We've shown the homology of Kontsevich's Lie graph complex (odd version) $C g_{*}^{(n)}$ is equal to the cohomology of $\mathrm{K} / \mathrm{Kout}_{\mathrm{w}}$
(though the chain complexes are not the same, and in fact look very different at first)

We left out one step.. showing the vertical columns in the double complex have no homology except in the top dimension.

The vertical maps δ_{s} split one vertex-into two, then add. What happens at one vertex is independent of what happens at another.

So let's just look what happens at one vertex v in one graph G.
It $|v|=3, \delta_{s}$ does it affect it.

If $|v|=4$

If $|v|=5$, you con split trice:

(*) is the augmented cochain complex of a simplicial complex T_{n} with

- A O-cell for each 1-edge tree with n lalaled leaves
- a 1-cell for each 2-edye thee with n labeled leaves
-an (n-4) cell for each $(n-3)$-edge thee with n lakeled leaves.
ga
with $n=4$, this sic has 30 -cells

$$
\cong S^{\circ} \cup S^{\circ}
$$

with $n=5$ we have 10 -cells

Prop $T_{n} \simeq V S^{n-4}$ for any u. (ie has $\tilde{H}_{k}=0$ unless $k=n-4$)
Pf
Anoter way to describe a tree with n labled leaves and 1 edge is as a thick partition of te set $\{1, \ldots, n\}$:
(thick: each side has $\geqslant 2$ elements) eg

pairwise
with le edges, you get k compatible partitions:

(P, Q compatible
\Leftrightarrow sone side of P is disjoint tron sue ride o Q)
\Leftrightarrow partitions can be drawn in the plane so that the circles davit intersect.

Now let's reconsider te simplicral complex T_{n} :

- vertex for each partition (= Ledge tree)
- edge far each pair (P, Q) of compatible partitions
T_{n} is flay: $\left\{P_{0}, \ldots, P_{k}\right\}$ are pairwise compatible if and ally if thy span a k-simplex

Exercise Let $B C X$ be a full sobcomplox of a flag complex.
If va $X \sim B$ is a vertex with $\operatorname{llev} \cap B \neq \varnothing$, and $J \subset B$ is tee sobcomplex spanned by lev $\cap B$ then te sobcomplex $\langle B, v\rangle$ spanked by B cud v is equal to $B O_{J} C(J)$.
(non- examples: $X=\partial$ of a triangle, (not flay)

$$
B=\text { edge. }
$$

Ten $J=B$

$$
\text { but } X \neq B U_{B}(B)
$$

$X=$ triangle, $B=2$ virtues (not full)

$$
\begin{gathered}
\therefore \grave{S}^{v} \quad J=\left\{b_{1}, b_{2}\right\} \quad c J=\Lambda \\
b_{1} \cdot b_{2} \quad B U_{5} c(J)=\partial X
\end{gathered}
$$

Corollary B_{1}, X, v, as above. If B is contractible ten $\langle v, B\rangle \simeq \operatorname{susp} J$
If $B \simeq V S^{k}$ and $J \simeq V S^{k-1}$ ten $\langle u, B\rangle \simeq V S^{k}$.
If Mayer-Vietoris plus vanKampen picture:

Proof of tee rem $\left(T_{n} \simeq \vee 8^{n-4}\right)$
Induction on n (true for $n=4,5$)
Let $\left.P_{0}=\binom{1}{2} 3 \ldots n\left(\leftrightarrow{ }_{2}^{1}\right\rangle \dot{F}_{n}^{3}\right)$
$T_{p}^{0}=$ subcomplex spunned by partitions compatible with P_{0}

$$
=\text { cone on } P_{0}, \text { so } \simeq p t .
$$

Po Note be $P_{0} \simeq T_{n-1}$. Shrink te lewes $1: 2$ to apt)

Not in T_{n}^{0} : partitions that cross P_{0}

size 5

Defre the size of P to be the number of elements in the side containing 1.
If P crosses P_{0}, let P^{\prime} be te partition obtained from P
 by putting 1 on the other side.
P^{\prime} is compatible with both P and P_{0}
We will add all P of size >2 to $c\left(P_{0}\right)$ in order of decreasing size, using the corollary to keep control of the homotopy type.
So... Order te $P \& T_{n} \prime c\left(P_{0}\right)$ so that $\operatorname{size}\left(P_{1}\right) \geqslant \operatorname{size}\left(P_{2}\right) \geqslant \ldots-$
let $T_{n}^{i}=\operatorname{san}$ of T_{n}^{0} and all P_{j} wits $j \leqslant i$
clack: $J=\left\langle\text { le } P_{i+1} \cap T_{n}^{i}\right\rangle_{\text {is a crine on }} P_{i+1}^{\prime}$ so is contractible.

Pf: $\quad Q \varepsilon J$ if Q is compatinle vita P_{i+1} and either

has size
\geqslant size P_{i+1}
(which \Rightarrow size $>$ size $P_{\text {jilt }}$)
$\stackrel{\text { or }}{=}$ is compatible with P_{0}
In either case, Q is compatible with P_{i+1}^{\prime} So $J=c\left(P_{i+1}^{\prime}\right)$

The only vertices we haveit yet included are partitions of size 2 that cross P_{0} :

Bat le $P \cap B=$ le P

$$
\begin{aligned}
& \simeq T_{n-1} \text { (as we saw) } \\
& \simeq V s^{n-5} \text { by induction }
\end{aligned}
$$

so adding P gives susp $\left(V S^{n-5}\right) \simeq V S^{n-4}$.
Adding all otter $P=1 E$ still grus $\forall S^{n-4}$:

Next: Weive related commutative and Lie graph complexes to the topology of moduli spaces of graphs. What about associative graphs?
Structure at a vertex $=$ cyclic ordering of adjacent edges

A graph with a cyclic ordering of the edges at each vertex can be "fattened" into a unique oriented compact connected surface

First put a neighborhood of each vertex in to the plane, oriented counterclockwise

Then fatten this into a disk with tabs

Te edges of te graph give a pairing of ta tabs

Connect each pair with an (oriented) rectangle

Collapsing an edge doesuit change the homeomorphisun type of the surface, so the Associative graph complex breaks up in to a direct sum.

$$
\begin{aligned}
& C g_{*}= \bigoplus_{S=\text { surface }} C g_{*}^{S} \\
&(\text { compared, oriented, } \\
&\text { connected, with' } \partial)
\end{aligned}
$$

We've already done almost all the work needed to velate $C g_{*}$ to a moduli space of graphs, when we studied Lie graphs

We described generators of the Lie operad as planar trivalent trees modulo AS and IHX relations

We described gerevatars of the Associative operad as planar "stars"
But back up... this is equivalent to planar trivalent trees modulo the associative relation

, which we

"IIt"-relation"

A cyclic ordering of the edges in a star is clearly \sim to a cyclic ordering of te leave of tais trivalent tree

We saw this is \sim ordering the edges of te tree

An associative structure on an oddoriented graph is

We need to check te orientation lemma
Lemma: The orientation data on $\left(X, o v,\left\{T_{i}\right\}\right)$ graph is equivalent to an ordering of the edges of Φ in (G, Φ, W), and the ∂ operator is the same
(We didut completely prove this in te Lie case - I just gave you the tools. Ditto here.)

This shows $C g_{*}^{S}$ is isomorphic to $f g_{*}^{S}$, so they have te save howdogy
We now claim $f g_{*}^{s}$ has the same homology as the cochain complex $C^{*}\left(K^{S} / T(s)\right)$, where $K^{S}=$ graphs the nt fatten to S. We have

$$
K^{S} \leftrightarrow K_{n}\left(\subseteq C V_{n}, \pi_{1} S \cong F_{n}\right) b y
$$ forgetting te cyclic order at each vertex of a ribbon graph.

and
$\Gamma(S) \subset$ Out $\left(F_{a}\right)$ is the sulgraip that" $\frac{p r e s e r v e s ~ t h e ~ c y c l i c ~ o v d e r ~}{\text { a }}$ at each vertex", ie $\Gamma(s)$ preserves' the "boundary words", the cyclic words in F_{n} correspundily to the boundary curves in S :

To prove te claim, we decompose the δ operator in $C^{*}\left(K^{s}\right)$ as betue,

$$
\delta=\delta_{a}+\delta_{s} \quad \delta_{a} \text { adds an edjeto } \phi
$$

and, as before, we shaw the vertical subcomplexes (using δ_{s}) have homology only in the top dimension
Exercise Identify the vertical (co) chain complex as the cochain complex of a sphere:
look at the trees you can get by It splitting, starting at a single vertex v of valuce $|v\rangle$.

If $|v|=4$, Here we nav only two possible splittings witnont leavings:

$$
\chi \rightarrow \gg<
$$

so cplex is $0 \rightarrow \mathbb{R} \rightarrow \mathbb{R}^{2} \rightarrow 0$ = angmanted cocham cplex of S°

If $|v|=5$, get the ∂ of a pentagon

Now
(1) Zieschany proved $\Gamma(s) \cong \operatorname{Mod}(s)$
(2) The proof that K_{n} is catractille restricts wimont change to K_{s}
$\therefore K_{s} / T(s)$ is a (rational) $K(\operatorname{Mod}(s), 1)$,
ic $H_{d}\left(C g_{x}^{s}\right)=H_{d}\left(f g_{x}^{s}\right)=H^{2 r-2-d}(\operatorname{Hod}(s))$

