Outer space and Automorphisms of free groups
LECTURE 4

Last time we defined Outer space $C V_{n}$ in three different ways- as a space of

1. actions on trees
2. Marked graphs
3. Splore systems in $M_{n}=\frac{\#}{n} S^{\prime} \times S^{2}$

Today will prove $C V_{n}$ is contractible.
There are proofs using all three models.

All proofs have a common idea: fix a point $X_{0} \& C V_{n}$ then retract all of $C V_{n}$ to X_{0} by following paths whidr reduce some measure of complexity.

One of the most natural - due to Hat cher-
uses the sphere system model
This reguives some non-trivial results from
3- manifold theory, based ultimately on Laudenbachis theorem that in $M_{n}=\# S_{n}^{\prime} \times S^{2}$ homotopic sets of embedded 2-spheres are isotopic
Eg: the green and blue spheres below are isoto pic ("light bulla trick")
θ

It's not so obvious when an entire spae system is Knotted and linked!

Fix $\sum=\left\{\sigma_{1, \ldots}, \sigma_{3 n-3}\right\}$ a maximal sphere system in M_{n}.
$(\leftrightarrow$ trivalent marked graph $(g, G))$
eg:

$$
\times 2
$$

\sum cuts M_{n} into 3 -punctured splooes: $P_{i}=S^{3} \backslash\left(B_{1} \cup B_{2} \cup B_{3}\right)$

P_{3}

So Σ is simple, gives simplex $|\Sigma|$ in $C V_{n}$
(Recall open simplex in $C V_{n} \longleftrightarrow$ simple sphere system face $\quad \leftrightarrow$ simple sub-system

We will veter act all of $S(M)$ to this simplex $|\Sigma|$
Let δ be another sphere system $=\left\{s_{1}, \cdots, s_{k}\right\}$
S is in normal form wot \sum if

- Each $\Delta \varepsilon \delta$ intersects \sum transversely in a finite number of circles, which cut D into pieces
- Each piece is a disc, cylinder or pair of pants, uT at nose one ∂ circle on each component of ∂P_{i} :

Hatcher's normal form theorem

1. Every sphere system is isotopic to a sphere system in normal form with respect to \sum.
2. If S and S^{\prime} ane both in normal form and are isotopic, then they ane isotopic by an
isotopy which preserves the pattern of intersection circles on each $\sigma \varepsilon \sum$.

(The pattern is encodedinthe dual tree)

The proof relies heavily on Laudenbachis theorem

Prop b is in normal form wort \sum if and anlyif S is transverse to \sum and the number of intersection circles $\& \cap \sum$ is minimal.
(If it's not in normal form, yauco reduce the \# of intersection circles.)
A point in $S\left(M_{n}\right)$ is given by barycentric coords $=$ weights on the spheres $d_{i} \varepsilon \&$
We want a path from a weighted sphere system A to a point $f \mid \sum 1$.

Idea: Do (weighted) surgery an \& using innermost disks on spheres in \sum to eliminate intersection circles. First describe unweighted surgery: If J^{\prime} is disjoint fran \sum then J^{\prime} is a subset of Σ

\leftarrow any sphere in here
is parallel to ore f
 the boundary spheres:
L

If $\&$ is not disjoint from \sum, do surgery

Another view of a single surgery:

What this does to the pieces of \mathcal{S} :

\downarrow

\downarrow

Each disk piece becomes ∂-parallel Euch cylinder piece becomes trivial A pants piece can bare a cylinder ortrivial. Discard trivial and boundary spheres. The resulting system is still in normal form!
To describe a path from l to l^{\prime} : transfer The weight of S to ℓ^{\prime}

To get a path free $\&$ to $\left|\sum\right|$: do surgery on all innermost disks simultaneously, transfer weight to new spheres gradually, discard spheres when they hare weight zero If then's only one circle on σ, use both inner most disks (weight will $\rightarrow 0$ twice as fast).

Can see what is hap pening by booing at the dual trees in the σ_{i} :

length of edge $=$ weight
of dual circle.
Inhermost disks \leftrightarrow leaves
As circe disappears, leaves grew shorter.
ten disappear. Process recommences with remaining (ar new) leaves.

This is a nice intuitive picture, but there is work to be done: need to shew deformation along pooh $\xrightarrow[|\Sigma|]{ }$ is continuous. Hatcher uses the dual trees to show that process gives a piecewise linear flow on $S\left(M_{n}\right)$

Contraction of CV :
We have

$$
\begin{aligned}
S\left(M_{n}\right) & =\text { sphere complex } \\
& =\text { simplicial closure } C V_{n}^{*}
\end{aligned}
$$

Simplex in $S(M)$ - sphere system
point in. $S\left(M_{r}\right)=$ sphere system wT bare centric cords
= weighted sphere system
$C V_{n} \subset S(M)=$ weighted simple sphere systems
Exercise: If S is simple, ten so is $J^{\prime}=l-\{s\} \cup\left\{s^{\prime}, \Delta^{\prime \prime}\right\} \quad$ (Van Kamperis Thu)

So Hatcher's retraction restricts to a retraction of CU to a point.

Next: The spine of $C V_{n}$

$$
\begin{aligned}
S^{\prime}\left(M_{n}\right) & =\text { barycentric subdivision of } S\left(M_{n}\right) \\
& \text { vertices }=\text { sphere systems } \\
\text { l-simplex } & =\text { chain } \ell_{0} \subset \ell_{1} c \ldots c \ell_{k}
\end{aligned}
$$

Definition $K_{n} \subset S^{\prime}\left(M_{n}\right)$ is the sdranplex spanned by simper spare systems. $=$ Spine of Outer space

Out $\left(F_{n}\right)$ acts on K_{n}, since diffeormerphisms preserve the property of being simple

Further muse, $C V_{n}$ retracts onto K_{n} :

$$
\begin{aligned}
& D=\left\{\Delta_{0}, \ldots, \Delta_{k}\right\} \text { a simple sphere system } \\
& x=a_{0} \Delta_{0}+\cdots+a_{k} \Delta_{k}=\text { point in } C V_{n}
\end{aligned}
$$

is in $\{\Delta\} \subset\left\{\Delta_{0} \Delta\right\} \subset \ldots c\left\{\Delta_{0} \ldots \Delta_{k}\right\} d$ sone simplest of $S^{\prime}\left(M_{n}\right)$

$$
\begin{gathered}
d_{0} c d_{1} c \cdots d_{i} c \cdot c d_{k}=d^{\prime} \\
x=b_{0} d_{0}+b_{1} d_{1}+\cdots+b_{k} d_{k}
\end{gathered}
$$

If S_{i} is the first simple system, more x to the point

$$
\left.b_{i} d_{i}+\cdots+b_{k} d_{k} \quad \text { (normalized so } \sum b_{j}=1\right)
$$

by uniformly shrinking b_{1}, \ldots, b_{i-1} and expanding b_{i}, \ldots, b_{k}

Exercise: The retradians on on open simplex in C_{n} extends continuously to a face which is in CV_{u}.

Corollang: K_{n} is contractible
Proposition: $\operatorname{dim}\left(K_{n}\right)=2 n-3$
Pr: A simple sphere system needs at least n spheres and can have at most $3 n-3$
So the longest chain has length $2 n-2$
So te largest simplex in K_{n} has dimension 2n-3.
The stabilizer of a (weighted) sphere system $\&$ permutes the spheres. Since an orientationpreserving diffeounowhism of a punctured sphere which fixes the boundary is isotopic to the identity, the stabilizer is finite.

The quotient is compact:
Up to diffeomorphism there are only finitely many sphere systems in Mn (there are only finitely many ways to glue together punctured balls to obtain M_{n}, by X.

We now have a contractible, $(2 n-3)$-dimensional simplicial complex K_{n} on which $O_{u}\left(F_{n}\right)$ acts with finite stabilizers.

Algebraic Consequences:

Thu (Harewicz) $\quad X=C W$-complex, $G=\pi_{1} X$. If \tilde{X} is contractible, ten $H^{*}(X)$ is an invariant of G.

This is one way to define the cchomolrgy of a group. X is called a $K(G, 1)$.

There are also purely algebraic definitionsso e Ken Brown's excellent book, Cohomology of Groups.

How to find such an X ?
Note $\pi_{1} X$ acts freely on \tilde{X}
Conversely, if G acts freely on a contractible Y, then the map $G \rightarrow \pi_{1}(Y / G)$

is an isomer phism. (Algebraic to pology)

We have K_{n} contractible, Out (Fun) acting, but the action is not free, stabilizers are finite

The: (Baumslay-Taylor) Out (Fr) has finite-indes subgraps with no torsion

Let $\Gamma<$ Out $\left(F_{n}\right)$ be such a sabyramp
Γ acts on K_{n}, too, and contains no stabilizers, so Γ acts freely!
so $H^{*}\left(K_{n} / r\right)=H^{*}(r)$

We now get:
Thu $H^{i}(\Gamma)=0$ for $i>2 n-3 \quad\left(=\operatorname{dim} k_{n}\right)$

Turns cut the choice of Γ is irrelevant for this:

Tum (Serve) Γ, Γ^{\prime} torsim-free finite index subgroups of $G \Rightarrow$ cohomological dimension of F = cohomological dimension of Γ^{\prime}.

Called the virtual cohomological dimension of G

Also, $\mathrm{Kn} / \mathrm{Out}\left(F_{n}\right)$ is a finite CW complex (finitely many cells) so Kn / Γ has the same property ($[$ is finis index) and we get

The $H^{i}(\Gamma)$ is finitely generated for all i.

