Lecture 5 Graph homology
Last time,
defied $T M g_{n}=$ moduli space of graphs G
of G admissible: $=$ connected, $\mid v \geqslant 3, x=1-x$

$$
=C V_{n} / \text { out } F_{n}
$$

also

$$
\begin{aligned}
& C V_{n}^{*}, M g_{n}^{*}=C V_{n}^{*} / c u+F_{n} \\
& \partial C V_{n}^{*}=C v_{n}^{*} \backslash C V_{n} \\
& \partial M g_{n}^{*}=M g_{n}^{*} \backslash I M g_{n}
\end{aligned}
$$

We obseverced

$$
C g_{*}=\bigoplus_{n \geqslant 2} C g_{*}^{(n)} \quad(x=1-n)
$$

and identified

$$
C_{*}\left(\underset{\sim}{\|} g_{n}^{*}, \partial \mathbb{M} g_{n}^{*}\right) \leftrightarrow \underset{\sim}{C_{i}^{(n)}}(\theta=\text { Comm, even or })
$$

grading here is by edges -1 grading hove is by vertices If G has $k+1$ edges and $x=1-n$, ten
G has $2+k-n$ vertices
so

$$
C_{k}\left(m g_{n}^{*}, \partial m g_{n}^{*}\right) \leftrightarrow C g_{2+k-n}^{(n)}
$$

on both sides, a generator G is zero if it has an odd cutomar phis m.

Since every graph in $C V_{n}$ has $\geqslant n$ edges, the entire $(n-2)$-skeleton of $C V_{n}^{*}$ is contained in $\partial C V_{n}^{*}$.

So $C_{k}\left(M g_{n}^{*}, \partial N g_{n}^{*}\right)=0$ if $k \leq n-2$

$$
\begin{aligned}
C g_{2+k-n}^{(n)} & =0 \text { if } k \leq n-2 \\
& \text { ie } C g_{0}=C g_{-1}=C g_{-i}=0
\end{aligned}
$$

The entire cham cplex $C_{*} g$ looks like

O operator collapses edges:

eg $\delta X^{\prime} X_{4}^{\prime}$

$$
\left.={ }_{3}^{\prime} X_{4}^{2}+\right\rangle_{3}^{1}<_{4}^{2} \quad{ }_{3}^{1} \nabla_{4}^{2}
$$

both ∂ and δ preserve $x=1-n$

If yon grade $C g_{x}$ so that dy $G=v-(n+1)$ instead of r you get

You get will wacker's graded (co) chain complex

$$
\begin{aligned}
& H^{0}=C_{n+1} g^{(n)} / \operatorname{im}\left(C_{n} g^{(n)}\right) \\
& C_{0}=\operatorname{kar}\left(C_{n+1}^{(n)} \xrightarrow{\partial} C_{n}^{(n)}\right) \\
& \text { contains } \omega_{n}=\overleftrightarrow{\Delta} \cdot \begin{array}{l}
\text { never } \Rightarrow\left(w_{n, 0 r}\right)=0 \\
n \text { odd } \Rightarrow\left(w_{n}, r\right) \neq 0
\end{array}
\end{aligned}
$$

Will wacker fond cocycles $\sigma_{n} \in C^{0}$, node
Cheidentifed Ho with grit,
= Grotendiak-Teichmüller Lie algebra (uni potent version)"
F. Brown proved gre, contains a free Lie algebra generated by odd classes $\sigma_{3}, \sigma_{5}, \ldots$
will wacker showed $\sigma_{n}\left(\omega_{n}\right) \neq 0$ (node)
If G has k vertices and rale n, it has $k \pm n-1$ edges so dim $\sigma(G, g)=k+n-2$
Will wacker's res alt has $k=n+1$, so translates to

$$
H^{2 n-1}\left(M g_{n}^{*}, \partial m g_{n}^{*}\right) \neq 0 \quad(n \geqslant 3)
$$

Will wacker also showed $H^{k}\left(C g_{x}\right)=0$ for $k<0$
This means $H^{i}\left(W y_{n}^{*}, \partial \nabla g_{n}^{*}\right)=0$ for $i<2 n-1$
eg for $n=3$, $\operatorname{dom} M y_{n}^{*}=5, H^{i}=0$ for $i<5$ so only cohomology is in din 5 .

All nonzero hondiogy lies in $H_{k}, \quad 2 n-1 \leq k \leq 3 n-4$
Exercise: \quad Compute $H_{*}\left(M g_{0}^{*}, \partial M g^{*}\right)$

Back to Kentsevidis theorem

$$
\theta=\text { Lie } \Rightarrow H_{d}\left(\mathrm{cg}_{*}^{(n)}\right) \cong H^{2 n-2-d}\left(\operatorname{cnt} F_{x}\right)
$$

where the orientation on θ-graphs is the odd orientation
A geuraba of $C g_{k}$ is a complicated object:
An odd-criented graph $X=$
vertices deccrated will Lie trees

These are Planar binary trees "treat" "tree at 2" modulo AS, IHX on internal edges

$$
(X,\{T\}, o r)=f_{1}+A_{2} \psi
$$

Inside each germator is a natural fest $\Phi(=$ univ tres $s)$ contanny all vertices.

$$
\begin{gathered}
\Phi=\text { union of internal } \\
\text { edges of the trees } T_{v}
\end{gathered}
$$

Theorem $($ Conant-V): All of this arientation data is equivalent to orderingthe edyes of te forest

$$
(G, \Phi, o)=\square \Phi
$$

Furthermore, te ∂ operatok sums our addy an edge to the farest (labaled oy nexit number)

$$
\partial(G, \Phi, \infty)=
$$

Exeraise $a^{2}=0$
Proof of Theoren Is linear alyebra
(I dorit knew a divect way of ceeing this)

Recall an orientation determined by an ordering of $S=\left\{x_{1}, \ldots x_{n}\right\}$ can be described as a choice of unit vector in $\Lambda^{n} \mathbb{R S}$, whee $\mathbb{R S}$ is the v.space of basis S.
Cordering te x_{i} gives $\left.\begin{array}{rl}x_{1} \wedge \ldots \wedge x_{n} \varepsilon & \wedge^{n} \mathbb{R} S \cong \mathbb{R} \\ & :=\operatorname{det} \mathbb{R} S\end{array}\right)$
so an orientation on an θ-graph is a unit vector in

$$
\begin{aligned}
& \operatorname{det}(\mathbb{R} V(X)) \otimes \bigotimes_{e \in E(X)} \operatorname{det} \mathbb{R} H(e) \otimes \bigotimes_{v \in V(X)}\left(\otimes_{u \in V\left(T_{v}\right)} \operatorname{det} \mathbb{R} H(u)\right) \\
& \begin{array}{c|c}
\hat{\imath} & \uparrow \\
\operatorname{arder} v(x) & \operatorname{ardr} \operatorname{each}
\end{array} \quad \uparrow \\
& \text { pair } H(e) \text { of order the half-edges } \\
& \text { half-edyes for ea } X \text { at each vertex tree } T_{v} \text { eat }
\end{aligned}
$$

We are clainnirg there is a concnicul isourphisn of the above expression with
$\operatorname{det} \mathbb{R} E(\Phi) \quad(E(\Phi)=\operatorname{edges} f \Phi)$
(ie picky a unit vector in eiter side deterucires a undt vector in the offer side)

I dorit know a divect way to see this Iustead we use twolemmas
Lemmal: $S=\frac{11}{i=1} S_{i}$ a frite set Tont a comonical isomovphism
$\otimes_{i} \operatorname{det} S_{i} \otimes \operatorname{det}\left(\begin{array}{ll}\bigoplus & \mathbb{R} \\ \left|S_{i}\right| \text { odd }\end{array}\right) \quad \cong \operatorname{det} \mathbb{R} S$

Pf switduing $x, y \& S_{i}$ or $S_{i} \leftrightarrow S_{j}$ with $\left|S_{i}\right|,\left|S_{j}\right|$ ood changes te sign of te total ardering of S
$S_{i} \leftrightarrow S_{j}$ dresit change te sign if $\left|S_{i}\right|$ or $\left(S_{j}\right)$ is even.
(Map te oter wy "granps" the elements of S)

Lemma $2 \rightarrow u \stackrel{f}{\longrightarrow} \cup \stackrel{P}{\rightarrow} W \rightarrow 1$
a shart exact sequence of finite-dim'l vector spaces. Ten det V is concuically isomaphic to $\operatorname{det} U \otimes \operatorname{det} W$.
Pf
choose a splitting $V \stackrel{\sqrt{0}}{p} W$
The isomarphism is gien by

$$
\begin{aligned}
\operatorname{det} U \otimes \operatorname{det} \omega & \longrightarrow \operatorname{det} v \\
u \otimes \omega & \longmapsto f(u) \wedge \Delta(\omega)
\end{aligned}
$$

Thos is independent of 0 , since $p s=i d$
Everaze $0 \rightarrow u \rightarrow V \rightarrow w \rightarrow Z \rightarrow 0$
a shart exact sey of fmite-dinil v.spaces
$\Longrightarrow 3$ concuial isbmar phism
$\operatorname{det} U \otimes \operatorname{det} W \cong \operatorname{det} V \otimes \operatorname{det} Z$
HMt: split the sequene into two shat exact sequences)

How to use these lemmas
eg $\frac{\text { claim: cydic orderings around }}{\text { each vertex }}$ T a binary tree \Leftrightarrow ordering all edges (The "obvious" correspondence desist ww h) Use the augmented chain complex of T :

$$
0 \rightarrow c_{1} \rightarrow c_{0} \rightarrow \mathbb{R} \rightarrow 0
$$

This is exact $\left(\tilde{H}_{y} T=0\right)$

$$
C_{0}=\mathbb{R} V \quad \operatorname{det} C_{0}=\operatorname{det} \mathbb{R} V
$$

To give a chain in C1, you need to prescribe orientations on the edges, $(\partial e=t(e)-i(e))$

$$
\operatorname{det} C_{1}=\operatorname{det} \mathbb{R} E \otimes e_{e}^{\otimes} \operatorname{det} H(e)
$$

Ww use lemma 1:
$\operatorname{det} \mathbb{R V} \cong \operatorname{det} \mathbb{R} E \otimes \otimes_{e} \operatorname{det} t(e) \otimes \operatorname{dth}$
and lemme $\cong \operatorname{det} R E \otimes \operatorname{det} \mathbb{R H}$
Tensor both sides un $\operatorname{det} \mathbb{R V}$, $\operatorname{det} \mathbb{R E}$

$$
\operatorname{det} \mathbb{R} E \approx \operatorname{det} \mathbb{R} V \otimes \operatorname{det} \mathbb{R} H
$$

No use lemme 2 again

$$
\begin{aligned}
& \operatorname{det} \mathbb{R} E \cong \operatorname{det} \mathbb{R} V \otimes(\underset{v}{\otimes} \operatorname{det} H(v) \otimes \operatorname{det}(\underset{\sim}{\Theta} \mathbb{R})) \\
& \text { allvatices aerodet? ivlodd } \\
& \cong \operatorname{det} \mathbb{R} V \otimes\left(\otimes_{v} \operatorname{det} H(r)\right) \otimes \operatorname{det} \mathbb{R} V \\
& \cong \underset{v}{\otimes} \operatorname{det} H(v)
\end{aligned}
$$

The rest of the proof that

$$
\left(X,\left\{T_{\sigma}\right\}, \sigma_{x}\right) \sim\left(G, \Phi, \sigma_{\Phi}\right)
$$

is similar.
(Note that the half-edges of X ave exactly the leaves of the $T_{\sigma} \ldots$)

Also have to check.

$$
\partial\left(X,\left\{T_{v}, \nabla_{X}\right)=\sum_{\substack{\Phi_{v e} \\ a \text { forest }}}\left(G, \Phi v e, o_{\Phi_{v e}}\right)\right.
$$

A generator of $C g_{*}$ is now

$\Phi=$ frost cuntany all vertices of G $o v \in \operatorname{det} \mathbb{R} E(\Phi)$
IHX translates into

Back to Outer space CV_{n}
To get the isomasplison

$$
\begin{aligned}
H_{d}\left(C g_{*}^{(n)}\right) \cong H^{2 n-2-d}\left(G_{n}+F_{n}\right) & \cong H^{2 n-2-d}\left(\sim U g_{n}\right) \\
& =H^{2 n-2-d}\left(C V_{n} / \operatorname{cut} F_{n}\right)
\end{aligned}
$$

It's eastest to look at $C V_{n}$ first:
$C V_{n}=$ dispoint union of open simplices

$$
\begin{array}{r}
\sigma(\sigma, g), \quad G=\text { adus sive, voule } x \\
(\text { comvected, } \mid v \geqslant 3 \forall v)
\end{array}
$$

sone faces are missing.

$$
C V_{n} \subset C V_{n}^{*}=\operatorname{simpicical}_{\substack{\text { cup }}} \text { falime }
$$

$$
\{u, v\}=\text { hasis fov } F_{n}
$$

Def $K_{n} \subset\left(C V_{r}^{*}\right)^{\prime}$ (bargcentric subdivisan). Vertex $=$ sinplex of $\subset V_{n}{ }^{*}$.

= span of vertices in $C V_{n}$ $\left(\leftarrow\right.$ oqu sinplices in $\left.C V_{n}\right)$
= geometric realization
of poset of $\sigma(G, y)$
All waximil sinifices of $\left(C V_{n}^{*}\right)^{\prime}$ have a missing face (af least a vartex) ond a fule in K_{n} (at least a trivelit gnopl)
$C V_{n} \searrow K_{n}$ (deformate vetract)
by liearly retracty each maxinul siyplex of $\left(\mathrm{CV}_{n}^{*}\right)^{\prime}$ to its face in K_{n}

The action of Cut $\left(F_{n}\right)$ permutes to $\sigma(\sigma, g)$, so K_{n} is invaricut coder te action

Kn is a def- retract of $C V_{n}$, so

$$
\Rightarrow H^{*}\left(\operatorname{Cut} F_{n}\right)=H^{*}\left(K_{n} / \operatorname{Cut} F_{n}\right)
$$

K_{n} is a simpliciul complex maxioul simplex = chan of edye-collapses.
($n=2$ procure is not enloghteniry here! Try an $n=3$ pictor)

