

)
: = dim

([
Fn+ ⊗

∧i
p∗
]SO(p)

)
= dim

([
Fn+ ⊗

∧i
p∗
]so(p))

= dim
(

Homso(p)

(∧i
V+, Symn(V+)

))
where we have used that p ∼= V+.4

4We may interchange SO(p) and so(p) here because K = SO(p) is connected. [2, Chapter 1, Section
5.1].
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7. After obtaining the dimension we find the k−invariant vectors in Ci+, this will use
results from [4], as well as some ad-hoc methods. Fortunately, as we will see, the
dimensions are always small.

8. We then observe that k acts trivially on zp+1 ∈ F\F+, so in particular multi-
plication by zp+1 commutes with the action of k on F . Therefore, we can easily
reincorporate it to return to our original space Ci.

9. Finally, we will use the isomorphism ? :
∧i

p∗ →
∧p−i

p∗ to find the spaces Ci for

i > p
2 .

Recall from Section 4 that we have the following decomposition of Symn(V+) as a rep-
resentation of so(p):

Symn(V+) = S[n](V+)⊕ S[n−2](V+)⊕ ...⊕ S[n−2k](V+)

where k is the largest integer such that k ≤ n
2 , and S[d](V+) is the irreducible represen-

tation with highest weight dL1.

Computing C0
(
g,K;F

)
We have

C0 =
[
F ⊗

∧0
p
]K

=
[
F ⊗ 1

]K
where 1 is the trivial one dimensional representation. We begin by restricting ourselves
to

C0|n+ =
[

Symn(V+)⊗ 1
]SO(p)

.

We now find the dimension of this space for each n ∈ Z≥0.

Lemma 5.9. We have:

dim
(
C0|n+

)
= dim

(
Homso(p)

(
1, Symn(V+)

))
= # copies of 1 in the representation Symn(V+)

=

{
1 if n is even

0 if n is odd

Proof. Symn(V+) has decomposition

Symn(V+) = S[n](V+) + ...+ S[n−2l](V+)

where l is the largest integer such that l ≤ p
2 . We know 1 is the irreducible representation

with highest weight 0 and so 1 = S[0](V+). Thus, Symn(V+) contains a single copy of 1
if n is even and no copies of 1 if n is odd, as required.

We now state and prove the following result which will be used repeatedly throughout
this section.
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Lemma 5.10. Let r2 :=

p∑
i=1

z2i , then for all Xα,β ∈ k, f ∈ F = C[z1, ..., zp, zp+1] we

have
ω(Xα,β) · r2f = r2ω(Xα,β) · f.

That is, (polynomial) multiplication by r2 commutes with the action of k on F .

Proof. Recall that

ω(Xα,β) = −zα
∂

∂zβ
+ zβ

∂

∂zα
.

Thus,

ω(Xα,β) · r2f =

(
−zα

∂

∂zβ
+ zβ

∂

∂zα

)
· (r2f) = −zα

∂

∂zβ
· (r2f) + zβ

∂

∂zα
· (r2f)

= −2zαzβf − r2zα
∂

∂zβ
f + 2zαzβf + r2zβ

∂

∂zα
f

= r2
(
−zα

∂

∂zβ
f + zβ

∂

∂zα
f

)
= r2ω(Xα,β) · f.

Remark 5.11. Observe that by the above result we have that

p⊗ 1 ∈
[
F+ ⊗ 1

]SO(p) ⇐⇒ r2p⊗ 1 ∈
[
F+ ⊗ 1

]SO(p)
.

Furthermore, if deg(p) = n then deg(r2p) = n + 2. Thus, it is no surprise that the
dimension of C0|n+ depends on the parity of n. In fact, this will be the case for all
Ci|n+.

Lemma 5.12.

C0
+ =

∞⊕
k=0

〈(r2)k · 1⊗ 1〉

where r2 :=

p∑
i=1

z2i , as above, and 〈 · 〉 denotes the C−linear span.

Proof. We being by checking that 1 ⊗ 1 is k-invariant. Indeed for α, β ∈ {1, 2, ..., p} we
have

Xαβ · (1⊗ 1) = ω(Xαβ) · 1⊗ 1 + 1⊗ ad∗Xαβ · 1

=

(
−zα

∂

∂zβ
+ zβ

∂

∂zα

)
· 1⊗ 1 + 1⊗ ad∗Xαβ · 1

= 0⊗ 1 + 1⊗ 0 = 0.

Now, as dim
(
C0|0+

)
= 1, we must have C0|0+ = 〈1⊗1〉. Now using the previous remark

we have C0|2k+ = 〈(r2)k · 1⊗ 1〉 and so we conclude that C0
+ =

∞⊕
k=0

〈(r2)k · 1⊗ 1〉.
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Now, to reintroduce zp+1 ∈ F\F+, we observe that the action of k on F commutes
with zp+1, due to the fact that

∂

∂zi
zp+1 = zp+1

∂

∂zi

for i ∈ {1, 2, ..., p}, thus we may simply add it back in. We immediately obtain the final
result.

Lemma 5.13. We have

C0
(
g,K;F

)
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · 1⊗ 1〉.

Computing C1
(
g,K;F

)
We compute C1 in exactly the same way as we computed C0. We have

C1 =
[
F ⊗

∧1
p∗
]K

=
[
F ⊗ p∗

]K
.

Once again, we restrict ourselves to

C1|n+ =
[

Symn(V+)⊗ p∗
]SO(p)

and find the dimension of this space for each n ∈ Z≥0.

Lemma 5.14. We have

dim
(
C1|n+

)
= dim

(
Homso(p)

(
p,Symn(V+)

))
=

{
1 if n is odd

0 if n is even

Proof. We begin by recalling that as k representations we have p ∼= V+. We also have

Symn(V+) = S[n](V+) + ...+ S[n−2l](V+).

Now, for p ≥ 3, V+ is an irreducible representation with highest weight L1 and so
V+ = S[1](V+). Thus, Symn(V+) contains one copy of p ∼= V+ if n is odd and no copies
of p if n is even, as required.

Lemma 5.15.

C1
+ =

∞⊕
k=0

〈(r2)k · ϕ〉

where ϕ =

p∑
α=1

zα ⊗ ωα.
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Remark 5.16.
[
ϕ
]

=

[
p∑

α=1

zα ⊗ ωα

]
∈ H1(g,K;F) is a “Kudla-Millson class.” See [4,

Lemma 7.6, q=1]. As the name suggests, this will turn out to be a representative for a
non-zero cohomology class.

Proof. We begin by checking that ϕ is k-invariant. Indeed

Xα,β · ϕ =
∑
γ

ω(Xα,β) · zγ ⊗ ωγ +
∑
γ

zγ ⊗ ad∗Xα,β · ωγ

=
∑
γ

(
−zα

∂

∂zβ
+ zβ

∂

∂zα

)
· zγ ⊗ ωγ +

∑
γ

zγ ⊗ ad∗Xα,β · ωγ

= −zα ⊗ ωβ + zβ ⊗ ωα + zα ⊗ ωβ − zβ ⊗ ωα
= 0

Thus, C1|1+ = 〈ϕ〉. Once again, as r2 commutes with the action of k we conclude that

C1
+ =

∞⊕
k=0

〈(r2)k · ϕ〉.

We may now reintroduce zp+1, exactly as we did when computing C0, to obtain the
final result:

Lemma 5.17.

C1
(
g,K;F

)
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ϕ〉.

Computing Ci
(
g,K;F

)
for 2 ≤ i ≤ p

2

We have

Ci =
[
F ⊗

∧i
p
]K

.

We will show that, in fact, Ci = {0} for 2 ≤ i ≤ p
2 . We begin with the following lemma.

Lemma 5.18. Let i ∈ Z such that 2 ≤ i ≤ p
2 , then:

dim
(
Ci|n+

)
= dim

(
Homso(p)

(∧i
p, Symn(V+)

))
= 0

Proof. We know that Symn(V+) has decomposition

Symn(V+) = S[n](V+) + ...+ S[n−2l](V+).
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Furthermore, p ∼= V+ and so
∧i p ∼=

∧i V+. Now, from Section 4 we know that for i < p
2

(note the strict inequality),
∧i V+ is an irreducible representation with highest weight

L1 + L2 + ...+ Li and so
∧i V+ = S(1,1,...,1)(V+). Thus, for 2 ≤ i < p

2 we have that

Symn(V+) = S[n](V+) + ...+ S[n−2l](V+) = S(n,0,...,0)(V+) + ...+ S(n−2l,0,...,0)(V+)

does not contain a copy of
∧i V+. If p is even then we also must consider the case

where i = p
2 . In this case

∧i
V+ decomposes into the direct sum of two irreducible

representations, one with highest weight (1, 1, ..., 1), and the other with highest weight
(1, ..., 1,−1). As the decomposition of Symn(V+) does not contain either of the irre-
ducible representations with these highest weights, there are no so(p)-homomorphisms
from

∧i p∗ to Symn(V+), and so dim
(
Ci|n+

)
= 0.

Therefore, we have Ci+ = {0}. Reintroducing the zp+1 term gives us the result.

Lemma 5.19.
Ci(g,K;F) = {0}.

Computing Cp−i(g,K;F
)

for 2 ≤ i ≤ p
2

We now compute the spaces

Cp−i =
[
F ⊗

∧p−i
p∗
]K

for 2 ≤ i < p
2 . To do this we use the so(p) isomorphism

? :
∧i

p∗ →
∧p−i

p∗.

We begin by restricting to the space

Cp−i|n+ =
[

Symn(V+)⊗
∧p−i

p∗
]SO(p)

and finding its dimension. We have:

Lemma 5.20. Let i ∈ Z≥0 such that 2 ≤ i ≤ p
2 , then

dim
(
Cp−i|n+

)
= dim

(
Homso(p)

(∧p−i
p, Symn(V+)

))
= dim

(
Homso(p)

(∧i
p, Symn(V+)

))
= 0

Proof. This follows from the fact that ? is a so(p)-isomorphism and dim
(
Ci|n+

)
= 0.

Thus we have Cp−i+ = {0}. We reintroduce the zp+1 term to get the following result:

Lemma 5.21.
Cp−i(g,K;F) = {0}
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Computing Cp−1(g,K;F
)

We will once again make use of the so(p)-isomorphism, ?. Firstly, we have:

Cp−1 =
[
F ⊗

∧p−1
p∗
]K
.

We restrict to

Cp−1|n+ =
[

Symn(V+)⊗
∧p−1

p∗
]SO(p)

and compute its dimension:

Lemma 5.22.

dim
(
Cp−1|n+

)
= dim

(
Homso(p)

(∧p−1
p, Symn(V+)

))
= dim

(
Homso(p)

(
p,Symn(V+)

))
=

{
1 if n is odd

0 if n is even

Proof. This follows immediately using ? and our result for dim
(
C1|n+

)
.

In fact, ? not only gives us the dimension of the spaces Cp−1|n+, but it also gives us
the k-invariant vectors. We have:

Lemma 5.23.

Cp−1+ =
∞⊕
k=0

〈(r2)k · ?(ϕ)〉

where ?(ϕ) :=

p∑
α=1

zα ⊗ ?(ωα) =

p∑
α=1

(−1)α−1 zα ⊗ ω1 ∧ ... ∧ ω̂α ∧ ... ∧ ωp.

Proof. Firstly, ?(ϕ) is k-invariant since ? is a so(p)−isomorphism. Indeed:

Xα,β · ?(ϕ) = ?(Xα,β · ϕ) = 0.

Since dim
(
Cp−1|1+

)
= 1 we have

Cp−1|1+ = 〈 ?(ϕ) 〉.

Now, r2 commutes with the action of k on F so r2 · ?(ϕ) is also k-invariant. We conclude
that

Cp−1+ =
∞⊕
k=0

〈(r2)k · ?(ϕ)〉.

Finally, we reintroduce zp+1 to obtain:

Lemma 5.24.

Cp−1
(
g,K;F

)
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ?(ϕ)〉.

41



Computing Cp
(
g,K;F

)
Finally, we compute the space Cp. We let Ω := ω1 ∧ ω2 ∧ ... ∧ ωp. We have

Cp =
[
F ⊗

∧p
p∗
]K

=
[
F ⊗ 〈Ω〉

]K
.

Once again, we restrict to

Cp|n+ =
[

Symn(V+)⊗ 〈Ω〉
]SO(p)

and find its dimension. We have:

Lemma 5.25.

dim
(
Cp|n+

)
=

{
1 if n is even

0 if n is odd

Proof. The result follows from the fact that
∧p p∗ = 〈Ω〉 ∼= 1 and the result for

dim
(
C0|n+

)
.

Lemma 5.26.

Cp+ =
∞⊕
k=0

〈(r2)k · 1⊗ Ω〉.

Proof. Firstly, 1 ⊗ Ω is k-invariant. Indeed, this follows from the fact that ? is a
so(p)−isomorphism. Thus we have

Cp|0+ = 〈1⊗ Ω〉.

Then, as r2 commutes with the action of k on F , we conclude that

Cp+ =
∞⊕
k=0

〈(r2)k · 1⊗ Ω〉.

Finally, we reintroduce the zp+1 term to obtain:

Lemma 5.27.

Cp
(
g,K;F

)
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · 1⊗ Ω〉.
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5.1.2 Computing the cohomology groups H•
(
g,K;F

)
We now compute the cohomology groups associated to the complex C•(g,K;F). Recall
that:

H i := H i
(
g,K;F

)
= ker

(
d : Ci → Ci+1

)
�im

(
d : Ci−1 → Ci

)
where d denotes the differential which is given by

d =

p∑
α=1

ω(Xα,p+1)⊗A(ωα) =

p∑
α=1

(
− ∂2

∂zα∂zp+1
+ zαzp+1

)
⊗A(ωα)

where A denotes exterior multiplication by ωα ∈ p∗ on
∧i p∗.

As mentioned in Section 2, the cohomology groups are in fact sl(2)−modules, where
the action on the cohomology classes is induced by the action of sl(2) on F , that is, if

Ψ =
∑
i

pi ⊗ Ωi ∈ C•(g,K;F), and X ∈ sl(2), then X acts on [Ψ] as follows:

X · [Ψ] = [X ·Ψ] =

[∑
i

ω(X) · pi ⊗ Ωi

]
.

As the action of sl(2) and o(p, 1) on F commute, one sees that the action of sl(2)
commutes with both the differential and the action of k ⊂ o(p, 1), thus the action of
sl(2) on the cohomology groups makes sense and is well defined. Using the structure
theorem (Theorem 3.10) from Section 3, we will describe the sl(2)−module structure of
each of the cohomology groups H i(g,K;F).

Remark 5.28. As Ci(g,K;F) = {0} for i 6= 0, 1, p− 1, p, we have

H i(g,K;F) = {0}

for i 6= 0, 1, p− 1, p. Thus, we need only consider the cases when i ∈ {0, 1, p− 1, p}.

Computing H0
(
g,K;F

)
Recall that

C0(g,K;F) =

∞⊕
l,k=0

〈zlp+1 · (r2)k · 1⊗ 1〉.

We now compute differential of each of these vectors.

d
(
zlp+1 · (r2)k · 1⊗ 1

)
=

p∑
α=1

ω(Xα,p+1) · zlp+1 · (r2)k · 1⊗ ωα

=

p∑
α=1

(
− ∂2

∂zαzp+1
+ zαzp+1

)
· zlp+1 · (r2)k · 1⊗ ωα
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=

p∑
α=1

− ∂

∂zα

(
lzl−1p+1 · (r

2)k · 1
)
⊗ ωα +

p∑
α=1

zαz
l+1
p+1 · (r

2)k · 1⊗ ωα

= zl+1
p+1 · (r

2)k ·
p∑

α=1

zα ⊗ ωα − 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α=1

zα ⊗ ωα.

From this computation we can see that no combination∑
i

zlip+1 · (r
2)ki · 1⊗ 1

where li, ki ∈ Z≥0 will be in the kernel of d, i.e. ker
(
d : C0 → C1

)
= {0}. Therefore, we

obtain:

Theorem 5.29.
H0
(
g,K;F

)
= {0}.

Computing H1
(
g,K;F

)
Recall that

C1(g,K;F) =
∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ〉

where ϕ =

p∑
α=1

zα ⊗ ωα. We compute the differentials of these vectors:

d
(
zlp+1 · (r2)k · ϕ

)
=

p∑
α=1

p∑
β=1

ω(Xα,p+1) · zlp+1 · (r2)k · zβ ⊗ ωα ∧ ωβ

=

p∑
α,β=1
α 6=β

(
− ∂2

∂zαzp+1
+ zαzp+1

)
· zlp+1 · (r2)k · zβ ⊗ ωα ∧ ωβ

=

p∑
α,i=β
α 6=β

− ∂

∂zα
· lzl−1p+1 · (r

2)k · zβ ⊗ ωα ∧ ωβ +

p∑
α,i=β
α 6=β

zα · zl+1
p+1 · (r

2)k · zβ ⊗ ωα ∧ ωβ

=

p∑
α,β=1
α 6=β

−lzl−1p+1 · k(r2)k−1 · 2zα · zβ ⊗ ωα ∧ ωβ +

p∑
α,β=1
α 6=β

zα · zl+1
p+1 · (r

2)k · zβ ⊗ ωα ∧ ωβ

= −2lk

p∑
α,β=1
α 6=β

zl−1p+1 · (r
2)k−1 · zαzβ ⊗ ωα ∧ ωβ +

p∑
α,β=1
α 6=β

zl+1
p+1 · (r

2)k · zαzβ ⊗ ωα ∧ ωβ

= 0 + 0 = 0, since ωα ∧ ωβ = −ωβ ∧ ωα, zαzβ = zβzα, and we sum over all α, β.
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Thus, we have

ker
(
d : C1 → C2

)
= C1(g,K;F) =

∞⊕
k=0

∞⊕
l=0

〈zlp+1 · (r2)k · ϕ〉.

Moreover, from our calculations for H0 we have for l, k ≥ 0

d
(
zlp+1 · (r2)k · 1⊗ 1

)
= zl+1

p+1 · (r
2)k ·

p∑
α=1

zα ⊗ ωα − 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α=1

zα ⊗ ωα

which implies that in H1(g,K;F) we have the following cohomology relation:[
zl+1
p+1 · (r

2)k ·
p∑

α=1

zα ⊗ ωα

]
= 2lk

[
zl−1p+1 · (r

2)k−1 ·
p∑

α=1

zα ⊗ ωα

]
.

This gives the following following characterisation of H1(g,K;F):

Theorem 5.30.

H1(g,K;F) =
∞⊕
k=0

〈[
(r2)k · ϕ

]〉
, where ϕ =

p∑
α=1

zα ⊗ ωα.

Proof. Given
[
zlp+1 · (r2)k · ϕ

]
∈ H1, use the cohomology relation[

zl+1
p+1 · (r

2)k · ϕ
]

= 2lk
[
zl−1p+1 · (r

2)k−1 · ϕ
]

repeatedly until at least one of zlp+1 or (r2)k have vanished, or we are left with a class

which is a multiple of
[
zp+1 · (r2)k · ϕ

]
. If we obtain

[
zap+1 · ϕ

]
, a > 0, as a result

of applying the cohomology relation, then observe that d
(
za−1p+1 · 1 ⊗ 1

)
= zap+1 · ϕ and

so
[
zap+1 · ϕ

]
= [0]. If we are left with the class of the form

[
zp+1 · (r2)k · ϕ

]
, then

d
(

(r2)k ⊗ 1
)

= zp+1 · (r2)k · ϕ, and so
[
zp+1 · (r2)k · ϕ

]
= [0].

We now discuss the sl(2)−module structure of H1(g,K;F) and its submodules.

Theorem 5.31.

∞⊕
k=0

〈[
(r2)k·ϕ

]〉
has sl(2)−module structure

([
◦
)
, that is,

∞⊕
k=0

〈[
(r2)k · ϕ

]〉
is an infinite dimensional lowest-weight sl(2,C) module. Moreover, it has lowest weight
(p+ 1)i

2
and lowest weight vector [ϕ].

Remark 5.32. One may include the information about the lowest weight and lowest
weight vector on a “ dot diagram” as follows, where the values above the dots represents
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the weights, and the cohomology classes below the dots represents an element from the
corresponding weight space.

(p+1)i
2

[ϕ]

(p+4k+1)i
2

[
(r2)k · ϕ

]
∞⊕
k=0

〈[
(r2)k · ϕ

]〉
'
[

◦ · · · ◦ ◦ · · ·

Proof. Using the actions of sl(2,C) on F given in Section 2 we obtain that:

L · [ϕ] = [L · ϕ] =

[(
− 1

2

p∑
α=1

∂2

∂z2α
+

1

2
z2p+1

)
·

p∑
β=1

zβ ⊗ ωβ
]

=

[
1

2
z2p+1

p∑
β=1

zβ ⊗ ωβ
]

=

[
d

(
1

2
zp+1 ⊗ 1

)]
=
[
0
]

H · [ϕ] = [H · ϕ] =

[
i

( p∑
α=1

zα
∂

∂zα
− zp+1

∂

∂zp+1
+

(p− 1)

2

)
·

p∑
i=1

zi ⊗ ωi

]

= i

[
p∑
i=1

zi ⊗ ωi +
(p− 1)

2

p∑
i=1

zi ⊗ ωi

]
=

(p+ 1)i

2
· [ϕ]

Thus, we have shown that [ϕ] vanishes under the action of L and therefore is a lowest-

weight vector. Moreover [ϕ] has weight
(p+ 1)i

2
. Next, one easily sees that[

R · (r2)k−1 · ϕ
]

=
1

2

[
(r2)k · ϕ

]
.

All that remains is to check what happens when we apply L to
[
(r2)k · ϕ

]
. We have

[
L · (r2)k · ϕ

]
=

[(
− 1

2

p∑
α=1

∂2

∂z2α
+

1

2
z2p+1

)
· (r2)k ·

p∑
β=1

zβ ⊗ ωβ

]

=

[
− 1

2

p∑
α,β=1

∂2

∂z2α

(
(r2)k · zβ

)
⊗ ωβ

]
+

[
1

2
z2p+1 · (r2)k ·

p∑
α=1

zα ⊗ ωα

]
︸ ︷︷ ︸

Use cohomology relation.

= −1

2

(
4k(k − 1) + 2kp+ 5k

)[
(r2)k−1 · ϕ

]
= −k

2

(
4k + 2p+ 1

)[
(r2)k−1 · ϕ

]
This is non-zero for all k > 0 since 4k + 2p+ 1 6= 0 for all k > 0.
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Remark 5.33. If [Ψ] is a cohomology class such that L · [Ψ] = [0] then we say that
[Ψ] is a holomorphic class. This is due to a correspondence between the cohomology
of the Weil representation and holomorphic automorphic forms on suitable quotients

of SL(2,R)�U(n). In particular, the Kudla-Millson class, [ϕ], is a holomorphic class.

No further details of this correspondence will be discussed in this report. For more
information, see [3, Chapter 1], [6], [4].

Computing Hp−1(g,K;F
)

Recall that we have

Cp−1(g,K;F) =

∞⊕
l,k=0

〈zlp+1 · (r2)k · ?(ϕ)〉

where

?(ϕ) :=

p∑
α=1

zα ⊗ ?(ωα) =

p∑
α=1

(−1)α−1 zα ⊗ ω1 ∧ ... ∧ ω̂α ∧ ... ∧ ωp.

Let Ω := ω1 ∧ ... ∧ ωp, then the differential of these vectors is:

d
(
zlp+1 · (r2)k · ?(ϕ)

)
= −(2lk + lp) · zl−1p+1 · (r

2)k · 1⊗ Ω + zl+1
p+1 · (r

2)k+1 · 1⊗ Ω.

We see from this calculation that ker
(
d : Cp−1 → Cp

)
= {0}. Thus we obtain:

Theorem 5.34.
Hp−1(g,K;F) = {0}.

Computing Hp
(
g,K;F

)
Recall that

Cp(g,K;F) =
∞⊕

l,k=0

〈zlp+1 · (r2)k · 1⊗ Ω〉.

Now, as p = dim p we have:

Lemma 5.35.
d
(
zlp+1 · (r2)k · 1⊗ Ω

)
= 0

for all l,k ∈ Z≥0.

Proof.

d
(
zlp+1 · (r2)k · 1⊗ ω1 ∧ ... ∧ ωp

)
=

p∑
α=1

ω(Xα,p+1) · zlp+1 · (r2)k · 1⊗ ωα ∧ ω1 ∧ ... ∧ ωp

=

p∑
α=1

ω(Xα,p+1) · zlp+1 · (r2)k · 1⊗ 0 = 0.
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From our calculations for Hp−1 we have for l, k ≥ 0:

d
(
zlp+1 · (r2)k · ?(ϕ)

)
= −(2lk + lp) · zl−1p+1 · (r

2)k · 1⊗ Ω + zl+1
p+1 · (r

2)k+1 · 1⊗ Ω.

Thus, in Hp(g,K;F) we have the following cohomology relation:[
zl+1
p+1 · (r

2)k+1 · 1⊗ Ω

]
= (2lk + lp) ·

[
zl−1p+1 · (r

2)k · 1⊗ Ω

]
.

This gives us the following characterisation of Hp(g,K;F):

Theorem 5.36.

Hp(g,K;F) =
∞⊕
l=0

〈[
zlp+1 ⊗ Ω

]〉 ⊕ ∞⊕
k=1

〈[
(r2)k ⊗ Ω

]〉
.

Proof. Given a class
[
zlp+1 · (r2)k · 1⊗ Ω

]
, use the cohomology relation repeatedly until

either zp+1 or r2 vanishes or we are left with

[
zp+1 · (r2)k · 1⊗ Ω

]
, k ≥ 1. Observe that

d
((
r2
)k−1 · ?(φ)) = zp+1 · (r2)k · 1⊗ Ω and so

[
zp+1(r

2)k · 1⊗ Ω
]

=
[
0
]
.

We now describe the sl(2)−module structure of Hp(g,K;F) and its submodules.

Theorem 5.37.
∞⊕
l=0

〈
[
z2l+1
p+1 ⊗ Ω

]
〉 has sl(2,C)−module structure:

1.
(
◦
]
◦
])

if p is odd.

2.
(
◦
])

if p is even.

Moreover, if p is even then
[
zp+1 ⊗Ω

]
is the highest weight vector with weight

(p− 3)i

2
.

If p is odd then
[
zp+1 ⊗ Ω

]
and

[
zpp+1 ⊗ Ω

]
are the highest weight vectors.

Proof. We have:

R ·
[
zp+1 ⊗ Ω

]
=

[
1

2
r2 · zp+1 ⊗ Ω

]
=
[
d
(1

2
· ?(ϕ)

)]
=
[
0
]
.

H ·
[
zp+1 ⊗ Ω

]
=

[
− i · zp+1 ⊗ Ω +

(p− 1)i

2
· zp+1 ⊗ Ω

]
=

(p− 3)i

2

[
zp+1 ⊗ Ω

]
.

Furthermore, one easily sees that[
L · z2l+1

p+1 ⊗ Ω
]

=
1

2

[
z
2(l+1)+1
p+1 ⊗ Ω

]
.
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Finally, we must check what happens when R is applied to
[
z2l+1
p+1 ⊗ Ω

]
for l ≥ 1.

[
R · z2l+1

p+1 ⊗ Ω
]

=

[
1

2
· r2 · z2l+1

p+1 ⊗ Ω︸ ︷︷ ︸
Use cohomology relation

−1

2

∂2

∂z2p+1

(
z2l+1
p+1

)
⊗ Ω

]

= l
(
p− (2l + 1)

)
·
[
z2l−1p+1 ⊗ Ω

]
Thus, when 2l + 1 = p, i.e. when p is odd, we have that R · [zpp+1 ⊗ Ω] = [0].

Theorem 5.38.
∞⊕
l=0

〈 [
z2lp+1 ⊗ Ω

] 〉 ⊕ ∞⊕
k=1

〈 [
(r2)k ⊗ Ω

] 〉
has sl(2)−module structure:

1.
(
◦
)

if p is odd.

2.
(
◦
]
◦
)

if p is even.

Moreover, if p is even then
[
zpp+1 ⊗ Ω

]
is the highest weight vector, that is,

R ·
[
zpp+1 ⊗ Ω

]
= [0].

Proof. The proof of this result is essentially the same as the previous one. To begin, we
easily observe that[

R · (r2)k−1 ⊗ Ω
]

=
1

2

[
(r2)k ⊗ Ω

]
and

[
L · z2(l−1)p+1 ⊗ Ω

]
=

1

2

[
z2lp+1 ⊗ Ω

]
.

Thus, we only have to check what happens when L is applied to
[
(r2)k ⊗ Ω

]
and when

R is applied to
[
z2lp+1 ⊗ Ω

]
. We have:

 L ·
[
(r2)k ⊗ Ω

]
=

[
− 1

2

p∑
α=1

∂2

∂z2α

(
(r2)k

)
⊗ Ω +

1

2
z2p+1 · (r2)k ⊗ Ω︸ ︷︷ ︸

Use cohomology relation.

]

= −1

2

(
2k − 1

)(
2k − (2− p)

)
·
[
(r2)k−1 ⊗ Ω

]
We observe that

(
2k − 1

)(
2k − (2 − p)

)
has no positive integer solutions k, thus we

have that L ·
[
(r2)k ⊗ Ω

]
6=
[
0
]

for all k ≥ 1. Finally we have:

[
R · z2lp+1 ⊗ Ω

]
=

[
1

2
· r2 · z2lp+1 ⊗ Ω︸ ︷︷ ︸

Use cohomology relation

−1

2
· 2l(2l − 1) · z2l−2p+1 ⊗ Ω

]

= −1

2

(
2l − p

)(
2l − 1

)
·
[
z2l−2p+1 ⊗ Ω

]
Thus, when 2l = p, i.e. when p is even, we have that

[
R · zpp+1 ⊗ Ω

]
=
[
0
]
.
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5.2 l = 1

We will now consider the complex

C•1 := C•(g,K;F ⊗ V ) =
[
F ⊗

∧•
p∗ ⊗ V

]K
.

Recall from Section 2 that the differential is given by d = ds + dv with

ds =

p∑
α=1

ω(Xα,p+1)⊗A(ωα)⊗ 1, and dv =

p∑
α=1

1⊗A(ωα)⊗ ρ(Xα,p+1)

where

ω(Xα,p+1) = − ∂2

∂zα∂zp+1
+ zαzp+1

and where ρ is the derived action of p ⊂ g = Lie(G) on V . Explicitly, one finds that for
all Xα,β ∈ k and Xδ,p+1 ∈ p we have

ρ(Xα,β) · eγ =


eβ if γ = α

−eα if γ = β

0 otherwise

, ρ(Xδ,p+1) · eγ =


eδ if γ = p+ 1

ep+1 if γ = δ

0 otherwise.

We will compute C•1 = C•
(
o(p, 1),K;F⊗V

)
in the case p ≥ 5. Recall from Section 4 that

we have the following decomposition of Syma(V+)⊗ Symb(V+) as so(p) representations,
where V+ is the standard representation of k ∼= so(p):

Syma(V+)⊗ Symb(V+) =

ba
2
c⊕

l=0

( k≤ b
2⊕

k≥ b−(a−2l)
2

⊕
0≤ζ≤b−2k

⊕
α∈Y (a−2l,b−2k,ζ)

Γα

⊕ k<
b−(a−2l)

2⊕
k=0

⊕
0≤ζ≤a−2l

⊕
α∈Y (b−2k,a−2l,ζ)

Γα

)
.

In the case b = 1 the formula takes the much simpler form

Syma(V+)⊗ V+ =

l<a
2⊕

l=0

( ⊕
0≤ζ≤1

⊕
α∈Y (a−2l,1,ζ)

Γα

) ⊕ ⊕
l=a

2

Γ(1).

5.2.1 Computing C•
(
g,K;F ⊗ V

)
Our method for computing this complex will very similar to our method for computing
the complex in the case l = 0, it will be as follows:

1. To begin with, we will only consider the spaces Ci1 where i ≤ p
2 .
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2. We will restrict to Ci1+ :=
[
F+ ⊗

∧i p∗ ⊗ V+
]SO(p)

where F+ = C[z1, ..., zp] is the

restriction of F to the first p variables and V+ = 〈e1, ..., ep〉.

3. We observe that the action of k on F preserves the degree of the polynomials,
therefore allowing us to consider each degree in turn.

4. Step 3 leads us to define Fn+, the restriction of F+ to homogeneous polynomials
of degree n. We then observe as k representations we have Fn+ ∼= Symn(V+).

5. We define Ci1|n+ :=
[
Fn+ ⊗

∧i p∗ ⊗ V+
]SO(p)

=
[
Symn(V+)⊗

∧i p∗ ⊗ V+
]SO(p)

.

6. We can compute the dimension of Ci1|n+ since

dim
(
Ci1|n+

)
= dim

(
Homso(p)

(∧i
V+, Symn(V+)⊗ V+

))
.

7. After obtaining the dimension (which will turn out to always be small) we find
the k−invariant vectors in Ci1|+, this step will use results from [6] as well as some
ad-hoc methods.

8. We re-incorporate zp+1 ∈ F\F+ exactly as we did in the l = 0 case. We will also
devise a method to re-introduce ep+1 ∈ V \V+.

9. For i > p
2 , we use the isomorphism ? :

∧i
p∗ →

∧p−i
p∗ to compute Ci1 for i > p

2 .

Computing C0
(
g,K;F ⊗V

)
We have

C0
1 := C0

(
g,K;F ⊗ V

)
=
[
F ⊗ 1⊗ V

]K
.

We begin by restricting ourselves to

C0
1 |n+ =

[
Symn(V+)⊗ 1⊗ V+

]SO(p)

and computing the dimension of C0
1 |n+ for each n ∈ Z≥0.

Lemma 5.39.

dim
(
C0
1 |n+

)
= dim

(
Homso(p)

(
1,Symn(V+)⊗ V+

))
= # copies of 1 in Symn(V+)⊗ V+

=

{
1 if n odd

0 if n even
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Proof. Recall that the decomposition of Symn(V+)⊗ V+ is:

Symn(V+)⊗ V+ =

l<n
2⊕

l=0

( ⊕
0≤ζ≤1

⊕
α∈Y (n−2l,1,ζ)

Γα

) ⊕ ⊕
l=n

2

Γ(1).

Now, 1 is the irreducible representation of so(m) with highest weight 0, so we have
1 = Γ(0). If the decomposition contains any of copies of Γ(0) then we certainly require
n− 2l + 1− 2ζ = 0. This implies that n must be odd.

Now, suppose n is odd, we see that l = n−1
2 and ζ = 1 give α ∈ Y (1, 1, 1). Moreover,

we see that this gives the only copy of Γ(0) present in the decomposition.

Lemma 5.40. We have

C0
1+ =

∞⊕
k=0

〈
(r2)k · ϕ0,1

〉
.

where ϕ0,1 =

p∑
α=1

zα ⊗ 1⊗ eα.

Remark 5.41. [ϕ0,1] =

[
p∑

α=1

zα ⊗ 1⊗ eα

]
∈ H1

1 is a so-called Funke-Millson class.

See [6, Chapter 6.2]. We will see later that this gives a non-zero cohomology class in H1
1 .

Proof. We begin by showing that ϕ0,1 is k−invariant. Indeed:

Xα,β · ϕ0,1 =

p∑
γ=1

ω(Xα,β) · zγ ⊗ 1⊗ eγ +

p∑
γ=1

zγ ⊗ 1⊗ ρ(Xα,β) · eγ

= −zα ⊗ 1⊗ eβ + zβ ⊗ 1⊗ eα + zα ⊗ 1⊗ eβ − zβ ⊗ 1⊗ eα = 0

Next, since r2 commutes with the action of k all vectors of the form (r2)k · ϕ0,1 are
k−invariant. Finally, since dim

(
C0
1 |n+

)
= 1 when n is odd we know that we have found

all k−invariant vectors.

Now, exactly as in the case l = 0, we have that k acts trivially on zp+1 so we can
simply reintroduce it to obtain:

[
F ⊗ 1⊗ V+

]K
=

∞⊕
l,k=0

〈
zlp+1 · (r2)k · ϕ0,1

〉
.

We now wish to reintroduce the ep+1 term, this is not as straightforward as reintroducing
zp+1, but is nevertheless very doable after the following observation. This observation
will apply for all Ci1 so we discuss it now in the general case. We observe that for any∑

j

pj ⊗ Ωj ⊗ vj ∈ F ⊗
∧i

p∗ ⊗ V,
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one may write it as ∑
j

pj ⊗ Ωj ⊗ vj+︸ ︷︷ ︸
∈F⊗

∧i p∗⊗V+
+
∑
j

pj ⊗ Ωj ⊗ λjep+1︸ ︷︷ ︸
∈F⊗

∧i p∗⊗〈ep+1〉

by linearity, where λj ∈ C is a scalar. Now, as k acts trivially on ep+1 we have:

Xα,β ·
∑
j

pj ⊗Ωj ⊗λjep+1 =
∑
j

ω(Xα,β) · pj ⊗Ωj ⊗λjep+1 +
∑
j

pj ⊗Xα,β ·Ωj ⊗λjep+1.

This observation gives us the following general result which we will use repeatedly
throughout this subsection:

Lemma 5.42. Let J be an indexing set, then∑
j∈J

pj ⊗ Ωj ⊗ λjep+1 ∈
[
F ⊗

∧i
p∗ ⊗ V

]K
⇐⇒

∑
j∈J

λjpj ⊗ Ωj ∈
[
F ⊗

∧i
p∗
]K

.

Furthermore, for each j ∈ J , let vj = vj+ + λjep+1, where vj+ ∈ V+, then∑
j

pj ⊗ Ωj ⊗ vj ∈
[
F ⊗

∧i
p∗ ⊗ V

]K
⇐⇒

∑
j

pj ⊗ Ωj ⊗ vj+ ∈
[
F ⊗

∧i
p∗ ⊗ V+

]K
and

∑
j

λjpj ⊗ Ωj ∈
[
F ⊗

∧i
p∗
]K

.

Proof. This result follows from the fact that both V+ and 〈ep+1〉 are closed under the
k-action, so both terms in the decomposition must be independently k-invariant.

We know from the l = 0 case that [F ⊗ 1]K = C0(g,K;F) =
∞⊕

l,k=0

〈zlp+1 · (r2)k · 1⊗ 1〉

and so
[
F ⊗ 1 ⊗ 〈ep+1〉

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · 1 ⊗ 1 ⊗ ep+1〉. Now, using Lemma 5.42

with i = 0 gives us the result for the space C0
1 = C1(g,K;F ⊗ V ):

Lemma 5.43.

C0
1 =

[
F ⊗ 1⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ϕ0,1〉
⊕ ∞⊕

l,k=0

〈
zlp+1 · (r2)k · 1⊗ 1⊗ ep+1〉

where ϕ0,1 =

p∑
α=1

zα ⊗ 1⊗ eα.
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Computing C1
(
g,K;F ⊗V

)
We have

C1
1 := C1(g,K;F ⊗ V ) =

[
F ⊗ p∗ ⊗ V

]K
We proceed in exactly the same way as in the C1

0 case. We begin by restricting ourselves
to

C1
1 |n+ :=

[
Symn(V+)⊗ p∗ ⊗ V+

]SO(p)

and computing its dimension. We have:

Lemma 5.44.

dim
(
C1
1 |n+

)
= dim

(
Homso(p)

(
V+, Symn(V+)⊗ V+

))
=


0 if n odd

1 if n = 0

2 if n > 0 and even

Proof. The decomposition of Symn(V+)⊗ V+ is:

Symn(V+)⊗ V+ =

l<n
2⊕

l=0

( ⊕
0≤ζ≤1

⊕
α∈Y (n−2l,1,ζ)

Γα

) ⊕ ⊕
l=n

2

Γ(1)

We have V+ ∼= Γ(1). If Γ(1) is present in the decomposition then we certainly require
n− 2l+ 1− 2ζ = 1. This implies that n must be even. Now suppose n is even, then we
immediately obtain a copy of Γ(1) from the l = n

2 part of the direct sum. Now if n > 0
we obtain another copy of Γ(1) through l = n

2 − 1 and ζ = 1, of course, this copy is only
obtainable for n ≥ 2. This completes the proof.

Lemma 5.45.

C1
1+ =

∞⊕
k=0

〈(r2)k · f〉
⊕ ∞⊕

k=0

〈(r2)k · ϕ1,1〉

where f =

p∑
α=1

1⊗ ωα ⊗ eα, ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ.

Remark 5.46.
[
ϕ1,1

]
is a Funke-Millson class, see [6, Chapter 6.2].

We now reintroduce zp+1 and obtain:

[
F ⊗ p∗ ⊗ V+

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · f〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,1〉.

Finally, we re-introduce ep+1. We know from the l = 0 case that

[
F ⊗ p∗

]K
=

∞⊕
k=0

∞⊕
l=0

〈zlp+1 · (r2)k · ϕ〉.
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where ϕ =

p∑
α=1

zα ⊗ eα. Thus, by Lemma 5.42, we obtain the following result:

Lemma 5.47.

C1
1 =

∞⊕
l,k=0

〈zlp+1 · (r2)k · f〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,1〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,0〉

where f =

p∑
α=1

1⊗ ωα ⊗ eα, ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ, ϕ1,0 =

p∑
α=1

zα ⊗ ωα ⊗ ep+1.

Computing C2
(
g,K;F ⊗V

)
We have

C2
1 := C2(g,K;F ⊗ V ) =

[
F ⊗

∧2
p∗ ⊗ V

]K
.

Once again we begin by restricting ourselves to

C2
1 |n+ =

[
Symn(V+)⊗

∧2
p∗ ⊗ V+

]SO(p)

and computing the dimension.

Lemma 5.48.

dim
(
C2
1 |n+

)
= dim

(
Homso(p)

(∧2
V+, Symn(V+)⊗ V+

))
=

{
1 if n odd

0 if n even

Proof. We have
∧2 V+ ∼= Γ(1,1), so we are looking for copies of the irreducible represen-

tation Γ(1,1) in the decomposition of Symn(V+)⊗ V+. Recall that we have:

Symn(V+)⊗ V+ =

l<n
2⊕

l=0

( ⊕
0≤ζ≤1

⊕
α∈Y (n−2l,1,ζ)

Γα

) ⊕ ⊕
l=n

2

Γ(1).

We require n− 2l + 1− 2ζ = 2 ⇐⇒ n− 2l − 2ζ = 1 =⇒ n odd. We consider the two
cases in which n− 2l + 1− 2ζ = 2 can be achieved:

• Case 1: n−2l = 1, ζ = 0, this gives us α ∈ Y (1, 1, 0) with Y (1, 1, 0) = {(2), (1, 1)}.
This case gives us a copy of Γ(1,1).

• Case 2: n − 2l = 3, ζ = 1, this gives us α ∈ Y (3, 1, 1) where Y (3, 1, 1) = {(2)}.
This case does not give us a copy of Γ(1,1).
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Lemma 5.49.

C2
1+ =

∞⊕
k=0

〈
(r2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
〉
.

Proof. We will show that
p∑

α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

is k-invariant. Once this is shown, the well established fact that r2 commutes with the
action of k will give the result. We have:

Xγ,δ ·
p∑

α,β=1

zα ⊗ wα ∧ wβ ⊗ eβ

=

p∑
α,β=1

ω(Xγ,δ) · zα ⊗ ωα ∧ ωβ ⊗ eβ +

p∑
α,β=1

zα ⊗ ad∗Xγ,δ(ωα ∧ ωβ)⊗ eβ

+

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ ρ(Xγ,δ)eβ

=

p∑
β=1

(
zδ ⊗ ωγ ∧ ωβ ⊗ eβ − zγ ⊗ ωδ ∧ ωβ ⊗ eβ

)
+

p∑
β=1

(
zγ ⊗ ωδ ∧ ωβ ⊗ eβ − zδ ⊗ ωγ ∧ ωβ ⊗ eβ

)
+

p∑
α=1

(
zα ⊗ ωα ∧ ωδ ⊗ eγ − zα ⊗ ωα ∧ ωγ ⊗ eδ

)
+

p∑
α=1

(
zα ⊗ ωα ∧ ωγ ⊗ eδ − zα ⊗ ωα ∧ ωδ ⊗ eγ

)
=0

To obtain the final equality, observe that the summations in the first line cancel each
other, as do the summations in the second line.

We re-introduce zp+1 to obtain

[
F ⊗

∧2
p∗ ⊗ V+

]K
=

∞⊕
l,k=0

〈
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
〉
.

We now reintroduce ep+1. We know from the l = 0 case that
[
F ⊗

∧2
p∗
]K

= {0}, and

so by Lemma 5.42 we obtain the following result:

Lemma 5.50.

C2
1 =

[
F ⊗

∧2
p∗ ⊗ V

]K
=

∞⊕
l,k=0

〈
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
〉
.
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Computing Ci
(
g,K;F ⊗ V

)
for 3 ≤ i ≤ p

2

We have

Ci1 := Ci(g,K;F ⊗ V ) =
[
F ⊗

∧i
p∗ ⊗ V

]K
.

Now, we restrict to:

Ci1+ =
[
F+ ⊗

∧i
p∗ ⊗ V+

]SO(p)

.

We will show that Ci1+ = {0}.

Lemma 5.51. Let 3 ≤ i ≤ p
2 , then:

Ci1+ = {0}.

Proof. We show that for all n ∈ Z≥0 we have

dim
(
Ci1|n+

)
= dim

(
Homso(p)

(∧i
V+ , Symn(V+)⊗ V+

))
= 0.

If 3 ≤ i < p
2 (note the strict inequality) we have

∧i
V+ = Γ(1, 1, .., 1)︸ ︷︷ ︸

i entries

. If i = p
2 ,

then
∧i V+ decomposes into two irreducible representations, one of which is Γ(1, 1, .., 1)︸ ︷︷ ︸

i entries

and the other is Γ(1, .., 1,−1)︸ ︷︷ ︸
i entries

. Thus, we need to find copies of Γ(1, 1, ..,±1)︸ ︷︷ ︸
i entries

in the

decomposition, however we know that partitions with more than 2 non-zero terms do not
appear in the decomposition of Symn(V+)⊗V+. Thus, there are no k− homomorphisms
from

∧i V+ to Symn(V+)⊗ V+. This completes the proof.

We now re-introduce zp+1 which gives:

[
F ⊗

∧i
p∗ ⊗ V+

]K
=

∞⊕
l=0

{
zlp+1 · 0

}
= {0}.

Finally, we reintroduce ep+1 using Lemma 5.42. We know from the l = 0 case that[
F ⊗

∧i
p∗
]K

= {0}, so we conclude that:

Theorem 5.52.
Ci1 = {0}, for 3 ≤ i ≤ p

2
.
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Computing Cp−i(g,K;F ⊗V
)

for 3 ≤ i ≤ p
2

We have

Cp−i1 := Cp−i(g,K;F ⊗ V ) =
[
F ⊗

∧p−i
p∗ ⊗ V

]K
.

We now make use of the so(p)−isomorphism, Hodge star, which we introduced at the
start of the section. Recall that the isomorphism is:

? :
∧i

p∗ →
∧p−i

p∗

ω 7→ ?(ω)

such that ω∧?(ω) = ω1∧ω2∧ ...∧ωp ∈
∧p p∗ ∼= C. This isomorphism immediately gives

us the following result:

Lemma 5.53.
Cp−i1 = {0}, for 3 ≤ i < p

2
.

Proof. Firstly, we obtain using Hodge star and our result for dim
(
Ci1|n+

)
that

dim
(
Cp−i1 |n+

)
= dim

([
F ⊗

∧p−i
p∗ ⊗ V

]K )
= dim

([
F ⊗

∧i
p∗ ⊗ V

]K )
= dim

(
Ci1|n+

)
= 0.

for all n ∈ Z≥0 and so Cp−11 + = {0}. We now re-introduce zp+1 and obtain[
F ⊗

∧p−i
p∗ ⊗ V+

]K
= {0}. Moreover, from work in the l = 0 case we know that[

F ⊗
∧p−i

p∗
]K

= {0}. Thus, re-introducing the ep+1 term using Lemma 5.42 gives

Cp−i1 = {0}.

Computing Cp−2(g,K;F ⊗V
)

Remark 5.54. We will simply state the results for Cp−21 :=
[
F ⊗

∧p−2
p∗ ⊗ V

]K
, as

well as for Cp−11 , and Cp1 . The results stated hold since dim
(
Cp−i1 |n+

)
= dim

(
Ci1|n+

)
for

all n ∈ Z≥0 by the isomorphism Hodge star and so
[
F ⊗

∧p−i
p∗ ⊗ V+

]K
is completely

determined by Ci1+ and the isomorphism, ?. Moreover
[
F ⊗

∧p−i
p∗
]K

is completely

determined by Ci0 =
[
F ⊗

∧i p∗
]K

and the isomorphism ?, as we have seen in the l = 0

case. Thus Cp−i1 is determined completely by Ci1 and ? by Lemma 5.42.

Recall that:

C2
1 =

[
F ⊗

∧2
p∗ ⊗ V

]K
=

∞⊕
l,k=0

〈
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
〉
.
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Thus, we have:

Lemma 5.55.

Cp−21 =
[
F ⊗

∧p−2
p∗ ⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k ·
p∑

α,β=1

zα ⊗ ?(ωα ∧ ωβ)⊗ eβ 〉.

Computing Cp−1(g,K;F ⊗V
)

Recall that:

C1
1 =

∞⊕
l,k=0

〈zlp+1 · (r2)k · f〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,1〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,0〉

where f =

p∑
α=1

1 ⊗ ωα ⊗ eα, ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ, ϕ1,0 =

p∑
α=1

zα ⊗ ωα ⊗ ep+1.

Thus, we have:

Lemma 5.56.

Cp−11 =

∞⊕
l,k=0

〈zlp+1·(r2)k·?(f)〉
⊕ ∞⊕

l,k=0

〈zlp+1·(r2)k·?(ϕ1,1)〉
⊕ ∞⊕

l,k=0

〈zlp+1·(r2)k·?(ϕ1,0)〉

where

?(f) =

p∑
α=1

1⊗?(ωα)⊗eα, ?(ϕ1,1) =

p∑
α,β=1

zαzβ⊗?(ωα)⊗eβ, ?(ϕ1,0) =

p∑
α=1

zα⊗?(ωα)⊗ep+1.

Computing Cp
1

(
g,K;F ⊗V

)
Recall that:

C0
1 =

[
F ⊗ 1⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ϕ0,1〉
⊕ ∞⊕

l,k=0

〈
zlp+1 · (r2)k · 1⊗ 1⊗ ep+1〉

where ϕ0,1 =

p∑
α=1

zα ⊗ 1⊗ eα. Thus we have:

Lemma 5.57.

Cp1 =
[
F ⊗ 1⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ?(ϕ0,1)〉
⊕ ∞⊕

l,k=0

〈
zlp+1 · (r2)k · 1⊗ Ω⊗ ep+1〉

where Ω := ω1 ∧ ω2 ∧ ... ∧ ωp and ?(ϕ0,1) =

p∑
α=1

zα ⊗ Ω⊗ eα.
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5.2.2 Computing the cohomology groups H•
(
g,K;F ⊗ V

)
We now compute the cohomology groups arising from C•(g,K;F ⊗ V ). Recall that the
differential is given by

d = ds + dv

where

ds =

p∑
α=1

ω(Xα,p+1)⊗A(ωα)⊗ 1, dv =

p∑
α=1

1⊗A(ωα)⊗ ρ(Xα,p+1).

Exactly as in the l = 0 case, the cohomology groups are in fact sl(2)−modules, where
the action is once again given by:

X · [Ψ] = [X ·Ψ] =

[∑
i

ω(X) · pi ⊗ Ωi ⊗ vi
]

where Ψ =
∑
i

pi ⊗ Ωi ⊗ vi ∈ C•(g,K;F ⊗ V ), and X ∈ sl(2). Using the struc-

ture theorem (Theorem 3.10), we will describe the structure of the cohomology groups
H•1 := H•(g,K;F ⊗ V ) as sl(2)−modules.

Remark 5.58. As Ci
(
g,K;F ⊗ V

)
= {0} for 3 ≤ i ≤ p− 3, we have

H i(g,K;F ⊗ V ) = {0}

for 3 ≤ i ≤ p−3. Thus, we need only consider the cases when i ∈ {0, 1, 2, p−2, p−1, p}.

Computing H0
(
g,K;F ⊗V

)
We wish to compute

H0
1 := H0

(
g,K;F ⊗ V

)
= ker

(
d : C0

1 → C1
1

)
�im

(
d : 0→ C0

1

) = ker
(
d : C0

1 → C1
1

)
.

Recall that we have

C0
1 =

[
F ⊗ 1⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ϕ0,1〉
⊕ ∞⊕

l,k=0

〈
zlp+1 · (r2)k · 1⊗ 1⊗ ep+1〉

where ϕ0,1 =

p∑
α=1

zα⊗1⊗eα. The differentials of these k−invariant vectors are as follows:

1. d
(
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ 1⊗ eα
)

= −2lk · zl−1p+1 · (r
2)k−1 ·

∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ − l · zl−1p+1 · (r
2)k ·

p∑
α=1

1⊗ ωα ⊗ eα

+ zl+1
p+1 · (r

2)k ·
p∑

α,β=1

zαzβ ⊗ ωα ⊗ eβ + zlp+1 · (r2)k ·
p∑

α=1

zα ⊗ ωα ⊗ ep+1
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2. d
(
zlp+1 · (r2)k · ⊗1⊗ ep+1

)
= −2lk · zl−1p+1 · (r

2)k−1 ·
p∑

α=1

zα ⊗ ωα ⊗ ep+1 + zl+1
p+1 · (r

2)k ·
p∑

α=1

zα ⊗ ωα ⊗ ep+1

+ zlp+1 · (r2)k ·
p∑

α=1

1⊗ ωα ⊗ eα.

.

This gives us the following result.

Theorem 5.59.
H0
(
g,K;F ⊗ V

)
= {0}.

Proof. Observe that no combination of vectors of the form

∑
i

(
zlip+1 · (r

2)ki ·
p∑

α=1

zα ⊗ 1⊗ eα

)
or

∑
i

zlip+1(r
2)ki ⊗ 1⊗ ep+1

will be in the kernel of d. Moreover, d

(
zlp+1 ·(r2)k ·

p∑
α=1

zα⊗1⊗eα
)

has a term containing

a non-zero multiple of the vector

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ and d
(
zlp+1(r

2)k ⊗ 1⊗ ep+1

)
has

no such term, therefore no combination of vectors in C0
1 will be in the kernel of d, i.e.

ker(d) = {0}.

Computing H1
(
g,K;F ⊗V

)
Recall that

C1
1 =

∞⊕
l,k=0

〈zlp+1 · (r2)k · f〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,1〉
⊕ ∞⊕

l,k=0

〈zlp+1 · (r2)k · ϕ1,0〉

where f =

p∑
α=1

1 ⊗ ωα ⊗ eα, ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ, ϕ1,0 =

p∑
α=1

zα ⊗ ωα ⊗ ep+1.

The differentials of these vectors are as follows:

1. d
(
zlp+1 · (r2)k ·

p∑
α=1

1⊗ ωα ⊗ eα
)

=− 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

+ zl+1
p+1 · (r

2)k ·
p∑

α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

2. d
(
zlp+1 · (r2)k ·

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ
)

= l · zl−1p+1 · (r
2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
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3. d
(
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ ωα ⊗ ep+1

)
= −zlp+1 · (r2)k ·

∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

Theorem 5.60. We have

H1
(
g,K;F ⊗ V

)
=
∞⊕
k=0

〈
[
(r2)k · ϕ1,1

]
〉.

Proof. See Appendix A.

We now describe the structure of H1(g,K;F ⊗ V
)

as a sl(2,C)−module.

Theorem 5.61.
∞⊕
k=0

〈
[
(r2)k · ϕ1,1

]
〉 has sl(2)−module structure

(
[◦
)
, that is,

∞⊕
k=0

〈
[
(r2)k · ϕ1,1

]
〉 is a lowest weight sl(2)−module. Moreover, it has lowest weight

(p+ 3)i

2
with lowest weight vector

[
ϕ1,1

]
. 5

Proof. We first check that
[
ϕ1,1

]
is indeed a lowest weight vector with weight

(p+ 3)i

2
.

[
L · ϕ1,1

]
=

[(
− 1

2

p∑
α=1

∂2

∂z2α
+

1

2
z2p+1

)
·
( p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ
)]

=

[
− 1

2

p∑
α=1

2⊗ ωα ⊗ eα +
1

2

∑
α,β

z2p+1zαzβ ⊗ ωα ⊗ eβ

]

=

[
d

(
1

2
zp+1

p∑
α=1

zα ⊗ 1⊗ eα −
1

2
(1⊗ 1⊗ ep+1)

)]
=
[
0
]
.

Next, we check the weight of
[
ϕ1,1

]
. We have:

[
H · ϕ1,1

]
=

[
i

p∑
α,β,γ=1

zγ
∂

∂zγ

(
zαzβ

)
⊗ ωα ⊗ eβ +

(p− 1)i

2
ϕ1,1

]

=

[
2i · ϕ1,1 +

(p− 1)i

2
· ϕ1,1

]
=

(p+ 3)i

2
·
[
ϕ1,1

]
.

Now, one easily sees that [
R · (r2)k−1 · ϕ1,1

]
=

1

2

[
(r2)k · ϕ1,1

]
.

5The Funke-Millson class [ϕ1,1] is therefore a holomorphic class, see Remark 5.33.
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All that remains is to check what happens when L is applied to
[
(r2)k · ϕ1,1

]
for k > 0.

L ·
[
(r2)k · ϕ1,1

]
=

[
− 1

2

p∑
α,β,γ=1

∂2

∂z2γ

(
(r2)k · zαzβ

)
⊗ ωα ⊗ eβ +

1

2
· z2p+1 · (r2)k · ϕ1,1

]

=

[
−
(

2k(k − 1) + kp+ 4k
)
· ϕ1,1 − (r2)k ·

p∑
α=1

1⊗ ωα ⊗ eα +
1

2
· z2p+1 · (r2)k · ϕ1,1

]
.

Now, we have:

d

(
1

2
· zp+1 · (r2)k ·

p∑
α=1

zα ⊗ 1⊗ eα −
1

2
· (r2)k ⊗ 1⊗ ep+1

)

= −k · (r2)k−1 · ϕ1,1 − (r2)k ·
p∑

α=1

1⊗ ωα ⊗ eα +
1

2
· z2p+1 · (r2)k · ϕ1,1

=⇒

[
− (r2)k ·

p∑
α=1

1⊗ ωα ⊗ eα +
1

2
· z2p+1 · (r2)k · ϕ1,1

]
=

[
k · (r2)k−1 · ϕ1,1

]
.

We use this cohomology relation to obtain that:

L ·
[
(r2)k · ϕ1,1

]
=

(
−
(

2k(k − 1) + kp+ 4k
)

+ k

)
·
[
(r2)k−1 · ϕ1,1

]
= −k

(
2k + (p+ 1)

)
·
[
(r2)k−1 · ϕ1,1

]
.

We see that 2k+ (p+ 1) > 0 for all k > 0 and so L ·
[
(r2)k ·ϕ1,1

]
6= [0] for all k > 0.

Computing H2
(
g,K;F ⊗V

)
Recall that:

C2
1 =

[
F ⊗

∧2
p∗ ⊗ V

]K
=

∞⊕
l,k=0

〈
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ
〉
.

One finds that d
(
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ wα ∧ wβ ⊗ eβ
)

= 0 for all l, k ≥ 0. However,

d
(
−zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ωα ⊗ ep+1︸ ︷︷ ︸
∈ C1

1

)
= zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ wα ∧ wβ ⊗ eβ,

and so im(d) = C2
1 . Therefore we obtain:

Theorem 5.62.
H2(g,K;F ⊗ V ) = {0}.
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Remark 5.63. Recall that the differential is a map d : Ci → Ci+1. As we have found
that Ck = {0} for all 3 ≤ k ≤ p− 3 we have C3 = {0} for p ≥ 6. Thus, it is no surprise
that

d

(
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ wα ∧ wβ ⊗ eβ
)

= 0.

The case p = 5 can be readily checked and also gives 0, as we would expect.

Computing Hp−2(g,K;F ⊗V
)

Recall that

Cp−21 =
[
F ⊗

∧p−2
p∗ ⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k ·
p∑

α,β=1

zα ⊗ ?(ωα ∧ ωβ)⊗ eβ 〉.

The differential of these k−invariant vectors is:

d
(
zlp+1 · (r2)k ·

p∑
α,β=1

zα ⊗ ?(wα ∧ wβ)⊗ eβ
)

=− 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α,β=1

z2α ⊗ ωα ∧ ?(ωα ∧ ωβ)⊗ eβ

− l · zl−1p+1 · (r
2)k ·

p∑
α,β=1

1⊗ ωα ∧ ?(ωα ∧ ωβ)⊗ eβ

− 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α,β=1

zαzβ ⊗ ωβ ∧ ?(ωα ∧ ωβ)⊗ eβ

+ zl+1
p+1 · (r

2)k ·
p∑

α,β=1

z2α ⊗ ωα ∧ ?(ωα ∧ ωβ)⊗ eβ

+ zl+1
p+1 · (r

2)k ·
p∑

α,β=1

zαzβ ⊗ ωβ ∧ ?(ωα ∧ ωβ)⊗ eβ

+ zlp+1(r
2)k

p∑
α,β=1

zα ⊗ ωβ ∧ ?(ωα ∧ ωβ)⊗ ep+1.

Observe that the last term in this calculation is of the form
∑
· · · ⊗ · · · ⊗ ep+1. As no

other term in the calculation is of this form we conclude that no combination of the form∑
i

(
zlip+1 · (r

2)ki ·
p∑

α,β=1

zα ⊗ ?(wα ∧ wβ)⊗ eβ

)
where li, ki ∈ Z≥0 will be in the kernel of d, hence we obtain the following result.

Theorem 5.64.
Hp−2(g,K;F ⊗ V

)
= {0}
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Computing Hp−1(g,K;F ⊗V
)

Recall that:

Cp−11 =

∞⊕
l,k=0

〈zlp+1·(r2)k·?(f)〉
⊕ ∞⊕

l,k=0

〈zlp+1·(r2)k·?(ϕ1,1)〉
⊕ ∞⊕

l,k=0

〈zlp+1·(r2)k·?(ϕ1,0)〉

where

?(f) =

p∑
α=1

1⊗?(ωα)⊗eα, ?(ϕ1,1) =

p∑
α,β=1

zαzβ⊗?(ωα)⊗eβ, ?(ϕ1,0) =

p∑
α=1

zα⊗?(ωα)⊗ep+1.

Let Ω := ω1 ∧ ... ∧ ωp. The differentials of these vectors are as follows:

1. d
(
zlp+1 · (r2)k · ?(f)

)
= −2lk · zl−1p+1 · (r

2)k−1 ·
p∑

α=1

zα ⊗ Ω⊗ eα + zl+1
p+1 · (r

2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

+ p · zlp+1 · (r2)k · ⊗Ω⊗ ep+1

2. d
(
zlp+1 · (r2)k · ?(ϕ1,1)

)
= −l(2k + p+ 1) · zl−1p+1 · (r

2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα + zl+1
p+1 · (r

2)k+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

+ zlp+1 · (r2)k+1 · (1⊗ Ω⊗ ep+1)

3. d
(
zlp+1 · (r2)k · ?(ϕ1,0)

)
= −l(2k + p) · zl−1p+1 · (r

2)k · (1⊗ Ω⊗ ep+1) + zl+1
p+1 · (r

2)k+1 · (1⊗ Ω⊗ ep+1)

+ zlp+1 · (r2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

Now, as one can see from the proof of Theorem 5.60
(
which give the result for H1

1

)
,

finding the kernel of the differential can be very cumbersome using elementary methods.
Therefore, we only state a guess for Hp−1

1 .

Guess 5.65.
Hp−1

1 = Hp−1(g,K;F ⊗ V
)

= {0}

Computing Hp
(
g,K;F ⊗V

)
Recall that

Cp1 =
[
F ⊗ 1⊗ V

]K
=

∞⊕
l,k=0

〈zlp+1 · (r2)k · ?(ϕ0,1)〉
⊕ ∞⊕

l,k=0

〈
zlp+1 · (r2)k · 1⊗ Ω⊗ ep+1〉
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where Ω := ω1 ∧ ω2 ∧ ... ∧ ωp and ?(ϕ0,1) =

p∑
α=1

zα ⊗ Ω ⊗ eα. As dim(p) = p, we have

that

Cp+i1 :=
[
F ⊗

∧p+i
p∗ ⊗ V

]K
=
[
F ⊗ {0} ⊗ V

]K
= {0}

for all i ≥ 1. In particular, all k−invariant vectors in Cp1 will be in the kernel of d since

Cp+1
1 = {0}. Therefore, we only need to determine the cohomology relations given by

im
(
d : Cp−11 → Cp1

)
in order to describe the cohomology group Hp

1 . We obtain the
following relations.

1. Relation 1.

(a) For l, k ≥ 1 we have

d
(
zlp+1 · (r2)k · ?(f)− zlp+1 · (r2)k−1 · ?(ϕ1,1)

)
= l(p− 1) · zl−1p+1 · (r

2)k−1 ·
p∑

α=1

zα ⊗ Ω⊗ eα + (p− 1) · zlp+1 · (r2)k ·
(
1⊗ Ω⊗ ep+1

)
=⇒

[
l · zl−1p+1 · (r

2)k−1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

]
=
[
− zlp+1 · (r2)k · (1⊗ Ω⊗ ep+1)

]
(b) For k = 0, l ≥ 0 we have

d
(
zlp+1 ? (f)

)
= zl+1

p+1

p∑
α=1

zα ⊗ Ω⊗ eα + p · zlp+1(1⊗ Ω⊗ ep+1)

=⇒
[
p · zlp+1 · (1⊗ Ω⊗ ep+1)

]
=

[
−zl+1

p+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

]

(c) Similarly, for l = 0, k ≥ 0, by consideration of d
(

(r2)k ? (f)
)

, we have

[
p · (r2)k · (1⊗ Ω⊗ ep+1)

]
=

[
−zp+1 · (r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

Observe that with this relation we can completely replace terms of the form 1⊗ Ω⊗ ep+1

with terms of the form

p∑
α=1

zα⊗Ω⊗eα in the cohomology group Hp
1 = Hp(g,K;F⊗V ).
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2. Relation 2. We now obtain a relation involving only

p∑
α=1

zα ⊗ Ω ⊗ eα terms. For all

l, k ≥ 0 we have:

d
(
zlp+1 · (r2)k+1 · ?(f)− pzlp+1 · (r2)k · ?(ϕ1,1)

)
= l
(
2k(p− 1) + p2 + p− 2

)
· zl−1p+1 · (r

2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

− (p− 1) · zl+1
p+1 · (r

2)k+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

=⇒ l(2k + p+ 2)

[
zl−1p+1 · (r

2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

]
=

[
zl+1
p+1 · (r

2)k+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

]
.

Using relation 2 we can reduce the powers of zp+1 and r2. If we repeatedly use the relation
until it is not possible to do so anymore, then we will be in one of three situations.

1. We will be left with

(r2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

for some k ≥ 0. This is not in the image of d : Cp−11 → Cp1 .

2. We will be left with

zp+1 · (r2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

for some k > 0. Loosely speaking one may apply the relation again, as even though
we seemingly obtain a term containing a negative power of zp+1, the whole term is
multiplied by l = 0 and so it vanishes. More concretely, one can see that

d
(

(r2)k ? (f)− p(r2)k−1 ? (ϕ1,1)
)

= −(p− 1) · zp+1 · (r2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα.

3. Finally, we could be left with

zlp+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

for some l ≥ 0. This is not in the image of d : Cp−1 → Cp

These relations give us the following characterisations of Hp
1 .
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Theorem 5.66.

Hp(g,K;F ⊗ V ) =
∞⊕

l,k=0

〈[
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉

with relation

l(2k + p+ 2)

[
zl−1p+1 · (r

2)k ·
p∑

α=1

zα ⊗ Ω⊗ eα

]
=

[
zl+1
p+1 · (r

2)k+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα

]
.

for all l, k ≥ 0. Equivalently,

Hp(g,K;F ⊗ V ) =
∞⊕
l=0

〈[
zlp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉 ⊕ ∞⊕

k=1

〈[
(r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]〉

We now discuss the sl(2)−module structure of Hp
1 . We will use the latter characteri-

sation of Hp
1 from the above theorem as it will be easier to describe the module structure.

We have:

Theorem 5.67.
∞⊕
l=0

〈[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]〉
has sl(2)−module structure

1.
(
◦
]
◦
])

if p is odd.

2.
(
◦
])

if p is even.

Moreover,

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
is a highest weight vector with weight

(p− 1)i

2
. If p is

even then this is the only highest weight vector. If p is odd then

[
zp+2
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
is also a highest weight vector.

Proof. We first check that

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
is a highest weight vector with weight

(p− 1)i

2
. We have

R ·

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
=

[
R · zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

=

[(
1

2

p∑
α=1

z2α −
1

2

∂2

∂z2p+1

)
· zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

=

[
1

2
· r2 · zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
=
[
0
]
, using relation 2.
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Thus

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
is a highest weight vector. Moreover,

H ·

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
=

[
H · zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

=

(i( p∑
α=1

zα
∂

∂zα
− zp+1

∂

∂zp+1

)
+

(p− 1)i

2

)
· zp+1 ·

p∑
β=1

zβ ⊗ Ω⊗ eβ


=

(i · zp+1 ·
p∑

α,β=1

zα
∂

∂zα
zβ ⊗ Ω⊗ eβ +

(p− 3)i

2
· zp+1 ·

p∑
β=1

zβ ⊗ Ω⊗ eβ


=

[
(p− 1)i

2
· zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
=

(p− 1)i

2

[
zp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

Next, one easily sees that

L ·
[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
1

2

[
z
2(l+1)+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]
.

Finally, we check what happens when R is applied to

[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]
.

R ·
[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=

[
1

2
· r2 · z2l+1

p+1 ·
p∑

α=1

zα ⊗ Ω⊗ eα︸ ︷︷ ︸
Use cohomology relation

−1

2
· ∂2

∂z2p+1

(
z2l+1
p+1

)
·

p∑
α=1

zα ⊗ Ω⊗ eα

]

= l
(

(p+ 2)− (2l + 1)
)
·

[
z2l−1p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]

Thus, R ·
[
z2l+1
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
[
0
]
⇐⇒ 2l + 1 = p+ 2. That is, if p is odd then

R ·
[
zp+2
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
[
0
]
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Theorem 5.68.
∞⊕
l=0

〈[
z2lp+1 ·

p∑
α=1

zα⊗Ω⊗ eα
]〉 ⊕ ∞⊕

k=1

〈[
(r2)k ·

p∑
α=1

zα⊗Ω⊗ eα
]〉

has

sl(2)−module structure:

1.
(
◦
)

if p is odd

2.
(
◦
]
◦
)

if p is even.

Moreover, if p is even then

[
zp+2
p+1 ·

p∑
α=1

zα ⊗Ω⊗ eα
]

is the highest weight vector, that is,

R ·
[
zp+2
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
[
0
]
.

Proof. Firstly, we easily see that

R ·
[
(r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
1

2

[
(r2)k+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

and

L ·
[
z2lp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
1

2

[
z
2(l+1)
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]
.

Thus, we only need to check what happens when we apply L to

[
(r2)k ·

p∑
α=1

zα⊗Ω⊗ eα
]

and when we apply R to

[
z2lp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

for l, k ≥ 1. We have

L ·
[
(r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=

[
− 1

2
·

p∑
α,β=1

∂2

∂z2β

(
(r2)k · zα

)
⊗ Ω⊗ eα +

1

2
· z2p+1 · (r2)k ·

p∑
α=1

zα ⊗ Ω⊗ eα︸ ︷︷ ︸
Use cohomology relation

]

= −1

2

(
2k − 1

)(
2k + p

)
·

[
(r2)k−1 ·

p∑
α=1

zα ⊗ Ω⊗ eα

]
.

This has no solutions for k ∈ Z≥1. Finally we have:

R ·
[
z2lp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]
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=

[
1

2
· r2 · z2lp+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα︸ ︷︷ ︸
Use cohomology relation

−1

2
· ∂2

∂z2p+1

(
z2lp+1

)
·

p∑
α=1

zα ⊗ Ω⊗ eα

]

=
1

2

(
2l − 1

)(
(p+ 2)− 2l

)
·

[
z2l−2p+1

p∑
α=1

zα ⊗ Ω⊗ eα

]
.

Thus, R ·
[
z2lp+1 ·

p∑
α=1

zα ⊗ Ω ⊗ eα
]

=
[
0
]
⇐⇒ 2l = p + 2, that is, when p is even we

have

R ·
[
zp+2
p+1 ·

p∑
α=1

zα ⊗ Ω⊗ eα
]

=
[
0
]
.

5.3 l > 1

As we seen in the proof of Theorem 5.60 and by the lack of a result for Hp−1
1 , deter-

mining the kernel of the differential is tricky, even for very small values of l. As one
can imagine, for l > 1 these computations get much more complicated and are very in-
efficient. Thus for general l ∈ Z≥0, more sophisticated algebraic machinery is required.
However it is not all bad news. In particular, we have a general result for the spaces
Cil := Ci

(
g,K;F ⊗ Syml(V )

)
in the case 3 ≤ i ≤ p− 3.

Theorem 5.69. Let l ∈ Z≥0, 3 ≤ i ≤ p− 3, then

Cil =
[
F ⊗

∧i
p∗ ⊗ Syml(V )

]K
= {0}.

Proof. We prove the result for 3 ≤ i ≤ p
2 . The k−isomorphism, Hodge star, gives the

result for p
2 < i ≤ p − 3. We proceed with induction. Firstly, the result holds in the

cases l = 0, 1 as we have seen earlier in the section. We assume the result holds for all
n ∈ Z>0 such that n < l. Now recall that

Symn(V+)⊗ Syml(V+) =

bn
2
c⊕

j=0

( k≤ l
2⊕

k≥ l−(n−2j)
2

⊕
0≤ζ≤l−2k

⊕
α∈Y (n−2j,l−2k,ζ)

Γα

⊕ k<
l−(n−2j)

2⊕
k=0

⊕
0≤ζ≤n−2j

⊕
α∈Y (l−2k,n−2j,ζ)

Γα

)
.

Observe that for any l ∈ Z≥0, the decomposition contains irreducible representations
with associated partitions λ which have positive terms in entries λ1 and λ2 only. In
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particular, the decomposition does not contain any copies of Γ(1, ..., 1)︸ ︷︷ ︸
i entries

, nor does it

contain any copies of the representation Γ(1, ..., 1,−1︸ ︷︷ ︸
i entires

)

(
the latter is needed for the case

i = p
2

)
. From this we deduce that for all n ≥ 0 and all 3 ≤ i ≤ p

2 we have

dim
(
Cil |n+

)
= dim

([
Symn(V+)⊗

∧i
p∗ ⊗ Syml(V+)

]SO(p)
)

= dim

(
Homso(p)

(∧i
p, Symn(V+)⊗ Syml(V+)

))
= 0

which implies that Ci1|+ = {0}. We may re-introduce zp+1 exactly as we did in the cases

l = 0 and l = 1 to obtain
[
F ⊗

∧i
p∗ ⊗ Syml(V+)

]K
= {0}. Now observe that for any∑

k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl ∈ F ⊗
∧i

p∗ ⊗ Syml(V )

we may express it as∑
k

pk ⊗ Ωk ⊗ e+k1e
+
k2
...e+kl︸ ︷︷ ︸

∈F⊗
∧i p∗⊗Syml(V+)

+
∑
k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl−1
ep+1.

Note that the ekj in the second summand are allowed to be ep+1. By Lemma 5.42, if∑
k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl is k−invariant, then both summands in the above expression

must be independently k−invariant. Observe that:∑
k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl−1
ep+1 ∈

[
F ⊗

∧i
p∗ ⊗ Syml(V )

]K
⇐⇒

∑
k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl−1
∈
[
F ⊗

∧i
p∗ ⊗ Syml−1(V )

]K
.

Now, by our induction step,
[
F ⊗

∧i
p∗ ⊗ Syml−1(V )

]K
= {0}. This result along with

the fact that [
F ⊗

∧i
p∗ ⊗ Syml(V+)

]K
= {0}

implies that if ∑
k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl ∈
[
F ⊗

∧i
p∗ ⊗ Syml(V )

]K
then ∑

k

pk ⊗ Ωk ⊗ ek1ek2 ...ekl = 0 + 0 = 0.
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A Proof of Theorem 5.60

The theorem states that:

Theorem.

H1
1 := H1

(
g,K;F ⊗ V

)
=

∞⊕
k=0

〈
[
(r2)k · ϕ1,1

]
〉

where ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ.

Proof. Recall that the differentials of the k−invariant vectors in C1
1 are given by:

• d
(
zlp+1 · (r2)k ·

p∑
α=1

1⊗ ωα ⊗ eα
)

=− 2lk · zl−1p+1 · (r
2)k−1 ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

+ zl+1
p+1 · (r

2)k ·
p∑

α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

• d
(
zlp+1 · (r2)k ·

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ
)

= l · zl−1p+1 · (r
2)k ·

p∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ

• d
(
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ ωα ⊗ ep+1

)
= −zlp+1 · (r2)k ·

∑
α,β=1

zα ⊗ ωα ∧ ωβ ⊗ eβ.

We define the following three polynomials in variables x, y:

a) pa,b(x, y) := −2abxa−1yb−1 + xa+1yb

b) qc,d(x, y) := cxc−1yd

c) rf,g(x, y) := −zfyg

where a, b, c, d, f, g ∈ Z≥0 are fixed. We will adopt the convention that

xn = 0 if n < 0

and likewise for yn. Observe that combinations of polynomials of the form p, q, r which
sum to 0 is in one-to-one correspondence with combinations of the k−invariant vectors
whose image under the differential is 0. Therefore we will classify all combinations of
p, q, r which sum to give 0, and then use this one-to-one correspondence to realise these
as combinations of the k−invariant vectors that are in the kernel of d. We will then show
that the only combination of k−invariant vectors which is not [0] in cohomology are the
vectors of the form

(r2)k ·
p∑

α,β=1

zαzβ ⊗ ωα ⊗ eβ
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or scalar multiples thereof, which correspond to the polynomials of the form

q0,k(x, y) = 0x0−1yk = 0.

We will now classify all the combinations of polynomials p, q, r which sum to 0 by consid-
ering the number of different pa,b(x, y) terms involved. In what follows, we will state the
polynomial combinations with at least one of p, q, r having coefficient 1 for simplicity,
but of course scalar multiples of all combinations given are also valid.

• 0 pa,b(x, y) terms:

We have the following combinations which sum to 0 which involve no terms of the
form pa,b(x, y):

1. q0,d(x, y) = 0x0−1yd = 0

2. qc,d(x, y) + c · rc−1,d(x, y) for c ≥ 1

• 1 pa,b(x, y) term:

We have pa,b(x, y) = −2abxa−1yb−1 + xa+1yb. Thus, we need to find combinations of
polynomials q and r which cancel out −2abxa−1yb−1 and xa+1yb. We find that

• 2abxa−1yb−1 = (2ab− λ) 1aqa,b−1(x, y)− λra−1,b−1(x, y) for a, b ≥ 1, λ ∈ C
Note: if either a or b are 0 then −2abxa−1yb−1 vanishes so we have nothing to
cancel out.

• −xa+1yb = −(1− µ) 1
a+2qa+2,b(x, y) + µra+1,b(x, y), for a, b ≥ 0, µ ∈ C.

Altogether, this gives us that the two parameter family (with parameters λ and µ) of
polynomial combinations involving one pa,b(x, y) term, with a, b fixed, which sum to
0 is

pa,b(x, y) +
1

a
(2ab− λ)qa,b−1(x, y)− λra−1,b−1(x, y)− 1

a+ 2
(1− µ)qa+2,b(x, y) + µra+1,b(x, y)

= pa,b(x, y) + 2bqa,b−1(x, y)− λ

a

(
qa,b−1(x, y) + ara−1,b−1(x, y)

)
− 1

a+ 2
qa+2,b(x, y) +

µ

a+ 2

(
qa+2,b(x, y) + (a+ 2)ra+1,b(x, y)

)
.

Observe that the two parameter family of combinations is of the form

pa,b(x, y)+2bqa,b−1(x, y)− 1

a+ 2
qa+2,b(x, y) + terms from the ‘0 pa,b(x, y) terms’ case.

Therefore, the terms involving λ and µ only contribute to combinations we already
know. Thus, the only combination in this case which sums to 0 which doesn’t contain
any combinations of the form 1 and 2 is

3. pa,b(x, y) + 2b · qa,b−1(x, y)− 1

a+ 2
· qa+2,b(x, y)
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• 2 pa,b(x, y) terms:

i) If the pa,b(x, y) and pa′,b′(x, y) polynomials involved share no common terms,
then we end up with 2 disjoint combinations from the ‘1 pa,b(x, y) term’ case.
Therefore we obtain no new combinations here.

ii) Suppose then that pa,b(x, y) and pa′,b′(x, y) provide cancellation between them.
If all terms all cancelled then pa′,b′(x, y) = −pa,b(x, y) and this combination is
useless. Therefore, we suppose that pa,b(x, y) and pa′,b′(x, y) have one term in
common, then we obtain a polynomial of the form:

pa,b(x, y) +
1

2(a+ 2)(b+ 1)
pa+2,b+1(x, y)

= −2abxa−1yb−1 + xa+1yb − xa+1yb +
1

2(a+ 2)(b+ 1)
xa+3yb

= −2abxa−1yb−1 +
1

2(a+ 2)(b+ 1)
xa+3yb

We now look for combinations of polynomials q and r which cancel the terms

−2abxa−1yb−1 and
1

2(a+ 2)(b+ 1)
xa+3yb.

• 2abxa−1yb−1 =
1

a
(2ab− λ)qa,b−1(x, y)− λra−1,b−1(x, y) for a, b ≥ 1, λ ∈ C.

• − 1

2(a+ 2)(b+ 1)
xa+3yb

= − 1

2(a+ 2)(b+ 1)

(
1

a+ 4

(
1− ζ

)
qa+4,b+1(x, y)− ζra+3,b+1(x, y)

)
, ζ ∈ C

Thus, we have that

pa,b(x, y) +
1

2(a+ 2)(b+ 1)
pa+2,b+1(x, y)

+
1

a
(2ab− λ)qa,b−1(x, y)− λra−1,b−1(x, y) (∗)

− 1

2(a+ 2)(b+ 1)

(
1

a+ 4

(
1− ζ

)
qa+4,b+1(x, y)− ζra+3,b+1(x, y)

)
= 0

We now introduce a combination of q and r which cancels xa+1yb.

• xa+1yb = 1
a+2(1− µ)qa+2,b(x, y)− µra+1,b(x, y), µ ∈ C

We can now add and subtract this combination of q and r to both sides of the
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equation labelled (∗). This has the net affect of adding 0, therefore we obtain:

pa,b(x, y) +
1

2(a+ 2)(b+ 1)
pa+2,b+1(x, y)

+
1

a
(2ab− λ)qa,b−1(x, y)− λra−1,b−1(x, y)

+
1

a+ 2
(1− µ)qa+2,b(x, y)− µra+1,b(x, y)

−
( 1

a+ 2
(1− µ)qa+2,b(x, y)− µra+1,b(x, y)

)
− 1

2(a+ 2)(b+ 1)

(
1

a+ 4

(
1− ζ

)
qa+4,b+1(x, y)− ζra+3,b+1(x, y)

)
= 0.

We may write this as

pa,b(x, y) + 2bqa,b−1(x, y)− 1

a+ 2
qa+2,b(x, y)

− λ

a

(
qa,b−1(x, y) + ara−1,b−1(x, y)

)
+

µ

a+ 2

(
qa+2,b(x, y) + (a+ 2)ra+1,b(x, y)

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+
1

2(a+ 2)(b+ 1)

(
pa+2,b+1(x, y) + 2(b+ 1)qa+2,b(x, y)− 1

a+ 4
qa+4,b+1(x, y)

)

− µ

a+ 2

(
qa+2,b(x, y) +

(
a+ 2

)
ra+1,b(x, y)

)
+

ζ

2(a+ 2)(b+ 1)(a+ 4)

(
qa+4,b+1(x, y) +

(
a+ 4

)
ra+3,b+1(x, y)

)
We recognise this as sum of scalar combinations of the form 1, 2 and 3, therefore
we have obtained no new combinations here.

• For greater than 2 pa,b(x, y) terms we use the same method as in the ‘2 pa,b(x, y)
terms’ case to show that we once again simply get a sum of combinations of the form
1, 2 and 3.

Having now found all distinct combinations of polynomials which sum to 0, we use the
one-to-one correspondence to realise them as combinations of k−invariant vectors. Recall
that in Section 5, we defined

f :=

p∑
α=1

1⊗ ωα ⊗ eα, ϕ1,1 =

p∑
α,β=1

zαzβ ⊗ ωα ⊗ eβ, ϕ1,0 =

p∑
α=1

zα ⊗ ωα ⊗ ep+1.

With this notation polynomial combinations 1, 2 and 3 correspond to the following
k−invariant vector combinations:
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1. (r2)k · ϕ1,1

2. zlp+1 · (r2)k · ϕ1,1 + l · zl−1p+1 · (r
2)k · ϕ1,0 for l ≥ 1. Note that the case l = 0 simply

gives us vector combination 1.

3. zlp+1 · (r2)k · f + 2k · zlp+1 · (r2)k−1 · ϕ1,1 −
1

l + 2
· zl+2
p+1 · (r

2)k · ϕ1,1

Recall from our calculations when computing H0
1 that

A) d
(
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ 1⊗ eα
)

= −2lk · zl−1p+1 · (r
2)k−1 · ϕ1,1 − l · zl−1p+1 · (r

2)k · f + zl+1
p+1 · (r

2)k · ϕ1,1 + zlp+1 · (r2)k · ϕ1,0.

B) d
(
zlp+1 · (r2)k · ⊗1⊗ ep+1

)
= −2lk · zl−1p+1 · (r

2)k−1 · ϕ1,0 + zl+1
p+1 · (r

2)k · ϕ1,0 + zlp+1 · (r2)k · f.

Thus, one sees that
(r2)kϕ1,1 /∈ im

(
d : C0

1 → C1
1

)
for all k ∈ Z≥0, so

[
(r2)kϕ1,1

]
is a non-zero class in H1

1 . Now, for vector combination 2,

that is,
zlp+1 · (r2)k · ϕ1,1 + l · zl−1p+1 · (r

2)k · ϕ1,0

where l ≥ 1, we consider the following vector in the image of d:

d

(
zlp+1 · (r2)k ·

p∑
α=1

zα ⊗ 1⊗ eα + zl−1p+1 · (r
2)k · ⊗1⊗ ep+1

)
=
(
− 2lk · zl−1p+1 · (r

2)k−1 + zl+1
p+1 · (r

2)k
)
ϕ1,1 +

(
(l + 1) · zlp+1 · (r2)k − 2l(l − 1)k · zl−2p+1 · (r

2)k−1
)
ϕ1,0.

This gives us the following relation in the cohomology group H1
1 :[

zl+1
p+1·(r

2)k·ϕ1,1 + (l+1)·zlp+1·(r2)k·ϕ1,0

]
= 2lk

[
zl−1p+1·(r

2)k−1·ϕ1,1 + (l−1)·zl−2p+1·(r
2)k−1·ϕ1,0

]
for l ≥ 2, k ≥ 1. Therefore, given any cohomology class of the form[

zl+1
p+1 · (r

2)k · ϕ1,1 + (l + 1) · zlp+1 · (r2)k · ϕ1,0

]
we may always reduce it, using the relation, to a class of the form[

za+1
p+1 · (r

2)b · ϕ1,1 + (a+ 1) · zap+1 · (r2)b · ϕ1,0

]
where a ≤ 1 or b = 0 (or both). We now consider the various cases:
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• a = 1, b ≥ 1.

Suppose we have reduced the class to[
z2p+1 · (r2)b · ϕ1,1 + 2 · zp+1 · (r2)b · ϕ1,0

]
.

Then consider the differential

d

(
zp+1 · (r2)b ·

p∑
α=1

zα ⊗ 1⊗ eα + (r2)b · 1⊗ 1⊗ ep+1

)
=
(
− 2b · (r2)b−1 + z2p+1 · (r2)b

)
ϕ1,1 +

(
2 · zp+1 · (r2)b

)
ϕ1,0.

This implies that in the cohomology group H1
1 we have[

z2p+1 · (r2)b · ϕ1,1 + 2 · zp+1 · (r2)b · ϕ1,0

]
=
[
2b · (r2)b−1 · ϕ1,1

]
.

This is exactly the cohomology class we have already found.

• a = 0, b ≥ 1

Now suppose we have reduced to the class[
zp+1 · (r2)b · ϕ1,1 + (r2)b · ϕ1,0

]
.

Then, observe that

d

(
(r2)b ·

p∑
α=1

zα ⊗ 1⊗ eα
)

= zp+1 · (r2)b · ϕ1,1 + (r2)b · ϕ1,0.

Thus in the cohomology group H1
1 we have[

zp+1 · (r2)b · ϕ1,1 + (r2)b · ϕ1,0

]
=
[
0
]
.

• a ≥ 2, b = 0.

If we reduce to the class [
za+1
p+1 · ϕ1,1 + (a+ 1) · zap+1 · ϕ1,0

]
.

Then, observe that

d

(
zap+1 ·

p∑
α=1

zα ⊗ 1⊗ eα + a · za−1p+1 · 1⊗ 1⊗ ep+1

)
=
(
− a · za−1p+1 · f + za+1

p+1 · ϕ1,1 + zap+1 · ϕ1,0

)
+
(
a · zap+1 · ϕ1,0 + a · za−1p+1 · f

)
= za+1

p+1 · ϕ1,1 + (a+ 1) · zap+1 · ϕ1,0

and so we have [
za+1
p+1 · ϕ1,1 + (a+ 1) · zap+1 · ϕ1,0

]
=
[
0
]
.
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• a = 1, b = 0

Suppose we reduce to the class[
z2p+1 · ϕ1,1 + 2 · zp+1 · ϕ1,0

]
.

Then, observe that

d

(
zp+1 ·

p∑
α=1

zα ⊗ 1⊗ eα + 1⊗ 1⊗ ep+1

)
= z2p+1 · ϕ1,1 + 2 · zp+1 · ϕ1,0

and so we have [
z2p+1 · ϕ1,1 + 2 · zp+1 · ϕ1,0

]
= [0].

• a = 0, b = 0.

Finally, if we reduce to the class [
zp+1 · ϕ1,1 + ϕ1,0

]
then observe that

d

( p∑
α=1

zα ⊗ 1⊗ eα
)

= zp+1 · ϕ1,1 + ϕ1,0

and so in H1
1 we have [

zp+1 · ϕ1,1 + ϕ1,0

]
= [0].

So we see that vector combination 2 does not give us any additional non-zero cohomology
classes. Finally, we consider vector combination 3, that is,

zlp+1 · (r2)k · f + 2k · zlp+1 · (r2)k−1 · ϕ1,1 −
1

l + 2
· zl+2
p+1 · (r

2)k · ϕ1,1.

Adding a vector which is in the image of d to the above vector will not change the above
vector’s class in cohomology. Thus, consider the vector

d

(
1

l + 1
· zl+1
p+1 · (r

2)k ·
p∑

α=1

zα ⊗ 1⊗ eα
)

= −2k · zlp+1 · (r2)k−1 · ϕ1,1 − zlp+1 · (r2)k · f +
1

l + 1
· zl+2
p+1 · (r

2)k · ϕ1,1 +
1

l + 1
· zl+1
p+1 · (r

2)k · ϕ1,0.

Adding this to vector combination 3 gives

1

(l + 1)(l + 2)

(
zl+2
p+1 · (r

2)k · ϕ1,1 + (l + 2) · zl+1
p+1 · (r

2)k · ϕ1,0

)
which is simply a multiple of vector combination 2, thus we obtain no new cohomology
classes from vector combination 3. In conclusion, the only non-zero cohomology classes
in H1

1 are of the form [
(r2)k · ϕ1,1

]
where k ∈ Z≥0 or scalar multiples thereof, as required.
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