EXERCISES FOR MA4J7 ALGEBRAIC TOPOLOGY II

WEEK 1

- (1) Functoriality
 - (a) Show that homology is a covariant functor from the category of chain complexes to the category of abelian groups.
 - (b) Show that cohomology is a contravariant functor from the category of chain complexes to the category of abelian groups.
- (2) Fix an abelian group G and let $0 \to A \to B \to C \to 0$ be a short exact sequence of abelian groups. If C is free, show that
 - (a) $B \cong A \oplus C$
 - (b) $Hom(B,G) \cong Hom(A,G) \oplus Hom(C,G)$
 - (c) $0 \to Hom(C,G) \to Hom(B,G) \to Hom(A,G) \to 0$ is exact.
- (3) Let

$$\dots F_{k+1} \to F_k \to F_{k-1} \to \dots \to F_2 \to F_1 \to F_0 \to H \to 0$$

and

$$\dots F_{k+1} \to F_k' \to F_{k-1}' \to \dots \to F_2' \to F_1' \to F_0' \to H' \to 0$$

be two exact sequences of abelian groups with the F_i and F_i' free and $\alpha \colon H \to H'$ an isomorphism. In class we constructed the first two maps $\alpha_0 \colon F_0 \to F_0'$ and $\alpha_1 \colon F_1 \to F_1'$ in a chain map $F_{\bullet} \to F_{\bullet}'$ extending α . Show how to construct α_k for any k. Read Hatcher's proof that any two chain maps that extend α are chain-homotopic.