Lecture 2 Graph homology.
Last time: Defined 2 flavors of graph complex. Both generated by finite admissible graphs odd: orient by ordering vertices, orienting edges even: orient by ordering edges

Differential given by summing over all ways to. collapsing a (nor-loop) edge

Then began to describe Kantsevich's Lie algebras, Constructed using a symplectic recto space V and a cyclic operad O (esp Comm, Ass, Lie)

$$
P(n)=\left\{\begin{array}{l}
\sigma(1) \\
\sigma(2) \\
\sigma(3)
\end{array}-\bigcirc\right\}_{\sigma \varepsilon \Sigma_{n}} P(x) 0_{i} P(j) \rightarrow P(i+j-1)
$$

$$
\begin{aligned}
& O(n)=\{^{\sigma(1)} \underbrace{\sigma(1)}_{\sigma \varepsilon \Sigma_{n+1}} \text { Any slot can } \\
& \text { Ass }(n)=\sum_{\Sigma n}^{\sigma n} 0 \quad \text { cyclic version }
\end{aligned}
$$ cutputslot.

 Cumin: $\operatorname{Comm}(n) / \Sigma_{n}=\ngtr 0 \quad \Sigma_{n}$-actin istrivial $=$ ass plus comm cyclicuersion:

Lie: not commutative as associative

Anti-symmetry: $[a, b]=-[b, a]$
in pictures:

$$
[a,[b, c]]+[c,[a, b]]+[b,[c, a]]=0
$$

in pictures:
Jacobi

11

so Lie (n) is generated by rooted plane trivalut graphs with n labeled leaves modulo IHX and AS The action of Σ_{n} extends to an action of \sum_{n+1}

$$
\operatorname{LiN}(3) / \sum_{4} \rightarrow>\bmod A S, \text { IHX }
$$ it)

For each of these- (and for any cyclic operad θ such that $P[1]$ contains only the operad unit)

And for a symplectic vector space
V_{k} w symplectic basis $B_{k}=\left\{p_{1} \ldots p_{F}, q_{1} \ldots q_{k}\right\}$
Want to define a Lie algebra h_{k}
Reference: On a theorein of Kontrevich, by J. conan and KV (2003)
For $\theta=$ Comm, this will be the algebra of polynomial functions on V_{k} that have no constant or linear terms, with Poisson bracket.
This comalsobedescribed as the
"Derivations of free polynomial algebra that preserve $\sum d p_{i} \wedge d q_{i}$ and the ideal

still for $\theta=$ Comm, generators of the thee Lie alyebra (ie monomials) can be pictured as rooted trees labeled by elements of B
Poisson bracket can be described in terms of the e pictures.
For general θ, can imitate this pictorial description to custruct. "noncommetatce" analogs of Poisson bracket

The Natural nolusins $V_{k} \rightarrow V_{x+1}$ will induce

$$
h_{k} \longleftrightarrow h_{k+1}
$$

Ten $h_{\infty}=$ direct limit $\lim _{\rightarrow} h_{k}$
h_{∞}^{+}: only 9 law spiders $v \geqslant 3$ legs.

What does this have to do with graph homology?
(1) There is a (co)homology teary far Lie alyebras defied by Chavally-Eilenkary
(If $G=$ compact ss Lie group of Lie algebra g,) then $H_{*}(G ; \mathbb{R})=H_{*}(o g)$
But makes sense for any Lie algebra.
(2) If you have a cyclic operad θ, you can decuale the vertices of an admissible graph with generators of $\theta(\mathrm{ms}-1) / \Sigma_{W H}$ to get an θ-graph: (10) valence of v)

For Comm, te decoration is trivial. so this is just a graph.
It is non-trivil for Ass ad Lie

The " θ-graph" complex $C g_{*}$ is generated by θ-graphs modulo $(G, o r)=-(G,-\sigma)$
The differential is given by edge-collapse: when you collapse an edge, ye apply the operad composition (in redirection of the arrow) to merge the vertices:

choose a labeling $s t . \quad i(e)=$ output slot $c(e)=$ au ruput slot $($ say 1$)$ compose in the direction of the arrow

(then forget the labels)

Thy (Kontsevich) Computing the homology of the odd θ-graph h complex $C g_{*}$ is equivalent to computing the Chevalley-Eilenbery homology of h_{∞} (more precisely: the "primitive part $P H_{*}^{C E}\left(h_{\infty}\right)$

Furthermore:

$$
\text { is } \left.\cong t_{0} H_{*}^{C E}\left(s p_{\infty}\right) \oplus H_{*}\left(c g_{*}\right)\right)
$$

$$
\begin{aligned}
& \text { For } \theta=A s s, \quad H_{k}\left(C g_{x}\right)=\bigoplus_{g_{1 s} \geqslant 1} H^{A k}\left(\operatorname{Mod}\left(S_{\delta, s}\right) ; \mathbb{R}\right) \\
& \text { For } \theta=\text { Lie, } H_{k}\left(C g_{x}\right)=\bigoplus_{n \geqslant 2} H^{2 n-3 k}\left(\operatorname{Out}\left(f_{a}\right) ; \mathbb{R}\right)
\end{aligned}
$$

For $\theta=$ Comm, $H_{k}\left(C g_{*}\right)$ contains invariants of OdQ-dimensional honologyspheres
So, it's time to define the Lie algebra h_{k} based on . Te cyclic operad θ and

- a symplectir vector space $V_{k>}$ with sympledic basis $B=\left\{p_{1} \ldots p_{k} q_{1} \ldots q_{k}\right\}$

A generator of h_{k} is a symplectic θ-spider
 $=$ element of $\theta[n] / \sum_{n+1}$ with legs decorated by alts of B eg $\theta=\mathrm{comm}$. A symplectic commutate spider is $\sum_{p_{3}}^{p_{1}} q_{1}^{p_{2}} q_{1}\left[\begin{array}{l}\leftrightarrow \text { the monomial } p_{1} p_{2} p_{3} q_{1}^{2} \text {, ie a } \\ \text { generator of the free polynomial } \\ \text { algebra on } B\end{array}\right]$ eg $\theta=$ Ass
$p_{1} p_{2} q_{1}$ is an associative spider
$\theta=$ Lie

Next, we need to define a
Bracket $[S, T]$ of two symplectic θ-spiders. to make this a lie algebra:

Given $\lambda=\operatorname{legoof} S$, labeled by $x_{\lambda} \varepsilon B$
$\mu=\log$ of T, laluled by $y \mu \varepsilon B$
can mate
S and T using λ and μ :

use λ as the output slot
μ as an input slot

Perform the operad comp position

Now lose the slot numbers, remember the B-labels, multiply by $\left\langle x_{\lambda}, y_{\mu}\right\rangle$:
Define $(S T)_{\lambda_{\mu}}==\left\langle x_{\lambda_{1}} y_{\mu}\right\rangle v_{2}>_{\nu_{k}} u_{\mu_{2}}$

Nav defier $[S, T]=\sum_{\lambda \varepsilon S}(S T)_{\lambda \mu}$
$\mu 9 T$
Exercise Aati-symmetric, satisfies Jacobi identity
Exercise: For Comm, show $[S, T]=\{S, T\}$ (Poisson bracket)
Claim: I can trial of an θ-spider as a derivation of the thee θ-algebra.

Free θ-alg: generated by monomials in B

Product in the free θ-algebra is performed by Combining roots:

How does a spider D act on an algebra generator A ?

$$
\begin{aligned}
& D=\begin{array}{l}
x_{1} x_{2} \\
x_{3}^{\prime}< \\
D \cdot A=?
\end{array}, A=\bigcap_{y_{3}, y_{1}}^{9} \\
& A
\end{aligned}
$$

can "mate" a leg of D win a leg of A in the same way we mated spider legs:

Then $D \cdot A=\sum_{\lambda, \mu}(D A)_{\lambda \mu}$

It is clear this is a derivation (ie $D(A B)=D A \cdot B+A \cdot D B)$:

Exercise In general,
Derivations form a Lie algebra:

$$
\left[D_{1}, D_{2}\right]=D_{1} \cdot D_{2}-D_{2} \circ D_{1}
$$

Identify this bracket in te abas bracket.

So, now we have a Lie alyebva. h_{k} since h_{k+1} is defined by simply allowing move labels on spider leys, we have $h_{k} \hookrightarrow h_{k+1}$ Define $h_{\infty}=\lim _{k} h_{k}$

To prove Kantsevich's theorem, need to define Lie algebra homology?

How do you compute handogy of a Lie algebra
(and why is it defined this way?)
Answer: Lie algebra = tang. space to id in a Lie gray
= linear approximation to the Lie gray.
If the Lie group is compar: simply-connectecl, it is determined hi its Lie algebra, so you should be able to compute its rehomolozy from the Lie algebra, too

Lie algebra cohomology was defined to do this t^{*} Lie group $=$ de Cham cohanalozy
be: Chains ave differential forms $f d x_{1} \wedge \cdot \wedge d x_{k}$ etc.

This nutivates defin of Lie alydira (co) hanology

$$
h=\text { Lie alyebra } H_{*}^{C E}(h)=\text { homology of } C_{k}(h)=\Lambda^{k} h
$$

with boundary $\partial: C_{k} \longrightarrow C_{k-1}$

$$
x_{1} \wedge \cdots \wedge x_{k} \longmapsto \sum_{i<j}^{1}\left[x_{i}, x_{j}\right] \wedge x_{1} \wedge \wedge \hat{x}_{i \wedge \cdot \wedge} \hat{x}_{i, \wedge \cdot \wedge} \wedge x_{k}
$$

In order to prove Rentsevichis tearem, we need to enlarge our set f "admissible" graphs

- Allow bivalent vertices
- Allow disconnected graphs

Get "full" graph complex fCA*
h_{∞} contains two-legged spiders $x-0^{-y}$ $x_{i} y \in B$.
and we now have θ-graphs of rank 1:

$$
G_{0}=\text { plygons. }
$$

If you mate a two-legged spider with a h-legged spider you get a sum of k-legged spiders.
In particular = The 2-legged spiders form a sub-Lie algebra. $h_{k}^{(2)}$

Clam $h_{k}^{(2)} \cong s p_{k}=$ Lie algebra of $S_{p k}$.

Recall $S p_{k}=2 k \times 2 k$ matrices A st $A^{t} J A=J, J=\left(\begin{array}{l}0 \\ -1 \\ 0\end{array}\right)$
so

$$
\begin{aligned}
& u p_{k}=2 k \times 2 k \text { matrices } A \\
& \text { st. } A^{t} J+J A=0
\end{aligned}
$$

with Lie bracket $[A, B]=A B-B A$
In $h^{(2)}$:
$p_{i}-\bigcirc$-as acts on monomials

by changing $P_{j} \rightarrow-P_{i}$

$$
q_{i} \mapsto q_{j}
$$

ie corresponds to matrix $\left[\begin{array}{c}i \\ j \\ i\end{array}\right]$

$$
=\left[\begin{array}{rc}
-E_{i j} & 0 \\
0 & E_{j i}
\end{array}\right] \varepsilon \Delta p_{k}
$$

$\xrightarrow{P_{i} P_{j}}$

$$
\begin{aligned}
& \text { changes } q_{i} \rightarrow p_{j} \\
& q_{j} \rightarrow p_{i} \\
&= {\left[\begin{array}{cc}
0 & E_{j i}+E_{i j} \\
0 & 0
\end{array}\right] } \\
& p_{i} \rightarrow-q_{j} \\
& p_{j} \rightarrow-q_{i} \\
&= {\left[\begin{array}{cc}
0 & 0 \\
-E_{j i}-E_{j i} & 0
\end{array}\right] }
\end{aligned}
$$

$q_{i} \xrightarrow{q_{j}}$

There matrices generable $A P 2 k$, bracket is given lug $[A, B]=A B-B^{\prime} A$.
$h_{k}^{(2)}$ acts on h_{k}, so h_{k} is an up $p_{i k}$ module, spite as

$$
h_{\infty}=h_{\infty}^{(2)} \oplus h_{\infty}^{+} \cong \Delta \rho_{\infty} \oplus h_{\infty}^{+}
$$

sp ∞ acts on h_{∞}^{+}.

