



Lectave 4  
exercise: Compute 
$$PH_*(\Lambda^* h^{(2)})$$
  
How Show A generator of  $C_* Q^{(2)}$   
with le vertices is zero unless  
 $b=3 \pmod{4}$   
ey  $(a, a) = -a$   $(a, b) \Rightarrow (a, a) = 0$   
 $(a, a) = -(a, a)$   
exercise: The action of  $Out(Fn)$   
on  $CV_n$  is well-defined

Exercise Compute 
$$H_*(MQ_n^*, \partial MQ_n^*)$$
  
for  $n=2,3,4$   
Hint: Use  $CQ_*^{(n)}$   
Exercise Show  $\partial^2 = 0$  in to  
facility graph complex  
 $\partial(G, \Phi) = \Sigma(G, \Phi \cup C)$   
Due advest  
Everace  $O \rightarrow U \rightarrow N \rightarrow W \rightarrow Z \rightarrow O$   
a short exact seq of finite-dimil V. spaces  
 $= \int Commind Tister or phile Mdef U @ def W = det V @ def Z$ 

Hint: split the sequence into two shart exact sequences)

Lecture 6

Exercise: Compute to quotient K3/out(F3) (using the calle complex structure)

## Lecture 7

Exercise Let BCX be a full solocomplox of a flag complex. If te X B is a vertex with llwn B # Ø, and JCB is the subcomplex spanned by llwn NB then the subcomplex < B, w? spanned by B and w is equal to BUJC(J).

Exercise let KS be te cabe complex associated to a surface S=Sgis and Sithe "revtical" cobandary operator that splits vertices.

Identify the vertical (co) chain complex as a direct sum of cochain complexes of a sphere: (look at the trees you can get by It splitting, starting at a single vertex of value [v1.]

Lecture 8

Exercise Adapt the proof that 
$$C_*(B_n)$$
 is  
acyclic to prove that  $C_*\Delta_n^{oo}$  is  
acyclic.  
Exercise If  $deg(G) = v(G) - rk(G) - 1$ ,  
show  
 $deg(G_i, G_2) = deg(G_i + deg(G_2))$ 

Exercise: Show SG = [..., G] Conclude [., ] induces a lie algebra structure on H° ((gx) = lear So