From lecture 1
Ex:

for odd or even orientation

Ex: There are only finitely many connected graphs with $x=1-r$ with all vertices at least trivalent.

Ex: Let P be te operad with
$P(n)=$ linear orders on $\left\{l_{1-1}, n\right\}$ with one distinguished slot

Composition $P(k) O_{i} P(l) \rightarrow P(k+l-1)$ inserts a into b at position i If position is is tie marked slot, use the marked shot in a
otherwise, forget the slot in a

Lecture 2:
The bracket on θ-spiders was given

$$
\operatorname{by}[S, T]=\sum_{\substack{\lambda s}}(S T)_{\lambda \mu}
$$

Exercise Show this is Aati-symmetric, and satisfies the Jacobi identity
Exercise: For $\theta=$ comm,

$$
\begin{array}{r}
\text { show }[S, T]=\{S, T\} \\
\text { (Poisson bracket) }
\end{array}
$$

we showed θ-spiders give derivations
Exercise In geneal,
Derivations form a Lie algebra:

$$
\left[D_{1}, D_{2}\right]=D_{1} \cdot D_{2}-D_{2} \circ D_{1}
$$

Identify this bracket in te aboral bracket.
Lecture 3
$A \varepsilon$ sp pk acts on h_{k}.
Show

$$
A \cdot\left[S_{1}, S_{2}\right]=\left[A \cdot S_{1}, S_{2}\right]+\left[S_{1}, A \cdot S_{2}\right]
$$

: Check $A \cdot d^{C E}(x)=d^{C E}(A \cdot x)$

Lectave 4
exercise: Camporee $P H_{*}\left(\Lambda^{*} h^{(2)}\right)$
Hat: Show Agenererater of ${ }_{c} C_{x} g^{(2)}$ with la vertices is zero unless $k \equiv 3(\bmod 4)$
eg

The action of Out $\left(F_{n}\right)$ on $C V_{n}$ is well-defred

Exercise: Find a graph with no odd symmetries, (ie odd edge-pernutations) describe $\sigma(G, \sigma) / I \operatorname{sun}(\sigma)$

Lectuve 5
Exercise Compute $H_{*}\left(w g_{n}^{*}, \partial u g_{n}^{*}\right)$
for $n=2,3,4$
Hont: Use $C g_{*}^{(n)}$
Exeraice show $\partial^{2}=0$ in the frested graph complox

$$
\partial(G, \Phi)=\sum(G, \Phi \cup e)
$$

\$oe afuest
Exerace $0 \rightarrow u \rightarrow v \rightarrow w \rightarrow z \rightarrow 0$
a shat eract sey of frite-diwil vispaces

$$
\Rightarrow \text { comual Is mon phicm }
$$

$\operatorname{det} u \otimes \operatorname{det} \omega \cong \operatorname{det} v \otimes \operatorname{det} z$
Hint: spilt the equene moto two shat oxact sequences)

Lecture 6
Exercise: Compute the quotient $K_{3} / \operatorname{cut}\left(F_{3}\right)$ (using the cake complex structure)

Lecture 7
Exercise Let $B C X$ be a fill solccomplox of a flag complex.
If se $X-B$ is a vertex with $\operatorname{lle} \cap B \neq \phi$, and $J C B$ is the sobcomplex spammed by lev $\cap B$ them te sobcomplex $\langle B, v\rangle$ spanned by B ard v is equal to $B U_{J} C(J)$.

Exercise Let k^{s} be te cube complex associated to a surface $S=S_{g, s}$ and δ_{s} the "vertical" coboundany operator that splits vertices.

Identify the vertical (co) chain complex as a direct sun of cochain complexes of a sphere.
(look at the trees you can get by It t splitting, starting at a single vertex v of value $|v|$.)

Lecture 8
Exercise Adapt the proof that $C_{*}\left(B_{N}\right)$ is acyclic to prove the nt $C_{*} \triangle_{n}^{\infty}$ is acyclic.
$\frac{\text { Exercise }}{\text { shaw }}$ If $\operatorname{deg}(G)=v(G)-r k(G)-1$,

$$
\operatorname{deg}\left(G_{1} \cdot G_{2}\right)=\operatorname{deg} G_{1}+\operatorname{dey} G_{2}
$$

Exercise $\left.[]\right|_{,C_{0}}$ is anti-symmetric and satisfies the Jacobi identity

Exercise: Show $\delta G=[\because, G]$ conclude $[:$,$] induces a Lie algebra$ structure on $H^{\circ}\left(C g_{x}\right)=$ lear δ_{0}

