EXERCISES FOR MA4J7 ALGEBRAIC TOPOLOGY II

WEEK 7

- (1) Show that $M \times N$ is orientable if and only if both M and N are orientable.
- (2) For a map $f: M \to N$ between connected closed orientable n-manifolds with fundamental classes [M] and [N], the *degree* of f is defined to be the integer d such that $f_*([M]) = d[N]$, so the sign of the degree depends on the choice of fundamental class. Show that for any connected closed orientable n-manifold M there is a degree 1 map $M \to S^n$.
- (3) For any connected manifold M and ring R we defined a covering space $M_R \to R$. Construct this explicitly for $M = \mathbb{R}P^2$ and $R = \mathbb{Z}/4\mathbb{Z}$, and identify the sections of this covering space.
- (4) Show that $(\alpha \frown \phi) \frown \psi = \alpha \frown (\phi \smile \psi)$ for all $\alpha \in C_k(X;R)$, $\phi \in C^i(X;r)$ and $\psi \in C^j(X;R)$. Deduce that cap produce makes $H_*(X;R)$ a right $H^*(X;R)$ -module.