
THE UNIVERSITY OF WARWICK

THIRD YEAR EXAMINATION: MAY 2016

ALGEBRAIC TOPOLOGY – MA3H60

Time Allowed: 3 hours

Read carefully the instructions on the answer book and make sure that the particulars
required are entered on each answer book.

Calculators are not needed and are not permitted in this examination.

Candidates should answer COMPULSORY QUESTION 1 and THREE QUESTIONS
out of the four optional questions 2, 3, 4 and 5.

The compulsory question is worth 40% of the available marks. Each optional question is
worth 20%.

If you have answered more than the compulsory Question 1 and three optional questions,
you will only be given credit for your QUESTION 1 and THREE OTHER best answers.

The numbers in the margin indicate approximately how many marks are available for
each part of a question.

COMPULSORY QUESTION

1. a) Suppose that the map f : Sn → X extends to a map F : Dn+1 → X. Show that

f∗ : H̃n(Sn) → H̃n(X) is the zero map. [3]

b) LetX be a torus with the interiors of two small disjoint discs removed, and let ∂X

denote the union of the two circular boundaries of the discs. What is H1(X, ∂X)?

Make a drawing showing a minimal set of generators for this homology group.

Do not justify your answer. [6]

c) Let A• and B• be chain complexes, and let f, g : A• → B• be morphisms of

chain complexes. What does it mean to say that f and g are chain-homotopic?

Show that if f and g are chain homotopic then f∗ : Hk(A•) → Hk(B•) and

g∗ : Hk(A•) → Hk(B•) are equal. [4]

d) (i) State the excision property of homology.

(ii) Let X be an n-dimensional manifold and x ∈ X. Use excision (with other

techniques) to calculate Hn(X,X − x).

(iii) Let X be the cone {(x, y, z) ∈ R3 : x2 + y2 − z2 = 0}. Compute the local
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homology group H2(X,X − {(0, 0, 0)}).
(iv) Show that the space X from (iii) X is not a 2-dimensional manifold. [8]

e) Suppose that f and g are loops in X based at x0, and suppose that they are

end-point-preserving homotopic. Show that, considered as members of C1(X),

they are homologous (they differ by a boundary). [6]

f) It was shown in lectures that RPn has a CW structure consisting of one k-cell for

each value of k between 0 and n, and that in the resulting cellular chain complex

0 // Z dn // Z dn−1 // · · · // Z d1 // Z // 0

dk = 0 when k is odd or k = 0 and dk is multiplication by 2 when k > 0 is even.

Use this to calculate H∗(RP4) and H∗(RP5). [4]

g) Suppose that the diagram of abelian groups and homomorphisms

A
f //

ψ
��

B

φ
��

C
g // D

is commutative, with φ and ψ isomorphisms. Show that coker f ' coker g. [4]

h) Let X be a path-connected space. Suppose that ϕi : Sn−1 → X, i = 1, . . ., k, are

homeomorphisms onto their images in X, which are disjoint from one another.

Let Y be the space obtained from X by gluing in k copies of Dn using these

maps. If Y is contractible, what can you say about the homology of X? Justify

your answer. [5]
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OPTIONAL QUESTIONS

2. a) What is meant by the degree of a map Sn → Sn? State the degree of

(i) the map r : Sn → Sn defined by reflection in a hyperplane

(ii) the map fA : Sn → Sn defined by fA(x) = A(x)/||A(x)||, whereA : Rn+1 → Rn+1

is a linear isomorphism.

Justify your answers. [8]

b) Let f : Sn → Sn be a map, and suppose that f−1(y) = {x1, . . ., xm} with m <∞.

(i) Define the local degree of f at xi, denoted by deg(f)|xi , carefully justifying

the steps in your definition.

(ii) State (without proof) the relation between deg(f) and the local degrees

deg(f)|xi . [8]

c) The following diagram shows the image of a map f : S1 → R2, with an arrow

indicating the image under f# of a generator of H1(S
1). It also shows S1 with

another arrow indicating a generator of H1(S
1).

O 

f(S  )1

S1

Let r : R2r{0} → S1 be radial projection, and let g = r ◦f . What is the degree

of g? Make a drawing and use it to illustrate your answer. [4]

3. a) Write down the long exact sequence of homology resulting from a short exact

sequence of complexes 0 // A•
i // B•

j // C• // 0 [3]

b) Explain the construction of the connecting homomorphism in this long exact

sequence, and prove exactness of the sequence at the target of the connecting

homomorphism. [6]

c) Suppose that (X,A,B) is a triple. What is the long exact sequence of homology

associated with the triple? What short exact sequence of complexes gives rise to

it? [3]
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d) Given a commutative diagram of abelian groups and homomorphisms with exact

rows,

0 // A1
//

f1
��

A2
//

f2
��

A3
//

f3
��

0

0 // B1
// B2

// B3
// 0

show that there is an exact sequence

0 // ker f1 // ker f2 // ker f3 // cokerf1 // cokerf2 // cokerf3 // 0 .

[4]

e) Given a commutative diagram of abelian groups and homomorphisms

0

��

0

��

0

��
0 // A1

��

// A2

��

// A3

��

// 0

0 // B1

��

// B2

��

// B3

��

// 0

0 // C1

��

// C2

��

// C3

��

// 0

0 0 0

in which all three columns, and the first two rows, are exact, and the third row

is a complex, show that in fact the third row is exact. [4]

4. a) Describe a CW complex structure on the n-sphere Sn. [2]

b) Let X be a CW complex. What is the cellular chain complex CCW
• (X)? Explain

what are the groups and what is the differential. [4]

c) The Klein bottle K is the quotient of the square with opposite edges identified

as shown.

Find a CW structure on K, and use cellular homology to calculate the homology

of K, carefully explaining your calculation. [6]
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d) Let M2 be the genus 2 oriented compact surface without boundary. In the fol-

lowing three pictures, the first shows curves a1, b1, a2, b2 whose homology classes

give a basis for H1(M2), and the second and third show three curves representing

other homology classes.

e

d

c

a
1

b
1 b

2 a
2

Express [c], [d] and [e] as linear combinations of [a1], [b1], [a2], [b2], justifying your

answer with the help of suitable drawings. [8]

5. a) Let X be the graph shown in the following diagram.

(i) Calculate the Euler characteristic χ(X). [2]

(ii) Calculate H1(X) by any method you choose, briefly explaining your proce-

dure, and give a basis for H1(X). [5]

(iii) Let f1 : X → X, f2 : X → X be anticlockwise rotation through π about the

centre O and reflection in the vertical line through the centre, respectively.

Write down the matrices of f1∗ : H1(X) → H1(X) and f2∗ : H1(X) → H1(X)

with respect to your chosen basis. [5]

b) Let Y be the space obtained from S3 by identifying all pairs of antipodal points on

the equator E := {(x1, x2, x3, x4) ∈ S3 : x4 = 0}. Calculate H∗(Y ). [Suggestion:

Let Y+ and Y− be the images in Y of the upper and lower hemispheres of S3.

Each is homeomorphic to RP3.] [8]
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MATHEMATICS DEPARTMENT
THIRD YEAR UNDERGRADUATE EXAMS – MAY 2016

Course Title: ALGEBRAIC TOPOLOGY – MA3H60

Model Solution No: 1

a), (c),(d)(i)(ii),(e),(f) are bookwork; (b) is unseen but close to a course exercise; (e)(iv)
is a course exercise; (g) is material covered in lectures; (h) is unseen.

a) As f = F ◦ i so f∗ = F∗ ◦ i∗. As Hn(Dn+1) = 0, i∗ = 0 and so f∗ = 0.

b) H1(X, ∂X) ' Z3. Generators are e.g. generators of H1(T
2) and a path from one

boundary component to the other.

c) f and g are chain homotopic if there exists a collection of linear maps hi : Bi → Ai+1

such that ∂h+h∂ = f −g. If f and g are chain homotopic then given an ∈ Zn(A•),
we have

f(an)− g(an) = ∂hn(an) + hn−1(∂an) = ∂hn(an).

That is, f(an) and g(an) differ by a boundary. Thus f∗([an]) = g∗([an]).

d) (i) Excision: If Z̄ ⊂ Å then the inclusion (X − Z,A − Z) → (X,A) induces an
isomorphism Hn(X − Z,A− Z) → Hn(X,A).

(ii) Application: x has a neighbourhood U homeomorphic to a ball. The inclusion
(U,U−x) → (X,X−x) induces an isomorphism Hn(U,U−x) → Hn(X,X−x) by
excision – we are excising X − U , which is contained in the interior of X − x. The
l.e.s. of reduced homology of the pair (U,U−x) shows Hn(U,U−x) ' Hn−1(U−x),
as U is contractible. As U − x is homotopy equivalent to Sn−1, Hn(U,U − x) =
Hn−1(U − x) = Z.

(iii) As the cone is contractible, the boundary map in the l.e.s. of the pair (X,X−x)
shows H2(X,X − x) ' H1(X − x). Now X − x consists of two path components,
each homotopy equivalent to a circle. So H2(X,X − x) ' H1(S

1)⊕H1(S
1) ' Z2.

(iii) It follows that X is not a 2-manifold, since H2(X,X − x) 6= Z.

e) Let F : [0, 1]× [0, 1] → X be an end-point-preserving homotopy. Define a singular
2-chain c2 in X by c2 = F#([A,B,C]− [A,D,C]). Then

∂c2 = F#[B,C]− F#[A,C] + F#[A,B]− F#[D.C] + F#[A,C]− F#[A,D]

= F#[B,C] + f − g − F#[A,D].

Now F#[B,C] and F#[A,D] are both constant 1-simplices, and therefore boundaries
(they lie in the chain complex of a point). Hence f − g is a boundary.



f) For RP3 the chain complex is

0 // Z 0 // Z 2 // Z 0 // Z // 0

so
H3(RP3) = Z, H2(RP3) = 0, H1(RP3) = Z/2Z, H0(RP3) = Z.

For RP4 the chain complex is

0 // Z 2 // Z 0 // Z 2 // Z 0 // Z // 0

so

H4(RP4) = 0, H3(RP4) = Z/2Z, H2(RP4) = 0, H1(RP4) = Z/2Z, H0(RP4) = Z.

g) Define φ̄ : cokerB → cokerD by φ̄(b+ f(A)) = φ(b) + g(C).

This is well defined because b ∈ f(A) =⇒ ∃a ∈ A s.t. f(a) = b =⇒ φ(b) =
φ(f(a)) = g(ψ(a)) so that φ(b) + g(C) = 0.

It is injective because φ̄(b+f(A)) = 0 =⇒ φ(b) ∈ g(C) =⇒ ∃c ∈ C s.t. g(c) =
φ(b) =⇒ b = f(ψ−1(c)).

It is surjective because ϕ is.

It is a homomorphism:

φ̄((b1 + f(A)) + (b2 + f(A)) = φ̄(b1 + b2 + f(A) = φ(b1) + φ(b2) + g(C) =

=
(
φ(b1) + g(C)

)
+
(
φ(b2) + g(C)

)
= φ̄(b1 + f(A)) + φ̄(b2 + f(A))

h) Mayer Vietoris for reduced homology: take A = X, B =
∐k

i=1D
n, so A∪B = Y,A∩

B =
∐k

i=1 S
n−1. As H̃i(Y ) = 0 for all i and H̃i(B) = 0 for i > 0, the connecting

homomorphism H̃i(X) → H̃i−1(A∩B) in Mayer-Vietoris is an isomorphism for i¿1.
It is also an isomorphism for i = 1, since moreover H̃0(

∐k
i=1 S

n−1) → H̃0(X) ⊕
H̃0(

∐k
i=1D

n) is injective. And H̃0(X) = 0 since X is path connected. Thus

H̃i(X) =

{
Zk if k = n

0 otherwise
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MATHEMATICS DEPARTMENT
THIRD YEAR UNDERGRADUATE EXAMS – MAY 2016

Course Title: ALGEBRAIC TOPOLOGY – MA3H60

Model Solution No: 2

(a) and (a)(i) are bookwork. (a)(ii) is course exercise. (b) is bookwork. (c) is unseen but
similar to example done in class.

a) A map f : Sn → Sn induces a homomorphism f∗ : Hn(Sn) → Hn(Sn). Conjugating
by an isomorphism Hn(Sn) ' Z, f∗ corresponds to a homomorphism Z → Z, which
must be multiplication by an integer. This integer is the degree of f . Because the
two possible isomorphisms Hn(Sn) ' Z differ only by a sign, deg f is independent
of the choice of isomorphism.

(i) Sn is homeomorphic to the union of two standard n-simplices σ1 and σ2, glued
along their common boundary. The mapping r interchanges them. Hn(Sn) is
generated by the class of σ1 − σ2. Thus r#(σ1 − σ2) = σ2 − σ1 so degr = −1.

(ii) By the row operations of adding multiples of one row to another, and multi-
plying a row by a positive scalar, a real invertible matrix A can be reduced to
a diagonal matrix B with 1’s and −1’s along the diagonal. These row opera-
tions are homotopic to the identity map, so the resulting maps fA : Sn → Sn

and fB : Sn → Sn are homotopic also, and so have the same degree. More-
over since A is deformed to B through a family of invertible matrices, detA
and detB have the same sign. The map fB : Sn → Sn is the composite of k
reflections in hyperplanes, where k is the number of −1’s on the diagonal of
B. Thus

deg(fA) = (−1)k =

{
1 if k is even
−1 if k is odd

=

{
1 if detA > 0
−1 if detA < 0

b) (i) The local degree at x is defined as follows. Pick a neighbourhood V of y and
neighbourhood U of x such that f(U) ⊂ V and x is the only point of f−1(y)
in U . Then f induces a map of pairs (U,U − x) → (V, V − y) and therefore a
homomorphism f∗ : Hn(U,U − x) → Hn(V, V − y). Each of these two groups
is canonically isomorphic to Hn(Sn), from which it follows that f∗ is conjugate
to multiplication by an integer. This integer is degf |x.
The canonical isomorphisms are as follows:

• by excision, (U,U −x) → (Sn, Sn−x) induces an isomorphism Hn(U,U −
x) → Hn(Sn, Sn − x).

• Sn − x is contractible, so in the long exact sequence of reduced homology
of the pair (Sn, Sn − x), the morphism Hn(Sn) → Hn(Sn, Sn − x) is an
isomorphism.

• Both these isomorphisms are induced by inclusions, so are independent
of any choices. Thus Hn(U,U − x) ' Hn(Sn) independent of choices.
Similarly Hn(V, V − y) ' Hn(Sn).



(ii) If y has m <∞ distinct preimage points xi then degf =
∑

i deg f |xi .

c)

O y    x1   x2      x3

g−1(y) = {x1, x2, x3}. We have deg g|x1 = −1, deg gx2 = deg g|x3 = 1 so deg g =
−1 + 1 + 1 = 1.
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MATHEMATICS DEPARTMENT
THIRD YEAR UNDERGRADUATE EXAMS – MAY 2016

Course Title: ALGEBRAIC TOPOLOGY – MA3H60

Model Solution No: 3

(a), (b) , (c) are bookwork. (d) and (e) are unseen, though (e) is in the textbook.

a) The l.e.s. is
· · ·

ssggggg
ggggg

ggggg
ggggg

ggggg
gg

Hn(A•)
i∗ // Hn(B•)

j∗ // Hn(C•)
∂

ssggggg
ggggg

ggggg
ggggg

gggg

Hn−1(A•)
i∗ // Hn−1(B•)

j∗ // Hn−1(C)•)

ssggggg
ggggg

ggggg
ggggg

ggggg

· · ·

b) Given a homology class in Hn(C•), pick a cycle cn ∈ Cn(C•) representing it. By
exactness of the s.e.s., jn : Bn → Cn is surjective so there exists bn ∈ Bn mapping
to cn. By commutativity, jn−1∂bn = ∂jnbn = ∂cn = 0 so by exactness, ∂bn =
in−1(an−1) for some an−1. Then an−1 is a cycle. Define ∂[cn] = [an−1].

We have to show exactness at Hn−1(A•). We have i∗∂[cn] = i∗([an−1]) where an−1 is
chosen as described above. But by construction, i(an−1) = ∂bn, so is zero in homol-
ogy. Conversely, if an−1 is a cycle and i∗[an−1] = 0 in Hn−1(B•), then i(an−1) = ∂bn
for some bn ∈ Bn. Then [an−1] = ∂[jbn] according to the definition of ∂ above.

c) There is a l.e.s.

· · ·

rrffffff
ffffff

ffffff
ffffff

ffffff

Hn(A,B) // Hn(X,B) // Hn(X,A)

ssggggg
ggggg

ggggg
ggggg

ggggg

Hn−1(A,B) // Hn−1(X,B) // Hn−1(X,A)

rrffffff
fffff

fffff
fffff

fffff
ff

· · ·

coming from the s.e.s. of complexes

0 // C•(A)
C•(B)

// C•(X)
C•(B)

// C•(X)
C•(A)

// 0



d) Expand the diagram to

0

��

0

��

0

��
0 // A1

//

f1
��

A2
//

f2
��

A3
//

f3
��

0

0 // B1

��

// B2
//

��

B3
//

��

0

0 0 0

(1)

Then each column becomes a complex, and the diagram becomes a s.e.s of com-
plexes. Indexing these complexes so that the Ai have index 1 and the Bi have index
0, the homology of the i’th column is H1 = ker fi, H0 = cokerfi. So the l.e.s. we
are asked for is simply the l.e.s. of homology coming from the s.e.s. of complexes
(1).

e) The diagram is a s.e.s of complexes 0 → A• → B• → C• → 0. Because the first
two rows are exact, the homology of A• and B• is 0, so in the l.e.s. of homology
resulting from the s.e.s., the only possibly non-zero terms are the Hi(C•). But each
of these is flanked by 0’s, so Hi(C•) = 0 also, i.e. the complex C• is exact.
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MATHEMATICS DEPARTMENT
THIRD YEAR UNDERGRADUATE EXAMS – MAY 2016

Course Title: ALGEBRAIC TOPOLOGY – MA3H60

Model Solution No: 4

(a)(b) are bookwork, (c) was covered in class, (d) is unseen though close to class exercises.

a) Sn has CW structure with one vertex and one n-cell, glued to the vertex by the
constant map on its boundary.

b) The cellular chain complex is the complex

· · · // Hn(Xn, Xn−1)
dn // Hn−1(X

n−1, Xn−2)
dn−1 // · · · // H1(X

1, X0)
d1 // H0(X

0) // 0 .

The differential dn is the composite of the differential

∂ : Hn(Xn, Xn−1) → Hn−1(X
n−1)

in the l.e.s. of homology of the pair (Xn, Xn−1) with the morphism

Hn−1(X
n−1) → Hn−1(X

n−1, Xn−2)

in the l.e.s. of homology of the pair (Xn−1, Xn−2).

c) The identifications indicated in the diagram identify the four edges in two pairs,
and identifies all vertices to one. So there is a CW structure with one 0-cell, two
1-cells and one 2-cell. Thus the cellular chain complex

0 // H2(K,K
1)

d2 // H1(K
1, K0)

d1 // H0(K
0) // 0

is
0 → Z → Z2 → Z → 0.

Taking as generators of H1(K1, K0) the two loops a and b, the boundary map
H2(K

2, K1) maps the generator e2 to 0a + 2b, since the two vertical edges in the
diagram traverse b in the same direction whereas the two horizontal edges traverse

a in opposite directions. Hence the differential d2 has matrix

(
0
2

)
. Thus d2 is

injective and H2(K) = 0. The differential d1 must be 0, since both ends of each
edge glue to the unique vertex in K0. So

H1(K) = H1(K
1, K0)/d2(H2(K,K

1)) = Z2/

〈(
0
2

)〉
= Z⊕ Z/2Z.

d) The loop c is the boundary of the right-hand component of its complement in M2.
Thus [c] = 0. Then d = b1 − c so [d] = [b1].



b1

c

The loops b1 and b2 can be homotoped to contain the segment BA and DC as
shown. Then up to homotopy b1 + b2 +∂([B,D,A]− [B,D,C]) is the loop e shown.
So [e] = [b1] + [b2].

A

B C

D

b1 b2

13
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Course Title: ALGEBRAIC TOPOLOGY – MA3H60

Model Solution No: 5

(a) is unseen, (b) is unseen.

a) (i) X is a graph with 5 vertices and 8 edges. So χ(X) = 5− 8 = −3.

(ii) As X is connected, H0(X) = Z and so it follows that H1(X) has rank 4.
Give X a ∆-complex structure with 0-simplices O,A,B,C,D, and 1-simplices
a, b, c, d, p, q, r, s, oriented as shown. Then H1(X) has basis the classes z1 =
[p+ a− q], z2 = [q + b− r], z3 = [r + c− s], z4 = [s+ d− p].

a
b

c d

s

r

q

p
A

B

D

C
O

We have

f1#(z1) = z3, f1#(z2) = z4, f1#(z3) = z1, f1#(z4) = z2

so the matrix of f1∗ with respect to the chosen basis is
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 1


For any 1-simplex σ, if we define r : [0, 1] → [0, 1] by r(t) = 1− t then σ ◦ r is
homologous to −σ. Hence,

f2∗(z1) = −z2, f2∗(z2) = −z1, f2∗(z3) = −z4, f∗(z4) = −z3

and so f2∗ has matrix 
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0





b) Each of Y+ and Y− is homeomorphic to RP3. Use Mayer Vietoris for reduced
homology. We have Y1 ∪ Y2 = Y , Y1 ∩ Y2 = RP2, so it gives

0 // H3(RP3)⊕H3(RP3) // H3(Y )

rrffffff
ffffff

ffffff
ffffff

ffffff
fff

H2(RP2) // H2(RP3)⊕H2(RP3) // H2(Y )

rrffffff
ffffff

ffffff
ffffff

ffffff
fff

H1(RP2) // H1(RP3)⊕H1(RP3) // H1(Y )

rreeeeee
eeeeee

eeeeee
eeeeee

eeeeee
eeeeee

0

which is
0 // Z⊕ Z // H3(Y )

ssggggg
ggggg

ggggg
ggggg

ggggg
ggg

0 // 0 // H2(Y )

ssggggg
ggggg

ggggg
ggggg

ggggg
g

Z/2Z // Z/2Z⊕ Z/2Z // H1(Y )

ssggggg
ggggg

ggggg
ggggg

ggggg
ggg

0

So H3(Y ) ' Z2.

To calculate H2(Y ) and H1(Y ), we use the result that if X is a CW complex with
k-skeleton Xk then the inclusion Xk ↪→ X induces isomorphisms on Hi for i < k.
As RP2 is the 2-skeleton of both copies of RP3 (Y+ and Y−), so H1(RP2) → H1(Y+)
and H1(RP2) → H1(Y−) are isomorphisms. Thus the first arrow in the penultimate
row is injective, and H2(Y ) = 0. Finally the last rows become

0 // Z/2Z

1
1


// (Z/2Z)2 // H1(Y ) // 0

so H1(Y ) = Z/2Z. Since Y is conncted, H0(Y ) ' Z.
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