Lecture 3 Graph homology
Last time: Given a cyclic o perad θ, defined " θ-graph" and the (odd) graph complex AC θ_{*} generated by all oriented θ-graphs with no leaves

$$
f C \theta_{*}>C \theta_{*}: \text { connected graphs } G
$$ all vertices at least

$$
\begin{aligned}
& U \\
& f\left(\theta_{*}^{(r)} \supset C \theta_{x}^{(r)}:\right. \\
& : \quad X(\theta)=1-r
\end{aligned}
$$

Given a cyclic operad θ and a symplectic vector space $V \cong \mathbb{R}^{2 k}$ defined a Lie algebra h_{k} generated by " θ-spiders", $h_{\infty}=\lim h_{k}$.
Showed 2 -legged spiders $h_{k}^{(2)}$ form a subalyebra isomorphic to $s p_{k}$

Thim (Kontsevich)
(1) $H_{d}^{(E}\left(h_{\infty}\right) \cong H_{d}\left(f g \theta_{x}\right)$

This is a ttopf alyebva, whose primitive part is

$$
P H_{d}\left(\operatorname{sp}_{\infty}\right) \oplus \underset{r \geqslant 2}{\oplus} H_{d}\left(C \theta_{\star}^{(r)}\right)
$$

(2) For $h_{\infty}=l_{\infty}, r \geqslant 2$

$$
H_{d}\left(\left(O_{*}^{(r)}\right) \cong t^{2 r-2-d}\left(O u+f_{n}\right)\right.
$$

For $h_{\infty}=a_{\infty}, r \geqslant 2$

$$
H_{d}\left(C O_{*}^{(r)}\right) \cong \bigoplus_{\substack{x\left(S_{g, s}\right) \\ s \geqslant 0}} H^{2 r-2-d}\left(\operatorname{Mod}\left(S_{g, s}\right)\right)
$$

(3) For $h_{\infty}=c_{\infty}, r \geqslant 2$
$H_{d}^{\infty}\left(C \theta_{*}^{(r)}\right)$ contains . invarrants of manifelds M wita

$$
H^{*}(M ; Q)=H^{*}\left(S^{4} ; Q\right), d \text { odd. }
$$

(odd-divensisioal "rational homology spheres")
$\operatorname{Out}\left(f_{n}\right)$ and $\operatorname{Mod}\left(\mathrm{Sg}_{\mathrm{s}}\right)$ are important grays in geometric group theory and low-dimensioncl toprogy
There are many oter connections of graph homology to te rest of mathematics, coming frow other variants of to graph complex Cuter cyclic o pends, even orientation, allow univalent vertices,...) We will see some of these in te and half of the course

Kontsevich's prof of part I exploits the action of $h_{\infty}^{(2)} \approx s p_{\infty}$ on h_{∞} :
weill stick to $h_{k}^{(2)}=\Delta p_{k} \curvearrowright h_{k} \quad$ take limits later
Action

ie: $A \in \Delta p, S$ a spider

$$
A \cdot S=\sum_{\substack{\log s \lambda \\ \text { of } S}}\left(\text { change } x_{\lambda} \text { to } A x_{\lambda}\right)
$$

(This is just the usual action of AC sp on the labels on legs of S by multiplication.)

Exercise:

$$
A \cdot\left[S_{1}, S_{2}\right]=\left[A \cdot S_{1}, S_{2}\right]+\left[S_{1}, A \cdot S_{2}\right]
$$

This action extends to an action on $\Lambda^{*} h_{k}$:

$$
A \cdot\left(S_{1} \wedge \ldots \wedge S_{n}\right)=\sum_{i} S_{1} \wedge \ldots A \cdot S_{i} \wedge \ldots \wedge S_{n}
$$

The invariants of the action are the elements of $\Lambda^{x} h_{x}$ killed by every $A A^{a} s P_{k}$

$$
\left(\Lambda^{*} h_{k}\right)^{s p}=\{x \cdot s p \cdot x=0\}
$$

Exercise: $A \cdot d^{C E}(x)=d^{C E}(A \cdot x)$
Therefore the subspace of invariants is a sob complex

$$
\left(\Lambda^{*} h_{k}\right)^{\Delta p} c{ }^{i} \Lambda^{*} h_{\star}
$$

Lemma i induces an is omuphison

$$
H_{k}\left(\left(\Lambda^{*} h_{k}\right)^{s p}\right) \rightarrow H_{k}\left(\Lambda^{*} h_{k}\right)
$$

Proof $s p=s p_{k}$ is reductive so any sp-module E splits as $k e r \oplus$ image $=E^{A P} \oplus$ sp: E
in particular $Z_{d}=$ cycles in $\Lambda^{d} h_{k}$ $B_{d}=$ boundontes in $\Lambda^{d} h_{x}$

$$
\begin{aligned}
& Z_{d}=Z_{d}^{s p} \oplus s p \cdot Z_{d} \\
& B_{d}=B_{d}^{d p} \oplus s p \cdot B_{d} \\
& \frac{Z_{d}}{B_{d}}=\frac{Z_{d}^{s p}}{B_{d}} \otimes \oplus \frac{s p \cdot Z_{d}}{\Delta p-B_{d}} \\
& H_{d}\left(\Lambda^{*} h_{k}\right)=\left(H_{d}\left(\Lambda^{*} h_{k}\right)^{\Delta p}\right) \oplus \mathcal{T}
\end{aligned}
$$

$$
s p-Z_{d} \subset B_{d}
$$

of. $\xi=-0^{4} \varepsilon$ sp
Then $\xi \cdot a=d(a \wedge \xi)+(d a \wedge \xi)$
So a a cycle $\Rightarrow \xi a=d(a \wedge \xi)$
Than $[$ sp spp $] Z_{d} \subset$ sp. B_{d}
$[\Delta p, \Delta p]=\Delta p . \quad \begin{gathered}(\Delta p \text { is siple } \\ \text { not aberisu) }\end{gathered}$

Main point of Rontsevich's
prof of part (1): is to identify Ap-invariauts with θ-graphs

Define two maps:

$$
\begin{aligned}
& \phi_{k}: O g \longrightarrow \Lambda^{*} h_{k} \\
& 0 \text {-graph } \longmapsto \text { wedge of spiders } \\
& \psi_{k}: \Lambda^{*} h_{k} \longrightarrow \theta_{\text {-gmphs }} \\
& \text { wedge of spidens } \longmapsto \theta \text {-graph } \\
& \text { mg } \phi_{k} \rightarrow \Lambda^{*} h_{k} \xrightarrow{\psi_{k}} O g
\end{aligned}
$$

ϕ_{k} : Need to get a wedge of spiders from an (odd-aviented) θ-graph

\leadsto
Q

clear how to get a wedge of spiders but what lakuls to put on tee edges?
A state of an θ-graph labels each half-edye with an element of B_{k}, each edge with ± 1

Rules: each edge \quad e has matching labels $p_{i} \quad q_{i}$ andsign

$$
\frac{\text { Pi }_{i} e q_{i}}{t} \text { or } \frac{q_{i} e P_{i}}{\longrightarrow}
$$

Each state an G gives a wedge of θ-spiders and a total sign $\pm 1=\prod_{e} \operatorname{sign}(e)$

$$
\phi_{n}: G \longmapsto \sum\left(\text { states } f(G) \longmapsto \sum \sum \begin{array}{l}
\pm \text { wedged } \\
\theta \text {-spiders. }
\end{array}\right.
$$

eg

$$
\begin{aligned}
& \sum_{2}^{1} \rightarrow \sum_{x, y, z \varepsilon B_{k}}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{x, y, z \varepsilon B} \pm\left(X_{i y}, \wedge \underset{x}{x y}\right)
\end{aligned}
$$

Claim: Thes is our $s p_{k}$-irvadriont Proof (deferved)

$$
\text { so og } \xrightarrow{\phi_{k}}\left(\Lambda^{*} h_{k}\right)^{u p} c \Lambda^{*} h_{k}
$$

Now want to get θ-graphs from a wedge of θ-spiders.

$$
\psi_{k}\left(S_{1} \wedge \ldots 1 S_{n}\right)
$$

$=0$ unless the total number of legs is even
If the total number is even, pair them with a pairing π.
This gives instructions for forming a graph; orient the edges arbitrarily

$$
\left(\sqrt[6]{1} \text { (2) }:=\left(S, \wedge \wedge S_{n}\right)^{\pi}\right.
$$

If π pairs legs λ and μ, with labels x_{λ} and x_{μ}, defue $\omega(\pi)=\prod_{\text {pairs }(\lambda, \mu)}\left\langle x_{\lambda}, x_{\mu}\right\rangle$ Note $\omega(\pi)=0$ unless lakes of pairs match Ten

$$
S_{1} \wedge \ldots \wedge S_{n} \xrightarrow{\psi_{n}} \sum_{\pi} w(\pi)\left(S_{\left(1-1 S_{k}\right.}\right)^{\pi}
$$

It would be nice if ψ and φ were inverses, but

$$
O g \xrightarrow{\varphi_{n}} \Lambda^{*} h_{k} \xrightarrow{\psi_{n}} O g
$$

is not the identity, or even a multiple of the identity
Problem: "accidental" pairings

Prop $\psi_{k} \circ \phi_{k}=M_{k}: O g \rightarrow O g$
where M_{k} is defied as follows
Gq OO
let π be a pairing of the half-edges of G gluing tee gives a graph G^{π}
Let σ be the pairing that pairs half-edges if they are in the same edge of G (the "standard pairing")
Then $G^{\sigma}=G$.
Form a graph by pairing half-edges using both σ and π :

$$
\begin{aligned}
\text { Vertices }= & \text { half-edyes } \\
\text { edges } \leftrightarrow & \text { pairs in } \sigma \\
& u^{2} \text { pairs in } \pi
\end{aligned}
$$

Define $c(\pi)=\# g$ components
 (=circles) in this graph

Ten $c(\sigma)=\#$ edges of G
and $c(\pi)<c(\sigma)$ if $\pi \neq \sigma$
Note $O g, \wedge^{*} h_{k}$ decompose into direct same of finite-dimensional pieces
namely $O g_{n, m}=\theta$-graphs with n vertices, m edges

$$
\begin{aligned}
& \Lambda_{n, m} \subset \Lambda^{n} h_{k} \\
& \text { = wedges of spiders with } \\
& \text { a total of } 2 m \text { legs } \\
& \phi_{k_{1}} \psi_{k} \text { respect these pieces: } \\
& O g_{n, n} \xrightarrow{\phi_{k}}\left(\Lambda_{n, m}\right)^{\Delta s} \xrightarrow{\psi_{k}} O g_{n, m}
\end{aligned}
$$

so $\Psi_{k} \circ \phi_{k}$ has a matrix $M_{n, m}$
Claim $G^{\pi}-G$ entry is $(2 k)^{c(\pi)}$
pf There are (ak $)^{c(\pi)}$ ways to pat $p_{i}-q_{i}$ labels on each circle

$$
\underbrace{p_{i}}_{p_{i}} \sum_{i=1, \ldots, k}^{p_{i} \leftrightarrow q_{i}}
$$

This may not be invertible! But for k sufficiently large the diagonal entries $\left((2 k)^{c(s)}\right)$ dominate the of -diagonal entries $\left((2 k)^{c(\pi)}\right.$ or 0$)$ and $M_{n, m}$ is invertible
so $\Psi_{k} \circ \phi_{k}$ is an is ancorphism for k suit. large.

$$
\operatorname{Og}_{n, n} \xrightarrow{\phi_{k}} \cdot \Lambda_{n, m} \xrightarrow{\psi_{k}} O_{01} g_{n, m}
$$

So \varnothing_{k} is injective. for k puff. large By our previous claim, $\operatorname{In} \phi_{k}=\left(\bigwedge_{n, n}\right)^{e p}$
so $\quad \operatorname{gg}_{n, m} \xrightarrow{\phi_{k}}\left(\Lambda_{n, m}\right)^{\operatorname{ld} \Psi_{k}} \lg _{n, m}$

We would like to conclude that ϕ_{k} induces an \cong on hondoyy, but Exercise ϕ_{k} is not a chain map!

Luckily, Ψ_{k} is a chain map.
Since $\Psi_{k}=0$ if spider logs dint match in pairs, $\left.\operatorname{Im} \psi_{k} \subset \operatorname{Im} \psi_{k}\right)_{\left(\Lambda_{n i n}\right)^{\text {us }}}$

$$
\therefore \psi_{\gamma}:\left(\Lambda_{n, w p}\right)^{\Delta p} \longrightarrow O g_{n, n}
$$

is am \cong for k sufficiently large
So Ψ_{∞} induces an isomer phis in

$$
H_{*}\left(\Lambda^{*} h_{\infty}\right) \rightarrow H_{*}(\circ g)
$$

We still need to check $\operatorname{In} \phi_{k} c\left(\lambda^{6} h_{k}\right)^{4 p}$
This starts from the fact that on $V \wedge V, \sum_{p_{i} \wedge q_{i}}$
is an sp-invariant.
Pictorially: represent a generator

$$
x \wedge y \text { of } V \wedge V(x, y \in B)
$$

by a rooted planar thee

$$
\lambda_{y} \text { modulo } \lambda_{x} \lambda_{y}=-\lambda_{x}
$$

We candecorate te interarl vertex by ar elf of θ

The active of sp is determined
by the θ-spiers $\bar{x} O \frac{\bar{y}}{} x, y \in B$

Note that ever ${ }^{x}-0$ - kills

$$
\begin{aligned}
& \omega_{\theta}=\sum_{i} R_{p i q_{i}}^{1} \varepsilon V \wedge V
\end{aligned}
$$

$$
\begin{aligned}
& =0+0\}_{p_{i} q_{i}}^{Q_{p j} q_{j}} \\
& =\oint_{p i}^{i} \hat{p}_{p j} \wedge \sum_{p j}^{b} \\
& =\oint_{p_{i} p_{j}}^{j}-\oint_{p_{i} p_{j}}^{0}=0
\end{aligned}
$$

pto.

Next let's findinu arionts in $\Lambda^{n} V_{k}$: If n is even, pair te terms, by π

$$
\overparen{V}_{k} \wedge \ldots \overbrace{V_{k} \wedge \ldots V_{k} \wedge}^{V_{k}}
$$

permute until \# looks line

$$
= \pm \overparen{V}_{k^{\wedge}} \overparen{V}_{\psi} \wedge V_{k} \wedge V_{k} \wedge \ldots \wedge \widehat{V} \wedge k^{V_{\psi}}
$$

Dene $\omega= \pm \omega_{k} \wedge \omega_{k} \wedge \ldots \wedge \omega_{k}$ is an spe-invariant
Weyl; These span tee space $\left(\Lambda^{n} V_{k}\right)^{4}$ of al invariants.

