Lecture 2 Graph homology. Last time: Defined 2 flavors of graph complex. Both generated by finite admissible graphs odd: crient by ordering vertices, orienting edges even: crient by ordering edges Differential given by summing over all ways to. collapsing a (non-loop) edge Then bogan to describe Kontsevich's Lie algebras, Constructed using a symplectic vector space V and a cyclic operad O (esp Comm, Ass, Lie) $P(n) = \left\{ \begin{array}{c} (\alpha(1) \\ (\alpha(2) \\ (\tau(3) \end{array}) \right\} \xrightarrow{\bullet} P(\alpha) \xrightarrow$ $O(n) = \begin{cases} \sigma(n) \\ \sigma(n) \end{cases}$ $\sigma(n) \end{cases}$ $\sigma(n)$ $\sigma(n)$ Ass: Ass(n)= 20 Cyclic veusion 20. $\frac{\text{Comm}}{2} = \frac{2}{2n} \frac{2$

Lie: not commutative or associative Anti-symmetry: [a,b]=-[b,a] in pictures : $2 \rightarrow = -1 \rightarrow =$ [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0in pictures. $JHX - rel'n \qquad 1 \qquad T \qquad 0 \qquad - \qquad + \qquad X = 0$ so Lie(n) is generated by rooted planar trivalut graphs with a labeled leaves modulo IHX and AS The action of Zn extends to our action of Zn+1 mod AS, IHX (not quibe such a reat way of picturey L1(3)/Z4 7

For each of these - (and for any cyclic operad O such that P [1] contains only the operad unit) And for a symplectic vector space V_{k} up symplectic basis $B_{k} = \frac{2}{5} P_{13} - P_{r}, \frac{2}{5} P_{13} - \frac{2}{5}$ Want to define a Lie algebra hx Reference: On a theorem of Kontsevich, by J. Comant and KV (2003) For O= Comm, this will be the algebra of pulynomial functions on VK that have no constant or linear terms, with Poisson bracket. This comalso be described as the " Derivations of free polynamical algebra that preserve Zdp: ndg: and the ideal (pro-ipniges-ign)"

Still for O = Comm, generators of the free Lie algebra (ie monomials) can be pictured as rooted trees labeled by elements of B Poisson bracket can be described in terms of these pictures. For general O, Can imitate this pictorial description to crustruct "noncommutative" analogs of Poisson bracket The Natural inclusions $V_k \longrightarrow V_{k+1}$ will include $h_k \longrightarrow h_{k+1}$ Nou has = direct limit ling hk ho : only glaw spiclars up >3 legs.

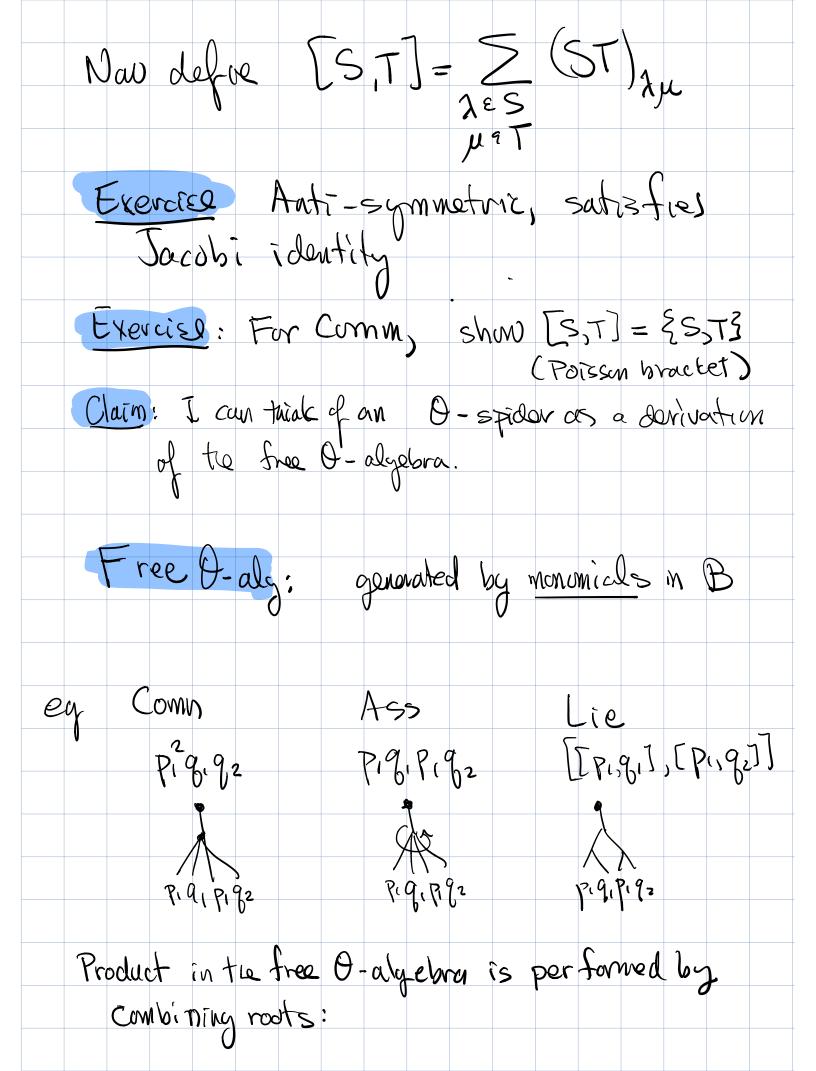
What does this have to do with graph homology? (1) There is a (co)homology theory for Lie alyosons defined by Chovally-Eilenbarg ff G = compact ses Lie group og Lie algebra <math>g, tan $H_{*}(G; \mathbb{R}) = H_{*}(Og)$ But makes sense for any lie algebra. (i) If you have a cyclic openad O, you can decivate the vertices or of an admissible graph with generators of O(M-1)/ZNI to get an O-graph: (1)=valence of or) For Comm, le decoration is trivial so this is just a graph. It is non-trivil for Ass ad Lie Comm A-3-2 A-3-2 A-3-2 Lie $\checkmark \bigcirc \rightarrow \bigcirc$ "Cumm graphs" = graphs "As graphs" "Lie graphs" = rilbon graphs more complicated

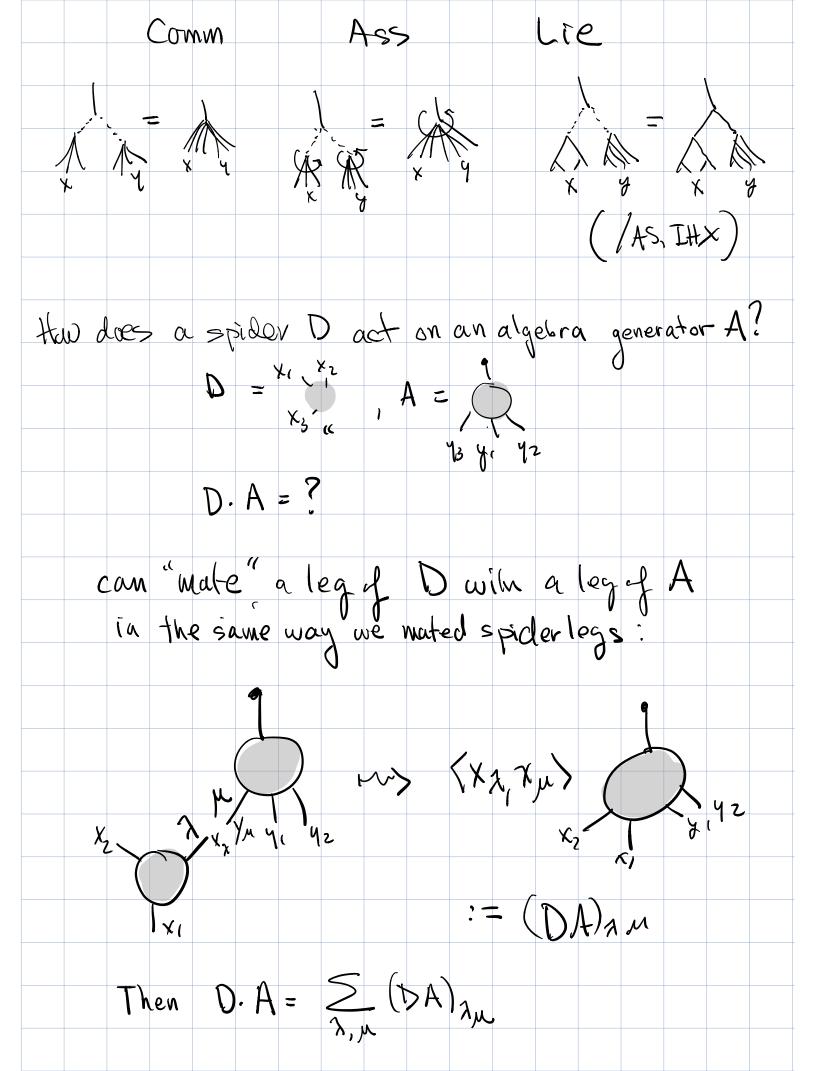
The O-graph complex Cg* is generated by O-graphs modulo (G, or) =- (G, -or) The differential is given by edge-collapse: When you collapse an edge, you apply the operad composition (in tedirection of the arrow) to merge the vertices: χ e $\frac{1}{2}$ χ echoose a lakeling st. i(e) = output slot C(e) = au raput slot (say 1)compose in the direction of the arrow × 0, 7 0 (then forget the labels)

Thm (Kontsevich) Computing the homology of the odd O-graph complex CGX is equivalent to computing the Chevalley-Eilenberg humology of hos (more precisely: the "primichive part $PH_{*}^{CE}(h_{\infty})$ is \cong to $H_{*}^{CE}(sp_{\infty}) \oplus H_{*}(Cg_{*})$) Furtheomore: For $\Theta = Ass$, $H_k(Cg_k) = \bigoplus_{g_{1s} \gg 1} H^k(Mod(S_{g_{1s}}); \mathbb{R})$ For Θ = Lie, $H_{E}(Cg_{x}) = \bigoplus_{n \ge 2} H^{2n-2-k}(Out(F_{a}); \mathbb{R})$ For O= Comm, Hr (Cgr) contains invaviants of Odd-dimensional homology spheres So, it's time to define the Lie algebra hx based on . the cyclic operad O and • a symplectic vector space VK> with symplectic basis B= & PI-PK 81--8K3

A generator of he is a symplectic O-spider X. = element of OInJ/ with legs decovaried by elts of B . A symplectic commutative spider ey 0 = Comm is P1 21 (=> the monomial PIP2P397, ie a P3 91 (generator of the free polynomial alyebra on B 20 Q = ASS ey Q=Ass Pi pi is an associative spider P3 91 Next, we need to define a Bracket S,T] of two symplectic O-spiders. to note this a Lie algebra:

Given $\lambda = \log of S$, labeled by $X \neq Z = B$ $M = \log of T$, labeled by $Y \neq Z = B$ cun mate Soud Tusing & and pl: \mathcal{X}_{1} $T - y^2 = \chi_i, y_i$ YJ yn (the autput slot use I as M as an imput slot 2/31 0×2 3×1 0-42 2/31 3 43 Perform the operad composition 4 / 81 χ_2 χ_2 χ_3 χ_2 χ_2 Now lose the slot numbers, remember the B-labels, multiply by <x1, yu>: Yı $= \langle \chi_{\lambda}, y_{\mu} \rangle \chi_{2}.$ - 47 Defne





It is clear this is a derivation Cie D(AB)= DA·B + A·DB): Exercise In general, Dérivations form à Lie algebra: $\begin{bmatrix} D_1, D_2 \end{bmatrix} = \begin{bmatrix} D_1 & D_2 \\ D_1 & D_2 \end{bmatrix} = \begin{bmatrix} D_2 & D_2 \\ D_2 \end{bmatrix}$ Identify this bracket in te above bracket. So, now we have a Lie algebra. Mr Since h_{k+1} is defined by simply allowing more labels on spider legs, we have $h_k \subseteq h_{k+1}$ Define $h_{\infty} = \lim_{x \to \infty} h_{x}$ To prove Kantsevich's theorem, need to define Lie algebra homology:

Hiw do you compute hondogy of a Lie algebra
(and why is it defined this way?)
Answer: Lie algebra = tang. space to id in a Lie group
= lieav approximation to the Lie group.
The Lie group is compart is simply-connected, it is
determined by its Lie algebra, so you shall d be able
to compute its rehand or y from the Lie algebra, too
Lie algebra cohomology was adjued to do this
H^K Lie group = deRham cohemology
k= Chains are differential forms f dx, a ad x
otc.
This notivates day a flue algebra (co) herrology
h = Lie algebra H^{CE}(h) = homology of C_E(h) = A^k h
with boundary
$$\partial : C_{k}$$
 $\sum_{i=1}^{k} E_{i} x_{i} \ln x_{i} n x_{i} n x_{i}$

In order to prove Rantserrich's tearent, we need to enlarge our set of 'admissible" graphs Allow bivalant vertices
Allow disconnected graphs Get "full" graph complex FCO+ ha contains two-legged spiclers * - - 7 Xige B. and we now have O-graphs of rank 1: Q = ply gons.If var mateatwo-legged spider with a ll-legged spider var get a sum of le-legged spiders. In particular = The 2-legged spiders form a sals-Lie algebra. ht

Claim $h_{k}^{(2)} \cong \mathfrak{L}_{k} = \mathfrak{L}_{k}^{(2)} \mathfrak{L$ Recall Spy = 2Kx 2K matrices A st $A^{t}JA = J, J = \begin{pmatrix} QI \\ IO \end{pmatrix}$ so up = 2kx2k matrices A st. $A^{\dagger}T + TA = O$ \hat{J}_{N} h⁽²⁾: h⁽²⁾: P:-O-Bi acts on monomicals by changing PJ->-Pi ic corresponds to matrix $-E_{ij}$ O ϵ_{APK} R

Pi Pj changes qi >> ps qj -> pi $= \left| \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right|^{2}$ 9:0.65 $P_{c} \rightarrow -95$ pj - - - gi $= \begin{bmatrix} 0 & 0 \\ -E_{ji} & E_{ji} \end{bmatrix}$ Nese matrices generale AP2K, bracket is genening [A, B] = AB-BA. he acts on he so he is an upit module, splite a s $h_{\infty} = h_{\infty}^{(1)} \oplus h_{\infty}^{\dagger} \cong Ap_{\infty} \oplus h_{\infty}^{\dagger}$ spa acts on has.