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ABSTRACT

In 1933 Rado characterized all systems of linear equations with rational coefficients which

have a monochromatic solution whenever one finitely colors the natural numbers. A nat-

ural follow-up problem concerns the extension of Rado’s theory to systems of polynomial

equations. While this problem is still wide open, significant advances were made in the last

two decades. We present some new results in this direction, and study related questions for

general commutative semigroups.

Among other things, we obtain extensions of a classical theorem of Deuber to the

polynomial setting and prove that any finite coloring of the natural numbers contains a

monochromatic triple of the form {x, x+ y, xy}, settling an open problem.

We employ methods from ergodic theory, topological dynamics and topological algebra.
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CHAPTER 1

INTRODUCTION

In this thesis we investigate some questions originating in Ramsey theory by using tools and

methods from ergodic theory, topological dynamics and topological algebra in the Stone-

Čech compactifications of commutative semigroups.

1.1 Combinatorial problems

We are mainly concerned with results of the form: suppose one colors the natural numbers

N = {1, 2, . . . } with a finite set of colors (so that each number has exactly one color) in

an arbitrary fashion. Then one can find certain monochromatic (i.e. with all elements of

the same color) “patterns”. One of the oldest results in this direction is Schur’s theorem

[Sch16]:

Theorem 1.1 (Schur). For any finite partition of the natural numbers N = C1 ∪ · · · ∪ Cr

there exist x, y ∈ N and C ∈ {C1, . . . , Cr} such that {x, y, x+ y} ⊂ C.

Another famous result in arithmetic Ramsey theory is van der Waerden’s theorem

[Wae27] on arithmetic progressions:

Theorem 1.2 (van der Waerden). For any finite partition of the natural numbers N =

C1 ∪ · · · ∪ Cr and any k ∈ N there exist x, y ∈ N and C ∈ {C1, . . . , Cr} such that {x, x +

y, x+ 2y, . . . , x+ ky} ⊂ C.

Observe that both Schur’s and van der Waerden’s theorems deal with linear patterns,

in the sense that these patterns are defined by linear relations (this point will be made more
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precise in Section 1.3). In 1933, Rado obtained a remarkable result, classifying all linear

configurations which can be found in a single cell of any finite partition of N, extending

simultaneously Theorems 1.1 and 1.2 (cf. Theorem 4.31 below).

The next natural step in this line of investigation is to consider polynomial configura-

tions. A far reaching extension of van der Waerden’s theorem to the polynomial setting

was obtained by Bergelson and Leibman in [BL96]:

Theorem 1.3 (Polynomial van der Waerden theorem, cf. [BL96, Corollary 1.11]). Let

f1, . . . , fk ∈ Z[x] be polynomials such that fi(0) = 0 for all i = 1, . . . , k. Then for any finite

coloring of N = C1 ∪ · · · ∪ Cr there exist a color C ∈ {C1, . . . , Cr} and x, y ∈ N such that

{
x, x+ f1(y), x+ f2(y), . . . , x+ fk(y)

}
⊂ C

Note that Theorem 1.2 is a rather special case of Theorem 1.3, corresponding to the

choice of polynomials fi(y) = iy. The strength and generality of the polynomial van der

Waerden theorem notwithstanding, several questions remain unanswered. For instance, it

is an open problem whether for every finite coloring of N there exists a color C and x, y ∈ N

such that {x2, y2, x2 + y2} ⊂ C.

This thesis sheds some new light on the class of polynomial patterns that can be found

monochromatically within a single cell of any finite partition of N and, indeed, of more

general countable commutative semigroups. We obtain in Chapter 4 a common generaliza-

tion of Theorems 1.1 and 1.3 to countable commutative semigroups (the precise statement,

Theorem 4.2, is postponed until Chapter 4 for it uses some terminology from that chapter),

providing new families of polynomial patterns which can be found in a single cell of any

finite partition. However, this extension does not include every polynomial pattern. While

it unites the polynomial version of van der Waerden’s theorem with Schur’s theorem, some

pieces are still missing. In particular, the following conjecture is still unsolved:

Conjecture 1.4. For any finite partition of the natural numbers N = C1 ∪ · · · ∪ Cr there

exist x, y ∈ N and C ∈ {C1, . . . , Cr} such that {x, y, x+ y, xy} ⊂ C.

2



An affirmative answer to the analogue of Conjecture 1.4 in finite fields was recently

obtained by Green and Sanders [GS16], generalizing previous work by Shkredov [Shk10]

and Cilleruelo [Cil12] (see also [Vin14] and [Han13] for related results).

A major part of this thesis arises from studying a weaker form of Conjecture 1.4 which,

until very recently, was unsolved:

Theorem 1.5 ([Mor]). For any finite partition of the natural numbers N = C1 ∪ · · · ∪ Cr

there exist x, y ∈ N and C ∈ {C1, . . . , Cr} such that {x, x+ y, xy} ⊂ C.

Theorem 1.5 is proved in Chapter 6, as a special case of a significantly more general

statement (see Theorem 6.2 below). Theorem 1.5 is the culmination of ideas and techniques

developed in [BM16a] and [BM16b], where the analogous problem in Q (and, in fact, in

any countable field) was studied. Besides the invaluable lessons learned, in this earlier

work we obtained results which in certain respect are stronger than Theorem 1.5. These

developments are presented in Chapter 5. In particular we showed that any "large" subset

of Q contains patterns of the form {x + y, xy}. By way of contrast, observe that the set

of odd numbers (which is a "large" subset of N in several senses) can not contain such a

pattern.

1.2 Connections with dynamics and topological algebra

In [Sze75] Szemerédi established a density version of van der Waerden’s theorem (cf. The-

orem 2.41 below), hereby proving a famous conjecture of Erdős and Turán [ET36]. Shortly

afterwards, Furstenberg gave a new proof of Szemerédi’s theorem using ergodic theory

[Fur77]. This was the beginning of a long and fruitful interaction between dynamics and

Ramsey theory. Indeed, Furstenberg’s method was successfully applied to many other

problems in Ramsey theory, including density and polynomial versions of the Hales-Jewett

theorem.

While ergodic theory has proven useful in establishing density results, topological dy-

namics can be used to obtain directly partition results. This approach was first employed by

3



Furstenberg and Weiss to obtain a dynamical proof of van der Waerden’s theorem [FW78].

A similar method was later used by Bergelson and Leibman to obtain the polynomial van

der Waerden theorem (a result which was previously unknown). Topological dynamics can

also be used to show partition regularity for configurations which are not present in every

set with positive density, such as IP-sets (cf. Section 2.2 below) or solutions to Rado’s

systems of equations.

Another effective technique in modern Ramsey theory is provided by the topological

algebra of the Stone-Čech compactification, realized as the space of ultrafilters. On the

one hand, ultrafilter methods are helpful in obtaining various partition results. On the

other hand, utilizing convergence along ultrafilters allows one to refine and extend results

classically obtained via Cesàro averages.

1.3 Ramsey families

To put our results into perspective, we will now briefly review some of the relevant classical

results in Ramsey theory. The notion of Ramsey families will be convenient to state both

classical and new results in a more general framework.

Definition 1.6. Let G be a countable commutative semigroup, let k,m ∈ N, and let

f1, . . . , fk : Gm → G. We say that {f1, . . . , fk} is a Ramsey family in G if for any finite

coloring G = C1 ∪ · · · ∪ Cr, there exist x ∈ Gm and a color C ∈ {C1, . . . , Cr} such that{
f1(x), . . . , fk(x)

}
⊂ C.

In this language, Schur’s theorem (Theorem 1.1) states that the family {x, y, x + y} 1

is Ramsey in N, and van der Waerden’s theorem (Theorem 1.2) states that, for any k ∈ N,

the family {x, x + y, . . . , x + (k − 1)y} is Ramsey in N. On the other hand, the families

{x, x+ 1} and {x, y, 3x− y} are not Ramsey (in N): if one colors each n ∈ N depending on

its parity, then x and x+ 1 must have different colors; and if we color each n ∈ N in one of
1By a slight abuse of notation, we represent by {x, y, x+ y} the family comprised of the three functions

(x, y) 7→ x, (x, y) 7→ y and (x, y) 7→ x+ y.
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four colors, according to the last non-zero digit in its 5-adic expansion, one can check that

if x and y are of the same color, then 3x− y must have a different color.

A common extension of Schur’s and van der Waerden’s theorems was obtained by Brauer

[Bra28]:

Theorem 1.7 (Brauer’s theorem). For every p ∈ N, the family {x, y, x+y, x+2y, . . . , x+py}

is Ramsey in N.

In a different direction, one can extend Schur’s theorem by adding to the family {x, y, x+

y} a new variable z and the sums {z + y, z + y, z + x+ y}. In general we have

Theorem 1.8 (Folkman’s theorem). For every m ∈ N, the family

x0

x1, x1 + x0

x2, x2 + x1, x2 + x0, x2 + x1 + x0
...

...
... . . .

xm, xm + xm−1, xm + xm−2, . . . xm + xm−1 + · · ·+ x0


is Ramsey in N.

In other words, Folkman’s theorem states that for any finite coloring of N and every

m ∈ N there exists a color C and a set A ⊂ N with |A| = m such that FS(A) ⊂ C (cf.

(2.4) below).

Remark 1.9. The attribution of Theorem 1.8 to J. Folkman is made in [GRS90] (without

a reference). However we remark that it follows as a corollary from the earlier work of

Rado (cf. Theorem 4.31 below) and it was also independently discovered by Sanders in his

thesis [San68] and by Arnautov [Arn70].

In the same way that van der Waerden’s and Schur’s theorems were simultaneous gen-

eralized by Brauer’s theorem, it is possible to unite van der Waerden’s theorem with Folk-

mans’s.

5



Theorem 1.10 (Deuber’s theorem, [Deu73]). For any m, p, c ∈ N, the family

cx0,

ix0 + cx1, i ∈ {−p, . . . , p}

ix0 + jx1 + cx2, i, j ∈ {−p, . . . , p}
...

...

i0x0 + · · ·+ im−1xm−1 + cxm, im−1, . . . , i0 ∈ {−p, . . . , p}


is Ramsey in N.

Observe that Theorem 1.10 contains Schur’s, van der Waerden’s, Brauer’s and Folk-

man’s theorems as special cases. In fact, Deuber’s theorem applies to every finite linear

Ramsey family in N:

Theorem 1.11. Let m ∈ N and let {f1, . . . , fk} be a finite family of linear functions (i.e.

semigroup homomorphisms) fi : Nm+1 → N. Then the family is Ramsey if and only if

there exist p, c ∈ N such that the family {f1, . . . , fk} is contained in the family described in

Theorem 1.10.

The original version of Theorem 1.11 is due to Rado (see Theorem 4.31 below) but

is formulated in the (quite different) language of partition regularity of systems of linear

equations. As stated, Theorem 1.11 is due to Deuber; although it is not hard to derive

it from Rado’s theorem. Actually, Deuber proved a stronger result (see the discussion

surrounding Definition 4.10 below).

There are several ways one can hope to extend Theorem 1.11. One option is to extend

the notion of Ramsey families to infinite families of functions. There are several posi-

tive results in this direction, including Hindman’s theorem (Theorem 2.27) which can be

formulated in language of Ramsey families. One could also try to extend the scope of The-

orem 1.11 from linear Ramsey families in N to linear Ramsey families in other commutative

semigroups. Yet another, and perhaps more natural, possibility is to relax the condition

that the functions must be linear and ask instead for a similar result when the functions

are polynomials. This leads naturally to the following, by now classical, problem.

6



Problem 1.12. Describe necessary and sufficient conditions on the polynomials f1, . . . , fk ∈

Z[x1, . . . , xs] that guarantee that the family {f1, . . . , fk} is Ramsey in N.

It follows from Schur’s theorem that the family {x, y, xy} is Ramsey (simply compose

any given coloring χ : N → {1, . . . , r} with the map n 7→ 2n to create a new coloring and

apply Schur’s theorem). Using the same idea, van der Waerden’s theorem implies that for

each k ∈ N the family {x, xy, . . . , xyk} is Ramsey, and Deuber’s theorem implies that many

more families of the form {f1, . . . , fk}, where each fi is a monomial, are Ramsey.

Configurations which combine both addition and multiplication, however, tend to be

significantly harder to deal with: only in 1977 did Furstenberg and Sárközy prove, indepen-

dently, that the family {x, x+y2} is monochromatic (cf. [Fur77, Theorem 1.2] and [Sár78]),

obtaining the first example of a non-linear Ramsey family which does not consist solely of

monomials. Bergelson improved this result by showing that in fact the family {x, y, x+ y2}

is Ramsey [Ber87].

The next major advance towards Problem 1.12 was Bergelson and Leibman’s polynomial

extension of van der Waerden’s theorem [BL96] (Theorem 1.3). In the language of Ramsey

families, they showed in particular that for any polynomials p1, . . . , pk ∈ Z[x1, . . . , xm] with

pi(0) = 0, the family {x0, x0 + p1(x1, . . . , xm), . . . , x0 + pk(x1, . . . , xm)} is Ramsey. The

polynomial van der Waerden theorem has now been extended in several directions (see,

for instance, [BFM96; BJM; BLL08]), each revealing new examples of polynomial Ramsey

families.

In the last decade, many interesting polynomial Ramsey families were found [BBHS06;

BBHS08; Ber05; FH; McC10], however a complete solution to Problem 1.12 is still very far

from reach.

Outline of the following chapters

In the next chapter we set up some common terminology and definitions. We start by

reviewing some background facts on ultrafilters. Then we survey classical definitions and

7



results from (arithmetic) Ramsey theory and discuss connections with ergodic theory and

topological dynamics.

In Chapter 3 we deal with affine semigroups – semigroups of affine transformations of

a ring – and explore some of their properties. There is a strong analogy between the way

a semigroup acts on itself by translations, and the way the affine semigroup over a ring R

acts on R via affine transformations. This analogy allows us to transfer several classical

results to the affine setting. The theory developed in this chapter is used later in Chapters

5 and 6 to obtain new Ramsey theoretic results.

In Chapter 4 we study extensions of Deuber’s theorem (Theorem 1.10). We obtain a

common extension of Deuber’s theorem and Bergelson-Leibman’s polynomial van der Waer-

den theorem. We further generalize this result to arbitrary countable abelian groups. We

also present a generalization of Deuber’s theorem which holds in every countable commu-

tative semigroup.

In Chapter 5 we investigate the presence of configurations {x+y, xy} in large subsets of

(countably infinite) fields and answer the question of how abundant such configurations are.

To this end we employ methods from ergodic theory and end up obtaining results on the

long term behaviour of measure preserving actions of affine semigroups. In particular we

establish affine analogues of the mean ergodic theorem, Khintchine’s recurrence theorem,

as well as versions thereof involving limits along ultrafilters.

Chapter 6 is dedicated to the study of certain polynomial families over a general class

of rings. Among other things, we show that the family {x+ y, xy} is Ramsey in any ring of

that class and in N. We provide two proofs, one using topological dynamics and another,

purely elementary proof. In particular we prove Theorem 1.5 and, as a corollary, obtain

partition regularity of certain polynomial equations.

8



CHAPTER 2

PRELIMINARIES

In this section we will review some well known combinatorial results which we both are

inspired by and use throughout the thesis. We will also introduce some definitions and

facts about ultrafilters, ergodic theory and topological dynamics for later use.

2.1 Ultrafilters on commutative semigroups

The theory of ultrafilters, and specially the relation between the algebra and the topology

of the set βR of all ultrafilters over a countable set R has became a major component

of Ramsey theory in the past decades. Since we will make extensive use of the theory of

ultrafilters in all of the later chapters, in this section we present a fairly detailed introduction

to this useful subject. The reader will find missing details in [Ber10] or [HS98].

Definition 2.1 (Ultrafilter). Let R be a countable set. An ultrafilter p is a non-empty

collection of subsets of R satisfying:

• ∅ /∈ p

• If A ⊂ B and A ∈ p then B ∈ p

• If A ∈ p and B ∈ p then also A ∩B ∈ p

• If A ∪B ∈ p then either A ∈ p or B ∈ p

In particular, the second condition implies that R ∈ p (because p is non-empty), so

from the last property it follows that for each A ⊂ R, either A ∈ p or R \ A ∈ p. In fact,

9



iterating the last property, we deduce that for any finite partition of R, exactly one of the

cells belongs to p. Indeed we have:

Proposition 2.2. An ultrafilter on R is a family p of subsets of R such that for any finite

partition of R, exactly one of the cells of the partition belongs to p.

It is not hard to present a concrete example of an ultrafilter: pick a ∈ R and consider

the family pa := {A ⊂ R : a ∈ A}; one can promptly check that this family satisfies all

the conditions from Definition 2.1. Ultrafilters of the form pa with a ∈ R as just described

are called principal, an ultrafilter which is not principal is called non-principal. In order

to prove existence of non-principal ultrafilters one requires (at least some weak form of)

the axiom of choice. This means that one can not give an explicit construction of an non-

principal ultrafilter; nevertheless, one is often able to establish the existence of ultrafilters

with some nice properties.

A family of subsets of R satisfying the first three properties of the Definition 2.1 is called

a filter. The family of all co-finite sets is an example of a filter which is not contained in

any principal ultrafilter. On the other hand, ultrafilters turn out to be precisely maximal

filters (for the inclusion relation).

Proposition 2.3. Every filter is contained in an ultrafilter. In particular, there exist non-

principal ultrafilters.

Proof. We first show that any maximal filter (for the partial order of inclusion) is an ultra-

filter. Let p be a maximal filter and let A,B ⊂ R be non-empty sets such that A ∪ B ∈ p.

We need to show that either A or B belong to p. Assume B /∈ p and consider the family

p′ := p∪{C ⊂ R : A ⊂ C}∪{A∩C : C ∈ p}. We claim that p′ is also a filter, by maximality

this will imply that p′ = p and so A ∈ p as desired.

Assume, for the sake of a contradiction, that ∅ ∈ p′. Since p is a filter and A is non-

empty we have that A ∩ C = ∅ for some C ∈ p. But since A ∪ B ∈ p, we would have

(A ∪ B) ∩ C is simultaneously a member of p and also a subset of B, contradicting the

10



assumption that B /∈ p. The second and third conditions for a filter trivially hold for p′

and this proves the claim.

Now, it is also easy to check that the union of any totally ordered subset of filters is

again a filter, so we can apply Zorn’s lemma to conclude that any filter is contained in some

ultrafilter.

If one considers R to be endowed with the discrete topology (as we always do in this

thesis), the set of all ultrafilters on R can be identified with the Stone-Čech compactification

βR of R (see, for example, Theorem 3.27 in [HS98]). We will now briefly explain this

identification. Let Ω := {0, 1}R be the set of all functions f : R→ {0, 1}. By identifying a

subset A ⊂ R with its indicator function, we can also think of Ω as the family of all subsets

of R. We endow {0, 1} with the discrete topology and give Ω the product topology, making

it into a compact space (by Tychonoff’s theorem). Next we consider the space X = {0, 1}Ω

of all functions from Ω in {0, 1}. Invoking Tychonoff’s theorem one more time we deduce

that X is also compact with respect to the product topology. One can think of a point in

X as a subset of Ω or, equivalently, as a collection of subsets of R.

Now, for each n ∈ R, let pn ∈ X be the function pn : Ω → {0, 1} given by pn(f) =

f(n) for each f : R → {0, 1}. This gives an embedding of R into X. The Stone-Čech

compactification of R is the closure of R in X and is denoted by βR. Observe that βR is

compact because it is a closed subset of the compact Hausdorff space X.

A point p ∈ βR ⊂ X is a map from Ω to {0, 1}. By identifying points in Ω with subsets

of R, we can associate p with the family of subsets A ⊂ R for which p(A) = 1. By an

abuse of language we will denote this collection of subsets of R also by p and we will use

interchangeably the notations A ∈ p and p(A) = 1. Note that the element pn ∈ X is the

principal ultrafilters at n.

Proposition 2.4. Let p ∈ X be a collection of subsets of R. Then p ∈ βR if and only if p

is an ultrafilter on R.

Proof. Using the definition of product topology we see that p ∈ βR if and only if for any

11



finite collection A1, ..., Ak of subsets of R there exists some n ∈ R such that pn(Ai) = p(Ai)

for each i = 1, ..., k.

First assume that p ∈ βR. Since pn(∅) = 0 for all n ∈ R, also p(∅) = 0 and hence

∅ /∈ p, proving the first property of Definition 2.1. Next let A ∈ p and suppose B ⊃ A.

Let n ∈ R be such that pn(A) = p(A) and pn(B) = p(B). Then n ∈ A so n ∈ B and thus

p(B) = 1, proving the second property. If both A and B are in p, let n ∈ R be such that

pn and p agree at A,B and A ∩ B. Then we conclude that A ∩ B ∈ p proving the third

property. Finally suppose that A∪B ∈ p and let n ∈ R be such that pn agree with p at A,

B and A ∪ B. Thus either A or B will be in p proving the fourth property. This implies

that p is indeed an ultrafilter.

Next, suppose that p is an ultrafilter. Given any subsets A1, ..., Ak of R, assume that

A1, ..., Ar are in p and Ar+1, ..., Ak are not in p. Then the intersection(
r⋂
i=1

Ai

)
∩

 k⋂
i=r+1

(R \Ai)


is in p and in particular it is non-empty. Let n be in that intersection. Then pn agrees with

p at the sets A1, ..., Ak. Since the sets A1, ..., Ak were arbitrary, we conclude that there

exists some pn at each neighborhood of p, and hence p ∈ βR.

For a set A ⊂ R denote by

Ā := {p ∈ βR : A ∈ p} ⊂ βR (2.1)

It turns out that, identifying A with the subset of βR consisting of those principal ultrafilters

pn with n ∈ A, the set Ā is precisely the closure of A in the topology of βN. In fact, we

have:

Lemma 2.5. The sets Ā are clopen and form a basis for the topology on βR.

Proof. Let p ∈ X. By definition p ∈ Ā ⇐⇒ p(A) = 1. Since {1} is a clopen subset of

{0, 1} and by the definition of product topology on X we conclude that Ā is a clopen set

of X, hence intersecting with βR we get a clopen subset of βR.

12



To prove that the sets {Ā, A ⊂ R} form a basis for the topology on βR, let k ∈ N, let

1 ≤ r ≤ k, let A1, ..., Ak be subsets of R and let C := {p ∈ X : A1, ..., Ar ∈ p,Ar+1, ..., Ak /∈

p}. Sets of the form C are a basis for the topology of X, so sets of the form C ∩ βR form

a basis for the topology of βR. Consider the intersection

B =
(

r⋂
i=1

Ai

)
∩

 k⋂
i=r+1

(R \Ai)


Then, by the ultrafilter property, p ∈ C ∩ βR ⇐⇒ B ∈ p, and hence C ∩ βR = B̄.

Given a compact Hausdorff space K and a function f : R→ K, the universal property

of the Stone-Čech compactification implies that there exists a unique continuous extension

βf : βR → K. The continuity implies that βf(p) = limn→p f(n). We will denote this by

the more suggestive notation p - limn f(n) := βf(p).

Lemma 2.6. Let K be a compact Hausdorff space, let R be a countable discrete set, let

f : R→ K, p ∈ βR and x ∈ K. Then

p - lim
n
f(n) = x ⇐⇒ ∀ U 3 x open, {n ∈ R : f(n) ∈ U} ∈ p. (2.2)

Proof. Assume p - limn f(n) = x. The set {n ∈ R : f(n) ∈ U} is precisely the intersection

of V := (βf)−1(U) and R (as a subset of βR). Since βf is continuous, V is open, and

because p ∈ V it follows that there exists a basic open set Ā ⊂ V such that p ∈ Ā, where

A ⊂ R. In other words A ∈ p and A ⊂ V , which implies that V ∩R contains A and hence

is a member of p.

Next we prove the converse: assume p - lim f(n) = y 6= x. Since K is Hausdorff, take

disjoint neighborhoods Ux and Uy of x and y respectively. It follows from the first part

that {n : f(n) ∈ Uy} ∈ p. Since {n : f(n) ∈ Uy} ∩ {n : f(n) ∈ Ux} = ∅ we conclude that

{n : f(n) ∈ Ux} /∈ p, finishing the proof.

One could simply take (2.2) as the definition of p - lim but the definition above makes

it more clear that for any map f : R → K into a compact Hausdorff space, p - limn f(n)

exists and is unique.
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Ultrafilters on semigroups

So far we didn’t use any property of the set R (except that it is infinite). Now we will see

that a binary operation on R induces a binary operation in βR. To motivate the definition

it helps to think of ultrafilters in a different way, namely as finitely additive {0, 1}-valued

measures on R. In that way, the operation on βR is just the usual convolution of measures.

Let • be an associative binary operation on R (we will only use • = + and • = ×), let

A ⊂ R and n ∈ R. We use the notation A • n−1 to denote the set {x ∈ R : x • n ∈ A}.

Definition 2.7. Let p and q be ultrafilters on a semigroup (R, •). We define the operation

p • q := {A ⊂ R : {n ∈ R : A • n−1 ∈ p} ∈ q}

We first need to check that p • q is indeed an ultrafilter on R:

Proposition 2.8. If p, q ∈ βR then also p • q ∈ βR.

Proof. It is clear that∅ /∈ p•q. Also, if A ⊂ B, then for each n we have (A•n−1) ⊂ (B•n−1).

It is now easy to check that if A ∈ p • q then also B ∈ p • q. Next assume that both

A,B ∈ p • q. Since (A • n−1) ∩ (B • n−1) = (A ∩ B) • n−1 for each n ∈ R, we have that

{n : (A∩B) •n−1 ∈ p} = {n : A •n−1 ∈ p}∩{n : B •n−1 ∈ p} ∈ q and hence A∩B ∈ p • q.

Finally, if A ∪ B ∈ p • q then using the fact that p is an ultrafilter (and the fact that

(A∪B)•n−1 = A•n−1∪B•n−1) we have that for each n in the set C := {n : (A∪B)•n−1 ∈ p}

either A • n−1 ∈ p or B • n−1 ∈ p. Since q is also an ultrafilter and C ∈ q, either

{n : A • n−1 ∈ p} ∈ q or {n : B • n−1 ∈ p} ∈ q which is equivalent, respectively to A ∈ p • q

or B ∈ p • q.

Moreover, this binary operation turns out to be associative (cf. Theorems 4.1, 4.4 and

4.12 in [HS98]) :

Proposition 2.9. The binary operation on βR just defined is associative.

Proof. We first note that for A ⊂ R and n,m ∈ R we have

x ∈ (A • n−1) •m−1 ⇐⇒ x •m • n ∈ A

14



and so (A • n−1) •m−1 = A • (m • n)−1.

Let p, q, r ∈ βR. Then A ∈ (p • q) • r if and only if

{n : A • n−1 ∈ p • q} ∈ r ⇐⇒ {n : {m : (A • n−1) •m−1 ∈ p} ∈ q} ∈ r

⇐⇒ {n : {m : A ◦ (m • n)−1 ∈ p} ∈ q} ∈ r

⇐⇒ {n : {m : m • n ∈ {x : A • x−1 ∈ p}} ∈ q} ∈ r

⇐⇒ {n : {x : A ◦ x−1 ∈ p} • n−1 ∈ q} ∈ r

⇐⇒ {x : A • x−1 ∈ p} ∈ q • r

⇐⇒ A ∈ p • (q • r)

Thus (βR, •) is a semigroup. It should be remarked that this operation extends the

operation on R. More precisely, if n,m ∈ R then pn • pm := pn•m. However, the operation

in βR may not be commutative, even if • is.

Another important property of the operation in βR is that it is left continuous (and

yet, not right continuous):

Proposition 2.10. For each p ∈ βR, the map λp : βR → βR defined by λp : q 7→ p • q is

continuous.

Proof. We will use the Lemma 2.5. Fix p, q ∈ βR and let Ā be a clopen neighborhood of

λp(q). We need to show that {r : λp(r) ∈ Ā} contains B̄ for some B ∈ q. We observe that

λp(r) ∈ Ā ⇐⇒ A ∈ p • r ⇐⇒ {n : A • n−1 ∈ p} ∈ r. Thus making B = {n : A • n−1 ∈ p}

we get that indeed {r : λp(r) ∈ Ā} contains B̄.

Quite special elements of the semigroup (βR, •) are idempotent elements, i.e, ultrafilters

p such that p•p = p. While the existence of such ultrafilters is not obvious, it can be establish

using a theorem by Ellis [Ell58]:

Theorem 2.11 (Ellis Theorem). If (S, •) is a compact Hausdorff left topological semigroup,

then S contains an idempotent.
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Proof. Consider the family

V :=
{
∅ 6= W ⊂ S : W is compact ,W •W := {w1 • w2 : w1, w2 ∈W} ⊂W

}
V is non-empty because S ∈ V . Also the intersection of any nested subfamily of V is still in

V (because a nested intersection of compacts in a Hausdorff space is non-empty). Applying

Zorn’s lemma we find a minimal (for the partial order of inclusion) element W ∈ V .

For each x ∈ W we have (x •W ) • (x •W ) ⊂ x •W •W •W ⊂ x •W , and by left

continuity x•W is compact, hence x◦W ∈ V . Also x•W ⊂W •W ⊂W , so by minimality

x •W = W .

In particular x = x • y for some y ∈ W . Thus the set Z := {z ∈ W : x • z = x} is

non-empty. By continuity we have that Z is closed (hence compact) and if y, z ∈ Z then

x • (y • z) = x • z = x, hence Z • Z ⊂ Z. This implies that Z ∈ V , again by minimality

we have that Z = W and in particular x ∈ Z. We conclude that x • x = x, and this is our

idempotent.

This implies that there are idempotent ultrafilters on βR.

2.2 Notions of largeness for subsets of semigroups

Throughout this section we let G be a countable commutative left cancelative semigroup.

This means that there is an associative binary operation on G such that for every a, b ∈ G

we have ab = ba and the map x 7→ ax is injective. Most of the definitions and results hold

in bigger generality (perhaps after properly changing the order of the operations), but even

though non-commutative semigroups will make an appearance in this thesis, we will not

make use of these notions of largeness in the non-commutative setting.

Given a set A ⊂ G and an element x ∈ G we denote by xA := {xa : a ∈ A} and

x−1A := {y ∈ G : xy ∈ A}. Given two subsets F,A ⊂ G we employ the notation F−1A :=⋃
x∈F x

−1F = {y ∈ G : (∃x ∈ F )xy ∈ A}.

16



Upper density

In this subsection we write the operation in G multiplicatively, to draw the analogy with

the similar theory for actions of affine semigroups which we will explore later in Chapter 3.

A Følner sequence in a countable commutative semigroup G is a sequence (FN )N∈N of

finite subsets of G which is asymptotically invariant under the semigroup action, in the

sense that

∀g ∈ G lim
N→∞

∣∣(gFN ) ∩ FN
∣∣

|FN |
= 1

It is a well known fact that in any countable commutative semigroup there exist Følner

sequences [Pat88, Sec (4.22)].

Remark 2.12. For cancelative semigroups, the size |FN | of the sets in a Følner sequence

must grow to infinity as N →∞. However, certain non-cancelative semigroups admit only

rather trivial Følner sequences. For instance, taking G to be the set of all finite subsets

of N with the operation being the intersection, the (essentially unique) Følner sequence is

obtained by letting each FN = {∅}.

Example 2.13.

• For the semigroup G = (N,+), any sequence of intervals with increasing length will

be a Følner sequence. The most common example is FN = {1, 2, . . . , N}.

• More generally, in the semigroup G = (Nd,+), for some d ∈ N, one can take a Følner

sequece to be any sequence of cubes, whose side length goes to infinity. In particular,

the sequence FN := {1, . . . , N}d is a Følner sequence.

• In the multiplicative semigroup (N, ·), one can use the prime numbers to describe a

Følner sequence as follows. Let p1, p2, . . . be an arbitrary enumeration of (all) the

primes and let FN = {pe1
1 · · · p

eN
N : 0 ≤ e1, . . . , eN ≤ N}. One can easily check from

the definition that (FN )N∈N is indeed a Følner sequence.
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• For a positive integer N ∈ N let RN be the product of the first N prime numbers

and, using the symbol x|y to represent the statement that x divides y, define:

FN :=
{
a

b
: a, b ∈ N, RN+1

N |b, b|R2N
N , 1 ≤ a ≤ R4N

N , gcd(a, b) = 1
}
⊂ Q

The sequence (FN )N∈N is a Følner sequence in the groups (Q,+) and (Q>0, ·) simul-

taneously.

Given a Følner sequence (FN )N∈N in a semigroup, one can define the upper density with

respect to (FN )N∈N via the formula

d̄(FN )(E) := lim sup
N→∞

|E ∩ FN |
|FN |

(2.3)

When the Følner sequence is tacit, we denote d̄(FN )(E) simply by d̄(E). In particular,

in N or Z, we will denote by d̄ the upper density with respect to the Følner sequence

({1, . . . , N})N∈N.

The upper density satisfies the following properties:

Proposition 2.14. Let G be a countable commutative cancelative semigroup, let (FN )N∈N

be a Følner sequence in G and let d̄ be the upper density with respect to (FN )N∈N. Then for

any A,B ⊂ G and g ∈ G we have

1. d̄(G) = 1,

2. d̄(gA) = d̄(g−1A) = d̄(A),

3. d̄(A ∪B) ≤ d̄(A) + d̄(B).

Syndetic, thick and piecewise syndetic sets

In this subsection we continue to denote the (commutative) operation on the semigroup G

multiplicatively.

Definition 2.15. A subset S of a commutative semigroup (written multiplicatively) is

syndetic if there exists a finite set F ⊂ G such that F−1A = G.
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Example 2.16. The following are syndetic sets in the semigroup (N,+):

• Any co-finite subset S ⊂ N,

• Any infinite progression of the form aN + b,

• The set {n ∈ N : d(nα,N) < ε} for any α, ε > 0, where d(x,N) denotes the distance

between the positive real number x and the lattice of natural numbers.

• The set {n ∈ N : d(f(n),N) < ε} for any ε > 0 and any polynomial f ∈ R[x] with an

irrational coefficient (other than the constant term).

One can show that a set S is syndetic if and only if for every Følner sequence (FN )N∈N

in G, the upper density d̄(FN )(S) is positive.

Definition 2.17. A subset S of a commutative semigroup (written multiplicatively) is thick

if for every finite set F ⊂ G there exists x ∈ G such that Fx ⊂ T .

Example 2.18. The following are thick sets in (N,+):

• Any co-finite subset T ⊂ N,

• The set {n ∈ N : |µ̂(n)| < ε} where ε > 0 and µ̂ is the Fourier transform of a

non-atomic measure µ on [0, 1].

Observe that given any syndetic set S and any thick set T , the intersection S ∩ T is

non-empty. In fact, the notions of thick and syndetic sets are dual, in the sense that a set is

thick if and only if it has non-empty intersection with every syndetic sets, and conversely,

a set is syndetic if and only if it has non-empty intersection with every thick set. One can

show that a set T ⊂ G is thick if and only if there exists a Følner sequence (FN )N∈N in G

for which the upper density d̄(FN )(T ) equals 1.

Definition 2.19. A set A ⊂ G is a piecewise syndetic set if it is the intersection of a

syndetic set and a thick set.
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It follows from the observations above that given any piecewise syndetic set A there

exists a Følner sequence (FN )N∈N in G such that d̄(FN )(A) > 0. However, the converse is

not true, as the following example shows:

Example 2.20. The set of squarefree numbers (i.e., numbers which are the product of

distinct primes) has positive upper density with respect to the Følner sequence FN =

{1, . . . , N} but is not piecewise syndetic in N.

For completeness, we provide a proof of this well known fact.

Proof. Denote by Q the set of squarefree numbers. Let p1, p2, . . . be an enumeration of the

prime numbers and observe that

Q =
∞⋂
n=1

(
N \ p2

nN
)

For each N ∈ N, the intersection QN :=
⋂N
n=1

(
N \ p2

nN
)
is a periodic set (with period

p2
1 · · · p2

N ) and hence its density can be easily computed (invoking the Chinese remainder

theorem) to be d̄(QN ) =
∏N
n=1(1− p−2

n ). On the other hand, QN \Q ⊂
⋃∞
n=N+1 p

2
nN, so for

each large M we have

|Q ∩ {1, . . . ,M}|
M

≥
N∏
n=1

(
1− 1

p2
n

)
−

∞∑
n=N+1

|p2
nN ∩ {1, . . . ,M}|

M

=
N∏
n=1

(
1− 1

p2
n

)
−

∞∑
n=N+1

1
p2
n

so taking N → ∞ we conclude that d̄(Q) ≥ 1/ζ(2) = 6/π2 (where ζ denotes the Riemann

zeta function). In fact we have |Q∩{1,...,M}|M → 6/π2 as M → ∞. This shows that Q has

positive upper density.

Next we show that Q is not piecewise syndetic. Assume, for the sake of a contradiction,

that Q = S ∩ T , where S is syndetic and T is thick. Let n ∈ N be such that any interval

of length n has non-empty intersection with S, let p1, . . . , pn be distinct primes and let

N = (p1 · · · pn)2 +n. Since T is thick we can find a ∈ N such that {a, a+1, . . . , a+N} ⊂ T .

Invoking the Chinese remainder theorem there exists M ∈ {a + 1, . . . , a + N} such that

M ≡ −i mod p2
i for every i = 1, . . . , n. Finally, let x ∈ {M + 1, . . . ,M + n} be an element
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of S. Observe that also x ∈ {a, a + 1, . . . , a + N} ⊂ T and hence x ∈ Q. However,

i := x−M ∈ {1, . . . , n} and hence x ≡M + i ≡ −i+ i = 0 mod p2
i , which implies that x is

a multiple of a perfect square. This yields the desired contradiction.

The following natural result states that piecewise syndetic sets are precisely the broken

syndetic sets.

Lemma 2.21. Let G be a countable commutative semigroup. A set A ⊂ G is piecewise

syndetic if and only if there exists a syndetic set S ⊂ G such that for any finite subset

F ⊂ S there exists a shift m = m(F ) ∈ G such that m(F ) · F ⊂ A.

A fundamental fact about piecewise syndeticity is that this property can not be de-

stroyed by taking finite partitions (see also Proposition 2.30 below for a stronger statement):

Lemma 2.22 (Brown [Bro68]). Let G be a countable commutative semigroup and let A ⊂ G

be a piecewise syndetic set. Then for any finite partition A = C1 ∪ · · · ∪ Cr there exists

C ∈ {C1, . . . , Cr} which is piecewise syndetic.

Lemma 2.22 implies that any configuration which is present in every piecewise syndetic

set can be found monochromatically in any finite coloring of G. The following result can

be seen as a converse of this fact for shift invariant configurations.

Theorem 2.23. Let G be a countable commutative semigroup and let P be a collection of

finite subsets of G. Then the following are equivalent:

(1) For every finite coloring G = C1 ∪ · · · ∪Cr there exists C ∈ {C1, . . . , Cr}, P ∈ P and

g ∈ G such that gP ⊂ C.

(2) For every r ∈ N there exists a finite subset F ⊂ G such that for any coloring of F

with r colors there exists P ∈ P and g ∈ G such that gP is contained in F and is

monochromatic.

(3) For every piecewise syndetic set A there exists P ∈ P and g ∈ G such that gP ⊂ A.
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(4) For every piecewise syndetic set A ⊂ N there exists P ∈ P such that the set

{
g ∈ G : gP ⊂ A

}
is piecewise syndetic.

Proof. Clearly (4)⇒(3). In view of Lemma 2.22, (3)⇒(1). We will prove (1)⇒(2)⇒(4) and

this will finish the proof.

Assume P satisfies (1) and let r ∈ N. Suppose, for the sake of a contradiction, that for

each finite set F ⊂ G there exists a coloring χF : F → {1, . . . , r} without a monochromatic

configuration of the form gP with P ∈ P and g ∈ G. Extend each the χF to a coloring of

the whole semigroup G by assigning χF (x) = 0 for all x /∈ F .

Let (FN )N∈N be sequence of finite subsets of G such that FN ⊂ FN+1 and
⋃
FN = G.

Then take a convergent subsequence of (χFN )N∈N in the compact metric space {0, 1, . . . , r}N

and call the limit χ. Since FN ⊂ FN+1 and
⋃
FN = G, we have that χ : N → {1, . . . , r}

(i.e. it does not map any element x ∈ G to the “color” 0). Using (1) we can now find

some P ∈ P and g ∈ G such that gP is monochromatic with respect to χ. Let N ∈ N be

such that χFN and χ agree on the set gP . We conclude that gP is monochromatic for the

coloring χFN , which is a contradiction, and hence (2) holds.

Next we prove the implication (2)⇒(4). Assume that (2) holds and let A be an arbitrary

piecewise syndetic set. Let S and T be a syndetic and a thick set, respectively, such that

A = S ∩ T . Let H ⊂ G be a finite set such that H−1S = G and let χ : G → H be

a coloring such that χ(x)x ∈ S for every x ∈ G. Let F ⊂ G be provided by (2), let

T̃ := {x ∈ N : xFH ⊂ T} and observe that T̃ is a thick set, and hence a piecewise syndetic

set. Let χ̃ : G→ HF be the coloring defined by χ̃(x) =
(
χ(xy)

)
y∈F . In view of Lemma 2.22

there exists a piecewise syndetic set B ⊂ T̃ such that χ̃|B is constant.

Now, let χ′ : F → H be the coloring defined by χ′(x) = χ(xb) for some (hence all)

b ∈ B. From the construction of F (i.e. using (2)) we conclude that there exists g ∈ G and

some configuration P ∈ P such that χ′|gP is constant. Let h ∈ H be the value of χ′(gP ).

It follows that χ(gPB) = h and hence hgPB ⊂ S. On the other hand, B ⊂ T̃ , gP ⊂ F and

h ∈ H, so hgPB = BgPh ⊂ T . We conclude that (Bhg)P ⊂ A, finishing the proof.

22



IP-sets

In this subsection it will be convenient to denote the operation on the commutative semi-

group G additively.

Given a subset A of G, we denote by FS(A) the set of finite sums of A defined as

FS(A) :=
{∑
i∈I

i : ∅ 6= I ⊂ A
}

(2.4)

A set which contains the finite sums of a set of cardinality m is called an IPm-set. A set

which is IPm for every m ∈ N is called an IP0-set:

Definition 2.24. A set A ⊂ G is an IP0-set if

∀m ∈ N ∃F ⊂ G |F | = m FS(F ) =
{∑
i∈I

i : ∅ 6= I ⊂ F
}
⊂ A

There is an infinite version of IP0-sets, called IP-sets. Given an infinite set X, we

denote by F(X) the family of all finite non-empty subsets of X, i.e., F(X) := {α ⊂ X :

0 < |α| < ∞}. We denote simply by F the family F(N) of all non-empty finite subsets of

N. Let G be a countable commutative semigroup and let (xn)n∈N be an injective sequence

in G. For each α ∈ F define xα =
∑
n∈α xn. The IP-set generated by (xn)n∈N is the set

FS(xn) = {xα : α ∈ F}. Clearly xα∪β = xα + xβ for any disjoint α, β ∈ F . Moreover, if

(yα)α∈F is any ‘sequence’ indexed by F such that xα∪β = xα+xβ for any disjoint α, β ∈ F ,

then the set {yα : α ∈ F} is an IP-set (generated by (y{n})n∈N)). For this reason we will

denote IP-sets by (yα)α∈F , with the understanding that they are generated by the singletons

yn, n ∈ N. Therefore it is convenient to think of IP-sets as both the map F → G and the

image of that map. Observe that (the image of) any IP-set {xα : α ∈ F} is an IP0-set; but

not every IP0-set contains (the image of) an IP-set.

An example of an IP-set is the set A of all numbers which, when written in base 10,

only use the digits 0 and 1. Indeed A = FS
(
{10n : n ≥ 0}

)
.

Proposition 2.25. Every thick set contains (the image of) an IP-set.

Proof. Let G be a countable commutative semigroup and let T ⊂ G be a thick set. We

will construct a sequence (xn)n∈N recursively as follows. Let x1 ∈ T be arbitrary. For
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each n ≥ 1 assume we already constructed x1, . . . , xn and let xn+1 ∈ T be such that xn+1 +

FS({x1, . . . , xn}) ⊂ T (the existence of such xn+1 follows directly from the Definition 2.17).

It is clear that FS
(
(xi)ni=1

)
⊂ T for every n ∈ N, and hence xα ∈ T for every α ∈ F .

Definition 2.26. Let (xα)α∈F , (yα)α∈F be IP-sets in a countable commutative semigroup

G.

1. For α, β ∈ F we write α < β as a shortcut to maxi∈α i < minj∈β j.

2. We say that (xα)α∈F is a sub-IP-set of (yα)α∈F if there exist α1 < α2 < · · · in F such

that xn = yαn for all n ∈ N.

A remarkable property of IP-sets is that they are partition regular in the following sense:

Theorem 2.27 (Hindman’s theorem, [Hin74]). Let (xα)α∈F be an IP-set in a countable

commutative semigroup G and let G = C1 ∪ · · · ∪ Cr be an arbitrary finite coloring. Then

there exists a color C ∈ {C1, . . . , Cr} and a sub-IP-set (yα)α∈F of (xα)α∈F such that yα ∈ C

for every α ∈ F .

One way to prove Hindman’s theorem is by showing that given any countable commu-

tative semigroup (G,+) and any idempotent ultrafilter p = p+p ∈ βG, each member A ∈ p

contains an IP-set. Conversely, given any IP-set (xα)α∈F in G, there exists an idempotent

ultrafilter p ∈ βG such that {xα : α ∈ F} ∈ p. In fact we have

Proposition 2.28 (cf. [Ber10, Theorem 2.6]). Let G be a countable commutative semigroup

and let p ∈ βG be an ultrafilter. Then p belongs to the closure (in βG) of the set of

idempotent ultrafilters if and only if each A ∈ p contains an IP-set.

A ring R has two semigroup structures (addition and multiplication) on the same un-

derlying set. The following result establishes a relation between notions of largeness with

respect to both structures.

Theorem 2.29 (cf. [BH94, Theorem 3.5]). Let (R,+, ·) be a (commutative) integral domain

and let A ⊂ (R \{0}, ·) be a (multiplicative) piecewise syndetic set. Then A is an (additive)

IP0-set in (R,+).
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Proof. For every m ∈ N consider the following collection of finite subsets of R:

Pm :=
{
FS(F ) : F ⊂ G, |F | = m

}
.

Observe that whenever P ∈ Pm and r ∈ R\{0}, also the set rP ∈ Pm. In view of Hindman’s

theorem, the collection Pm satisfies the first property of Theorem 2.23, and hence the third.

In particular A contains a configuration P from Pm for every m ∈ N; which is equivalent

to say that A is an (additive) IP0-set.

We remark that not every multiplicatively piecewise syndetic set is an additive IP-set

(cf. [BH94, Theorem 3.6]); in this sense Theorem 2.29 is the best possible.

Central sets

Central sets were introduced by Furstenberg in (N,+) in [Fur81], using the language of

topological dynamics (cf. Section 2.5 below). A characterization in terms of ultrafilters was

discovered later by Bergelson and Hindman (with the help of Weiss) in [BH90], and this

spurred the study of central sets.

A right ideal in βG is a closed subset I ⊂ βG satisfying I + βG ⊂ I (we maintain

the additive notation for the operations in G and in βG). By Zorn’s Lemma, there exist

minimal (with respect to the inclusion relation) right ideals in βG. A minimal ultrafilter

is an ultrafilter p ∈ βG which belongs to some minimal right ideal. One can show that if

p ∈ βG is a minimal ultrafilter and A ∈ p, then A is piecewise syndetic. In fact we have

Proposition 2.30 (see [HS98, Corollary 4.41]). Let G be a countable commutative semi-

group and let p ∈ βG be an ultrafilter. Then p belongs to the closure (in βG) of the set of

minimal ultrafilters if and only if each A ∈ p is piecewise syndetic.

This fact, together with Proposition 2.2, provides a proof of Lemma 2.22.

Of special importance among minimal ultrafilters are theminimal idempotent ultrafilters

i.e. ultrafilters which are simultaneously minimal and idempotent. In any countable com-

mutative semigroup G there exist minimal idempotent ultrafilters p ∈ βG. More generally

we have
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Proposition 2.31 (cf. [BH94, Lemma 3.3]). Let G be a countable commutative semigroup

and let T ⊂ G be a thick set. Then there exists a minimal idempotent ultrafilter p ∈ βG

such that T ∈ p.

Definition 2.32. Let G be a countable commutative semigroup and let A ⊂ G. We say

that A is a central set if there exists a minimal idempotent ultrafilter p ∈ βG such that

A ∈ p.

Since every countable commutative semigroup has a minimal idempotent, it follows

from Remark 2.2 that for every finite partition of a countable commutative semigroup, one

of the cells is a central set. Central sets are important in combinatorics because they are

both IP-sets and piecewise syndetic sets; the combinatorial richness possessed by central

sets is best illustrated by the central sets theorem (see Theorem 2.40 below).

Corollary 2.33. Every thick set is central. Every central set is piecewise syndetic.

Proof. The first assertion follows from Definition 2.32 and Proposition 2.31; and the second

from Definition 2.32 and Proposition 2.30.

In the spirit of Proposition 2.28 and Proposition 2.30 we have the following if and only

if characterization of minimal idempotent ultrafilters, which follows directly from Defini-

tion 2.32:

Proposition 2.34. Let G be a countable commutative semigroup and let p ∈ βG be an

ultrafilter. Then p belongs to the closure (in βG) of the set of minimal idempotent ultrafilters

if and only if each A ∈ p is central.

2.3 Variations on the theme of van der Waerden’s theorem

Van der Waerden’s theorem has many different extensions in several directions. In this

section we list some which will be useful later on.
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Linear configurations

We start by recalling van der Waerden’s theorem (Theorem 1.2 from the introduction):

Theorem 2.35 (van der Waerden’s theorem). For any finite coloring N = C1∪· · ·∪Cr and

any k ∈ N there exists C ∈ {C1, . . . , Cr} and a, b ∈ N such that {a, a+b, a+2b, . . . , a+kb} ⊂

C.

One can interpret van der Waerden’s theorem in a geometric way as stating that, given a

finite coloring of N, any finite subset of N has an homothetic1 copy which is monochromatic

(cf. [Ber96, Theorem 1.3]. There is a multidimensional analogue of van der Waerden’s

theorem, due to T. Grünwald/Galai, which can be formulated in geometric terms as saying

that for any d ∈ N, given a finite coloring of Nd, any finite subset of Nd has an homothetic

copy which is monochromatic. More precisely:

Theorem 2.36 (Multidimensional van der Waerden’s theorem, cf. [GRS90, Theorem 2.8]).

For any d, k ∈ N and any finite coloring Nd = C1 ∪ · · · ∪ Cr there exists a color C ∈

{C1, . . . , Cr} and a ∈ Nd, b ∈ N such that
{
a+

(
i1b, · · · , idb

)
: 0 ≤ i1, . . . , id ≤ k

}
⊂ C.

The following theorem can be thought of as a set theoretic version of van der Waerden’s

theorem.

Definition 2.37 (Combinatorial line). Let A be a finite alphabet, let ∗ /∈ A be a wild card

element and let n ∈ N. A variable word in An is an element of the set (A ∪ {∗})n \ An.

Given a variable word w and a ∈ A, let w(a) ∈ An be the word obtained by replacing each

instance of ∗ in w with a. The combinatorial line generated by a variable word w is the set

{w(a) : a ∈ A} ⊂ An.

Theorem 2.38 (Hales-Jewett theorem [HJ63]). For each k, r ∈ N there exists HJ(k, r) ∈ N

such that for all n ≥ HJ(k, r) and any r-coloring of {1, . . . , k}n, there exists a monochro-

matic combinatorial line.
1Recall that an homothety is the composition of a dilation with a translation.
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To see how Theorem 2.38 implies Theorem 2.35, identify each n ∈ N with its ex-

pansion in base k + 1 and consider only numbers with exactly HJ(k, r) digits. However,

Theorem 2.38 is quite more powerful and it implies the following IP-version of van der

Waerden’s theorem in an arbitrary commutative semigroup (which contains Theorem 2.36

as a special case).

Proposition 2.39 (IP van der Waerden theorem in commutative semigroups). Let (G,+)

be a countable commutative semigroup, let j ∈ N, let (yα)α∈F be an IP-set in Gj, let A ⊂ G

be piecewise syndetic and let F be a finite set of semigroup homomorphisms2 from Gj to G.

Then there exists α ∈ F and x ∈ G such that x+ f(yα) ∈ A for each f ∈ F .

Proof. In view of Theorem 2.23 it suffices to show that for any finite coloring of G there

exist α ∈ F and x ∈ G such that {x+ f(yα) : f ∈ F} is monochromatic.

To show this, let r be the number of colors, let n = HJ(|F |, r) be the number given by

Theorem 2.38 and color each (f1, . . . , fn) ∈ Fn with the color of f1(y1) + · · ·+ fn(yn) ∈ G

(where y1, . . . , yn are the first generators of the given IP-set (yα)α∈F ). Apply Theorem

2.38 to find a variable word w ∈ (F ∪ {∗})n whose corresponding combinatorial line is

monochromatic. Let B =
{
i ∈ {1, . . . , n} : wi ∈ F

}
, let α = {1, . . . , n} \B be the positions

of the wild card ∗ in w and let

x =
∑
i∈B

wi(yi).

For any f ∈ F we have that w(f) ∈ Fn has the same color as

∑
i∈B

wi(yi) +
∑
i∈α

f(yi) = x+ f

(∑
i∈α

yi

)
= x+ f(yα)

and hence the set {x+f(xα) : f ∈ F} is indeed monochromatic, which finishes the proof.

Proposition 2.39 has an infinitary extension for central sets.

Theorem 2.40 (Central sets theorem). Let G be a countable commutative semigroup, let

j ∈ N, let A ⊂ G be a central set and let (yα)α∈F be an IP-set in Gj. Then there exists an
2A semigroup homomorphism is a function f : H → G such that f(x + y) = f(x) + f(y) for every

x, y ∈ H.
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IP-set (xβ)β∈F in G and a sub-IP-set (zβ)β∈F of (yα)α∈F such that

∀i ∈ {1, . . . , j} ∀β ∈ F xβ + πi(zβ) ∈ A (2.5)

where πi : Gj → G is the projection onto the i-th coordinate.

This theorem was obtained by Furstenberg for the case G = N in [Fur81]. In [BH90],

Theorem 2.40 was proved for certain classes of countable commutative semigroups, and an

alternative, dynamical characterization of central sets for arbitrary countable commutative

semigroups was establish, which hinted at the full generality of Theorem 2.40. Theorem

2.40 was obtained as stated in [HMS96].

We remark that Theorem 2.40 has an important distinction from the other theorems

in this subsection; namely that it does not have a density version. In other words, one can

not replace "central set" with "set with positive upper density". Indeed, for j = 1, (2.5)

says that A contains the IP-set (xβ + zβ)β∈F , and the set of odd numbers 2Z− 1 ⊂ (Z,+)

which has positive density (and is in fact syndetic) can not contain an IP-set (or even a

Schur triple {x, y, x+ y}).

For contrast, we now formulate a density version of van der Waerden’s theorem, estab-

lished by Szemerédi in [Sze75].

Theorem 2.41 (Szemerédi’s theorem). Let A ⊂ N be such that d̄(A) > 0. Then A contains

arbitrarily long arithmetic progressions.

Polynomial theorems

We recall from the introduction the polynomial extension of van der Waerden’s theorem

due to Bergelson and Leibman [BL96].

Theorem 1.3. Let F ⊂ Z[x] be a finite set of polynomials such that p(0) = 0 for all p ∈ F .

For any finite coloring N = C1∪· · ·∪Cr and any k ∈ N there exists a color C ∈ {C1, . . . , Cr}

and a, b ∈ N such that {a+ f(b) : f ∈ F} ⊂ C.

Bergelson and Leibman later obtained a common extension of Theorems 2.38 and 1.3,

namely a polynomial extension of the Hales-Jewett theorem. We do not state this theorem
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here because it would require some setup and we do not directly use it. However, we will

need a consequence of the polynomial Hales-Jewett theorem in the spirit of Proposition 2.39.

Definition 2.42. Given a map f : H → G between countable commutative groups we say

that f is a polynomial map of degree 0 if it is constant. We say that f is a polynomial map

of degree d, d ∈ N, if it is not a polynomial map of degree d − 1 and for every h ∈ H, the

map x 7→ f(x+ h)− f(x) is a polynomial of degree ≤ d− 1. Finally we denote by P(H,G)

the set of all polynomial maps f : H → G with f(0H) = 0G.

Theorem 2.43 (IP polynomial van der Waerden theorem for abelian groups, cf. [BL99,

Corolary 8.8]). Let G,H be countable abelian groups and let F ⊂ P(H,G) be a finite subset.

Then for every finite partition G = C1∪· · ·∪Cr and every IP set (yα)α∈F in H there exists

C ∈ {C1, . . . , Cr}, a ∈ C and α ∈ F such that a+ f(yα) ∈ C for every f ∈ F .

In particular, we record the simpler polynomial van der Waerden theorem for abelian

groups, which does not require IP-sets to state.

Corollary 2.44. Let G,H be countable abelian groups and let F ⊂ P(H,G) be a finite

subset. Then for every finite partition G = C1 ∪ · · · ∪ Cr there exists C ∈ {C1, . . . , Cr},

a ∈ C and b ∈ H \ {0} such that a+ f(b) ∈ C for every f ∈ F .

Combining Theorem 2.43 with Theorem 2.23 we obtain:

Corollary 2.45. Let j ∈ N, let G be a countable abelian group and let F be a finite family

of polynomial maps from Gj to G such that f(0) = 0 for each f ∈ F . Then for every

piecewise syndetic (in particular, central) set A ⊂ G and every IP set (yα)α∈F in Gj there

exists a ∈ A and α ∈ F such that a+ f(yα) ∈ A for every f ∈ F .

2.4 Ergodic theory

In 1977, Furstenberg gave a second proof of Szemerédi’s theorem (Theorem 2.41), using er-

godic theory [Fur77; FKO79]. The ergodic theoretic proof has the advantage of being highly
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versatile and has in fact been used to establish several extensions of Szemerédi’s theorem

(including suitable density versions of Theorem 2.36, Theorem 2.43 and Theorem 2.38).

The general idea is to observe that {a, a + d, · · · , a + kd} ⊂ E if and only if a ∈

E ∩ (E − d) ∩ · · · ∩ (E − kd), and then show that if E has positive density then in fact

lim inf
N→∞

1
N

N∑
n=1

d̄
(
E ∩ (E − n) ∩ · · · ∩ (E − kn)

)
> 0. (2.6)

One can then choose some n for which the upper density of the intersection in (2.6) is

positive, which implies that the intersection is non-empty and hence implies that E contains

(several) arithmetic progressions of length k + 1.

In order to establish (2.6), Furstenberg devised a correspondence principle which allows

one to derive (2.6) from a statement in ergodic theory – the multiple recurrence theorem.

Before we state both the correspondence principle and the multiple recurrence theorem we

will need some notation and terminology.

Let (X,B, µ) be a probability space (this means that B is a σ-algebra on X and µ : B →

[0, 1] is a probability (countably additive) measure). A measurable map T : X → X is called

a measure preserving transformation if for every B ∈ B one has µ(T−1B) = µ(B), where as

usual T−1B := {x ∈ X : Tx ∈ B}. A quadruple (X,B, µ, T ), where (X,B, µ) is a probability

space and T : X → X is a measure preserving transformation, is called a measure preserving

system. More generally, given a semigroup G and an action (Tg)g∈G of G on a probability

space (X,B, µ) (this means that for each g ∈ G there is a map Tg : X → X and for

any g, h ∈ G we have Tgh = TgTh) by measure preserving transformations, the quadruple(
X,B, µ, (Tg)g∈G

)
is also called a measure preserving system, or a measure preserving G-

system.

Theorem 2.46 (Furstenberg’s correspondence principle). For any set E ⊂ N there exists

a measure preserving system (X,B, µ, T ) and a set A ∈ B with µ(A) = d̄(E) such that for

any n1, . . . , nk ∈ N

d̄
(
E ∩ (E − n1) ∩ · · · ∩ (E − nk)

)
≥ µ

(
A ∩ T−n1A ∩ · · · ∩ T−nkA

)
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Theorem 2.46 was implicitly obtained in [Fur77] and [FKO79] and can be found explic-

itly in [Ber96, Theorem 1.8]. Several versions of the correspondence principle have since

been obtained and applied to different situations (in fact we will need a new version, pre-

sented in Section 3.5). In view of Theorem 2.46 and the observations in the beginning of

this section, Szemerédi’s theorem follows from the following multiple recurrence theorem.

Theorem 2.47 (Furstenberg’s multiple recurrence theorem, [Fur77, Theorem 11.13]). Let

(X,B, µ, T ) be a measure preserving system and let A ∈ B be such that µ(A) > 0. Then for

every k ∈ N

lim inf
N→∞

1
N

N∑
n=1

µ(A ∩ T−nA ∩ · · · ∩ T−knA) > 0

Theorem 2.47 is a far reaching extension of a classical recurrence theorem due to

Poincaré:

Theorem 2.48 (Poincaré’s recurrence theorem). Let (X,B, µ, T ) be a measure preserving

system and let A ∈ B be such that µ(A) > 0. Then there exists n ∈ N such that µ(A ∩

T−nA) > 0.

Theorem 2.48 was in turn considerably strengthened by Khintchine:

Theorem 2.49 (Khintchine’s recurrence theorem, [Khi34]). Let (X,B, µ, T ) be a measure

preserving system and let A ∈ B. For every ε > 0, the set

{
n ∈ N : µ(A ∩ T−nA) > µ2(A)− ε

}
(2.7)

is syndetic.

Observe that the quantity µ(A)2 is optimal, as seen by taking (X,B, µ) to be the unit

interval [0, 1) with the Borel σ-algebra and the Lebesgue measure, T : [0, 1] → [0, 1) to be

the measure preserving map T : x 7→ 2x mod 1 and A = [0, 1/2). Khintchine’s theorem

implies, via Furstenberg’s correspondence principle, that for any E ⊂ N with positive upper

density and any ε > 0, the set

{
n ∈ N : d̄

(
E ∩ (E − n)

)
>
(
d̄(E)

)2 − ε}
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is syndetic. One can easily derive Theorem 2.49 from von Neumann’s mean ergodic theorem,

which we now state in a general setting; see for instance Theorem 5.5 in [Ber06] for a proof

of this version.

Theorem 2.50. Let G be a countable abelian group and let (FN ) be a Følner sequence in

G. Let H be a Hilbert space and let (Ug)g∈G be a unitary representation of G on H. Let P

be the orthogonal projection onto the subspace of vectors fixed under G. Then

lim
N→∞

1
|FN |

∑
g∈FN

Ugf = Pf ∀f ∈ H (2.8)

in the strong topology of H.

We now briefly explain how Theorem 2.50 implies Theorem 2.49 (see also the proof of

Theorem 5.11 below from a mean ergodic theorem, Theorem 5.4). Observe that, given a

measure preserving system (X,B, µ, T ) the Koopman operator U : L2(X) → L2(X), ob-

tained by composing a given function with T , is unitary (because T is measure preserving).

Then it follows from (2.8) that for any A ∈ B and any Følner sequence (FN )N∈N we have

lim
N→∞

1
|FN |

∑
n∈FN

µ(A ∩ T−nA) = lim
N→∞

1
|FN |

∑
n∈FN

〈1A, Un1A〉 = 〈1A, P1A〉

where 1A is the indicator function of A and P : L2(X)→ L2(X) is an orthogonal projection.

Finally, since P1 = 1 (where, by a slight abuse of notation, we are denoting by 1 the

constant function equal to 1), an application of the Cauchy-Schwartz inequality implies

that 〈1A, P1A〉 = 〈P1A, P1A〉 ≥ 〈P1A, 1〉2 = 〈1A, 1〉2 = µ(A)2 and hence it follows that the

set (2.7) has positive upper density with respect to any Følner sequence, which implies that

it is syndetic (cf. Section 2.2).

The correspondence principle and the recurrence theorems above hold in much more

general settings.

Definition 2.51. Let G be a semigroup. A set R ⊂ G is a set of recurrence if for all

probability preserving actions (Ω, µ, (Tg)g∈G) and every measurable set B ⊂ Ω with positive

measure, there exists some non-identity g ∈ R such that µ(B ∩ T−1
g B) > 0.
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The significance of sets of recurrence is revealed by the correspondence principle: they

are precisely the sets which have non-empty intersection with every set of the form A−A,

where d̄(A) > 0. For instance one can show that the set {n2 : n ∈ N} of perfect squares is a

set of recurrence in N (this fact was first established by Furstenberg in [Fur77, Proposition

1.3]). As a consequence one derives a result of Sárközy [Sár78], stating that given any set

A ⊂ N with positive upper density d̄(A) > 0, there exists a ∈ A and n ∈ N such that

a+ n2 ∈ A.

The following lemma is well known; we include the proof for the convenience of the

reader.

Lemma 2.52. Let G be a semigroup and let R ⊂ G be a set of recurrence. Then for every

finite partition R = R1 ∪ · · · ∪Rr, one of the sets Ri is also a set of recurrence.

Proof. The proof goes by contradiction. Assume that none of the sets R1, . . . , Rr is a

set of recurrence. Then for each i = 1, . . . , r there is some probability preserving action

(Ωi, µi, (Tg)(i)
g∈G) and a set Bi ⊂ Ωi with µi(Bi) > 0 and such that µi(Bi ∩ (T (i)

g )−1Bi) = 0

for all g ∈ Ri.

Let Ω = Ω1× · · · ×Ωr, let µ = µ1⊗ · · · ⊗µr, let B = B1× · · · ×Br and, for each g ∈ G,

let Tg(ω1, . . . , ωr) = (T (1)
g ω1, . . . , T

(r)
g ωr). Then (Tg)g∈G is a probability preserving action

of G on Ω and µ(B) = µ1(B1) · · ·µr(Br) > 0.

Since R is a set of recurrence, there exists some g ∈ R such that µ(B ∩ T−1
g B) > 0.

Since µ(B ∩ T−1
g B) =

∏r
i=1 µi(Bi ∩ (T (i)

g )−1Bi) we conclude that µi(Bi ∩ (T (i)
g )−1Bi) > 0

for all i = 1, . . . , r. But this implies that g /∈ Ri for all i = 1, . . . , r, which contradicts the

fact that g ∈ R = R1 ∪ · · · ∪Rr.

One of the main tools in establishing (multiple) recurrence results in ergodic theory is a

version of van der Corput’s trick on uniform distribution. We record here the version which

we will need later on. For a proof see, for instance, Lemma 2.9 in [BLM05]. For a detailed

discussion of many forms of the van der Corput trick, see the recent survey [BM16c].
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Proposition 2.53. Let H be an Hilbert space, let G be a commutative semigroup (written

multiplicatively), let (FN )N∈N be a Følner sequence in G and let (au)u∈G be a bounded

sequence in H indexed by G. If for all b in a co-finite subset of G we have

lim sup
N→∞

∣∣∣∣∣∣ 1
|FN |

∑
u∈FN

〈abu, au〉

∣∣∣∣∣∣ = 0

then also

lim
N→∞

1
|FN |

∑
u∈FN

au = 0

2.5 Topological dynamics

Let G be a semigroup. A G-topological dynamical system is a pair
(
X, (Tg)g∈G

)
where X

is a compact Hausdorff space and (Tg)g∈G is an action of G on X by continuous functions.

A system (X, (Tg)g∈G) is minimal if X contains no proper non-empty closed invariant

subsets. A point x ∈ X is a minimal point if its orbit closure Y := {Tgx : g ∈ G} is a

minimal subsystem of X (i.e., if
(
Y, (Tg|Y )g∈G

)
is a minimal system).

We record for future reference in the following proposition the fact that any topological

dynamical system contains a minimal subsystem. The proof, which we omit, consists of

standard application of Zorn’s lemma (see for instance [Aus88, Proposition 1.3] or [Gla03,

Exercise 1.1.3]).

Proposition 2.54. Let X be a compact Hausdorff space, let G be a countable semigroup

and let (Tg)g∈G be an action of G on X such that each map Tg : X → X is continuous.

Then there exists a non-empty closed subset Y ⊂ X such that Tg(Y ) ⊂ Y for every g ∈ G

and such that the system
(
Y, (Tg)g∈G

)
is minimal.

An important example of dynamical systems are systems of isometries, i.e., when X is

a metric space and each map Tg : X → X preserves the distance. In this case we have the

following:

Lemma 2.55. Let (G,+) be a countable commutative semigroup and let (X, d) be a metric

space and let
(
X, (Tg)g∈G

)
be a topological dynamical system where d(Tgx, Tgy) = d(x, y)

for every g ∈ G and x, y ∈ X.
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Then for any x ∈ X, ε > 0 and any IP0-set A ⊂ G, there exists g ∈ A such that

d(Tgx, x) < ε.

Proof. Let Y = {Tgx : g ∈ G} and, for each g ∈ G, let Bg := {y ∈ Y : d(T gx, y) < ε/2}.

Clearly Y =
⋃
g∈GBg. Hence, by compactness, there exists some finite set F ⊂ G such that

the union
⋃
g∈F Bg contains all of Y .

Since A is an IP0-set, there exists a set Z ⊂ G with cardinality |Z| = |F |+ 1 and such

that FS(Z) ⊂ A. List the elements Z = {z1, ..., zr}, let z′i = z1 + ...+ zi for each i = 1, ..., r

and note that z′i−z′j ∈ A for each i > j. By the pigeonhole principle, there are 1 ≤ i < j ≤ r

such that Tz′ix and Tz′jx are in the same ball Bg for some g ∈ F . Thus d(Tz′ix− Tz′jx‖ < ε

and since the action (Tg)g∈G preserves the metric we conclude that d(Tz′i−z′jx, x) < ε.
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CHAPTER 3

AFFINE SEMIGROUPS

In this chapter we study affine semigroups of certain rings, which we call LID, and their

natural actions on the corresponding rings. The definitions and results presented in this

chapter were originally obtained in [BM16a] and [BM16b] and will be used in Chapters 5

and 6.

3.1 Large Ideal Domains and the affine semigroup

Definition 3.1. A ring R is called a large ideal domain (LID) if it is a countably infinite

integral domain and for each x ∈ R \ {0}, the ideal xR is a finite index additive subgroup

of R.

Every field is trivially an LID. The following proposition gives some non-trivial examples

of LID rings.

Proposition 3.2. The following rings are LID:

1. Any integral domain R whose underlying additive group is finitely generated. In par-

ticular, the ring of integers OK of a number field K satisfies this property.

2. The ring of polynomials F[x] over a finite field F.

Proof.

1. Since (R,+) is an infinite finitely generated abelian group, it contains torsion-free

elements and therefore the identity 1R of R has infinite order in (R,+). If some
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element x ∈ R had torsion, say nx = 0 for some n ∈ N, then (n1R)x = 0, contradicting

the absence of 0 divisors. Using the classification of finitely generated abelian groups

we can now represent (R,+) as Zd for some d ∈ N.

For any non-zero x ∈ R, the map φ : y 7→ xy is an injective endomorphism of (R,+)

(injectivity follows from the absence of divisors of 0) whose image φ(R) is the ideal

xR. We claim that the image of any injective homomorphism φ : Zd → Zd has a finite

index in Zd, which will finish the proof.

Indeed, representing φ as a matrix, injectivity implies that the determinant of φ is

non-zero. Therefore it has an inverse φ−1 with entries in Q. Multiplying φ−1 by the

least common multiple n of its entries we obtain a matrix nφ−1 with coefficients in

Z. Therefore nZd = (nφ−1)φ(Zd) ⊂ φ(Zd), so [Zd : φ(Zd)] ≤ [Zd : nZd] = nd < ∞,

proving the claim.

2. Let f ∈ F[x] have degree d. For any g ∈ F[x] one can divide g by f and obtain

g = fq + r where deg r < d. Therefore g − r belongs to the ideal fF[x]. It follows

that the set of polynomials r with degree smaller than d form a complete set of

coset representatives for fF[x]. Since F is finite, there are only finitely many such

representatives and hence the index of fF[x] is finite as desired.

Remark 3.3. There are number fields whose ring of integers is not a principal ideal domain

(PID). Hence, part (1) of Proposition 3.2 includes some LID which are not PID. We also

observe that not every PID is a LID. Indeed, the ring Q[x] of all polynomials with rational

coefficients is a PID, but the ideal xQ[x] has infinite index as an additive subgroup of Q[x],

so Q[x] is not a LID.

Lemma 3.4. Let R be a LID and let B ⊂ (R,+) be piecewise syndetic. Then for any

a ∈ R \ {0}, the dilation aB is also piecewise syndetic.

Proof. Let S and T be such that B = S ∩ T and S is syndetic and T is thick. Let

T ′ = aT ∪ (R \ aR) and let S′ = aS. Then clearly aB = T ′ ∩ S′. We now claim that T ′ is

thick and S′ is syndetic, which will finish the proof.
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Let F ⊂ R be a finite set such that S − F = R. Then S′ − aF = aR. Since R is a

LID, the ideal aR has finite index in R. Let F̃ be a (finite) set of co-set representatives.

Then aR − F̃ = R and hence S′ − (aF + F̃ ) = R. Taking F ′ := aF + F̃ we deduce that

S′ − F ′ = R and S′ is syndetic, as desired.

Next we show that T ′ is thick. Let F ⊂ R be an arbitrary finite set; we will find x ∈ R

such that x+F ⊂ T ′. Split F = F1∪F2 where F1 = F ∩aR and F2 = F \F1. If F is disjoint

from aR then it is already contained in T ′. Let F ′ = F1/a and let x′ ∈ R be such that

x′+F ′ ⊂ T . Then, taking x = ax′ we have x+F = a(x′+F ′)∪ax′+F2. Since x′+F ′ ⊂ T ,

the first term a(x′ + F ′) is inside aT ⊂ T ′. Since F2 is disjoint from aR, also ax′ + F2 is

disjoint from aR, and hence contained in T ′. Therefore x+ F ⊂ T ′, as desired.

Observe that Lemma 3.4 does not hold in general rings, not even in every principal

ideal domain. Borrowing the example from Remark 3.3, the ring Q[x] of polynomials with

rational coefficients is a piecewise syndetic set within itself but the ideal xQ[x] has infinite

index as an additive subgroup and hence can not be piecewise syndetic.

Given a ring R, we denote by R∗ the set of its non-zero elements. An affine transfor-

mation of R is a map f : R→ R of the form f(x) = ux+ v with u ∈ R∗, v ∈ R. The affine

semigroup of R is the semigroup of all affine transformations of R (the semigroup operation

being composition of functions) and will be denoted by AR. Observe that AR is a group if

and only if R is a field.

For each v ∈ R, the map x 7→ x+v will be denoted by Av (add v) and, for each u ∈ R∗,

the map x 7→ ux will be denoted by Mu (multiply by u). Note that the distributive law in

R can be expressed as:

MuAv = AuvMu (3.1)

The affine transformations Av with v ∈ R form the additive subgroup of AR, denoted by

SA. The affine transformations Mu with u ∈ R∗ form the multiplicative sub-semigroup of

AR, denoted by SM . Observe that SA is isomorphic to the additive group (R,+) and SM

is isomorphic to the multiplicative semigroup (R∗, ·).
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Note that the map x 7→ ux+ v is the composition AvMu. Thus the sub-semigroups SM

and SA generate the semigroup AR. When K is a field, AK is the semidirect product of

the (abelian) groups SA and SM and hence is amenable. However, as it was pointed out in

Remark 6.2 in [BM16a], the semigroup AZ is not amenable. In fact we have:

Proposition 3.5. Let R be a countable integral domain. The affine semigroup AR is

amenable if and only if R is a field.

Proof. As was explained above, if R is a field then AR is the semidirect product of two

abelian groups, and hence is solvable. It is a well known fact that solvable groups are

amenable (cf. [Pat88, (0.15) and (0.16)]) so this proves one direction.

Assume now that AR is amenable. The semigroup AR acts naturally on R by affine

transformations, therefore the amenability of AR implies the existence of a finitely additive

mean λ : P(R) → [0, 1] defined on all the subsets of R which is invariant under all affine

transformations (this means that λ
(
{x ∈ R : g(x) ∈ E}

)
= λ(E) for any E ⊂ R and

g ∈ AR). Given x ∈ R∗, we have 1 = λ(R) = λ(xR) (because the map y 7→ xy belongs to

AR).

Assume, for the sake of a contradiction, that R is not a field and let x ∈ R∗ be a non-

invertible element. The ideal xR is not the whole ring and hence there is a shift xR+a which

is disjoint from xR. The invariance of λ implies that λ(xR) = λ(xR + a), but disjointness

implies that λ
(
xR ∪ (xR+ a)

)
= λ(xR) + λ(xR+ a) = 2λ(xR). We now conclude that

1 = λ(xR) = 1
2λ
(
xR ∪ (xR+ a)

)
≤ 1

2λ(R) = 1
2

which gives the desired contradiction.

3.2 Double Følner sequences

As mentioned in Proposition 3.5, when K is a (countable, discrete) field, its affine group

AK is a (discrete) countable amenable group. This suggests the existence of a sequence of

finite sets (FN ) in K asymptotically invariant under the action of AK . Indeed we have the

following:

40



Proposition 3.6. Let K be a countable field. There exists a sequence of non-empty finite

sets (FN ) in K which forms a Følner sequence for the actions of both the additive group

(K,+) and the multiplicative group (K∗,×). In other words, for each u ∈ K∗ we have:

lim
N→∞

|FN ∩ (FN + u)|
|FN |

= lim
N→∞

|FN ∩ (uFN )|
|FN |

= 1

We call such a sequence (FN ) a double Følner sequence.

Proof. Let (GN )N∈N be a (left) Følner sequence in AK . This means that GN is a non-empty

finite subset of AK for each N ∈ N, and that for each g ∈ AK we have

lim
N→∞

|GN ∩ (gGN )|
|GN |

= 1

Note that for g1, g2 ∈ AK , if g1 6= g2 then there is at most one solution x ∈ K to

the equation g1x = g2x. Thus, for each N ∈ N, we can find a point xN in the (infinite)

field K such that gixN 6= gjxN for all pairs gi, gj ∈ GN with gi 6= gj . It follows that

FN := {gxN : g ∈ GN} has |GN | elements.

Since FN ∩ gFN ⊃ {hxN : h ∈ GN ∩ gGN} we have |FN ∩ gFN | ≥ |{hxN : h ∈

GN ∩ gGN}| = |GN ∩ gGN |. Therefore:

1 ≥ lim sup
N→∞

|FN ∩ gFN |
|FN |

≥ lim inf
N→∞

|FN ∩ gFN |
|FN |

≥ lim
N→∞

|GN ∩ gGN |
|GN |

= 1

Finally, putting g = Mu and g = Au in the previous equation we get that (FN ) is a

Følner sequence for (K∗,×) and for (K,+).

Observe that, according to (the proof of) Proposition 3.5, an LID ring R which is not

a field can not possess a double Følner sequence.

Given a double Følner sequence (FN )N∈N in K and a set E ⊂ K, the lower density of

E with respect to (FN ) is defined by the formula:

d(FN )(E) := lim inf
N→∞

|FN ∩ E|
|FN |

and the upper density of E with respect to (FN ) is defined by the formula:

d̄(FN )(E) := lim sup
N→∞

|FN ∩ E|
|FN |
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Several basic properties of the upper and lower densities with respect to a Følner sequence

in a group remain true for densities with respect to double Følner sequences, and the proofs

carry over to this setting. We list some of these facts in the next lemma.

When g ∈ AR is an affine transformation of a ring R and E ⊂ R is any subset, we

define

θgE = {g(x) : x ∈ E} and θ−1
g E = {x ∈ R : g(x) ∈ E} (3.2)

Lemma 3.7. Let K be a field, let (FN ) be a double Følner sequence in K, let E1, E2 ⊂ K

and let g ∈ AK .

1. d̄(FN )(θgE) = d̄(FN )(E) and d(FN )(θgE) = d(FN )(E).

2. d̄(FN )(E1 ∪ E2) ≤ d̄(FN )(E1) + d̄(FN )(E2)

3. d(FN )(E1 ∪ E2) ≥ d(FN )(E1) + d(FN )(E2).

4. If E2 = K \ E1, then d̄(FN )(E1) + d(FN )(E2) = 1.

Note that part 1 of this lemma implies in particular that for every u ∈ K∗ and E ⊂ K

we have d(FN )(E/u) = d(FN )(E−u) = d(FN )(E) and d̄(FN )(E/u) = d̄(FN )(E−u) = d̄(FN )(E).

We will need the following lemma, which, roughly speaking, asserts that certain trans-

formations of Følner sequences are still Følner sequences.

Lemma 3.8. Let (FN ) be a double Følner sequence in a field K and let b ∈ K∗. Then the

sequence (bFN ) is also a double Følner sequence. Also, if (FN ) is a Følner sequence for the

multiplicative group (K∗,×), then the sequence
(
F−1
N

)
, where F−1

N = {g−1 : g ∈ FN}, is

still a Følner sequence for that group.

Proof. The sequence (bFN ) is trivially a Følner sequence for the multiplicative group. To

prove that it is also a Følner sequence for the additive group, let x ∈ F , we have

lim
N→∞

|bFN ∩ (x+ bFN )|
|bFN |

= lim
N→∞

∣∣b(FN ∩ (x/b+ FN )
)∣∣

|FN |
= 1
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To prove that
(
F−1
N

)
is a Følner sequence for the multiplicative group note that for any

finite sets A,B ⊂ K we have
∣∣A−1∣∣ = |A|, (A ∩ B)−1 = A−1 ∩ B−1 and if x ∈ K∗ then

(xA)−1 = x−1A−1. Putting all together we conclude that

lim
N→∞

∣∣∣F−1
N ∩ (xF−1

N )
∣∣∣∣∣∣F−1

N

∣∣∣ = lim
N→∞

∣∣∣(FN ∩ (x−1FN )
)−1

∣∣∣
|FN |

= lim
N→∞

∣∣FN ∩ (x−1FN )
∣∣

|FN |
= 1

3.3 Ultrafilters with nice affine properties

Let R be a LID. Since R is endowed with two operations (addition and multiplication),

also its Stone-Čech compactification βR has two semi-continuous operations. Recall from

Section 2.1 that these operations are not commutative (even though R is a commutative

ring). Moreover, the operations in βR also fail to satisfy the distributive law in general.

Nevertheless, we have

Proposition 3.9. Let u ∈ R and p, q ∈ βR. Then

• u+ p = p+ u and up = pu.

• (p+ q)u = pu+ qu.

One can easily check that for each p, q ∈ βR we have (cf. Remark 4.2 in [HS98]):

p+ q = p - lim
u

(u+ q) pq = p - lim
u

(uq) (3.3)

An ultrafilter p ∈ βR is an additive idempotent if it is an idempotent ultrafilter with

respect to the semigroup structure (R,+) (equivalently if p+p = p), and it is amultiplicative

idempotent if it is an idempotent ultrafilter with respect to the semigroup structure (R∗,×)

(equivalently if pp = p). Observe that the principal ultrafilter 1R ∈ βR is a multiplicative

idempotent and 0R ∈ βR is both an additive idempotent and a multiplicative idempotent.
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Since R is an integral domain and β(R∗) = (βR) \ {0} is closed in βR, it follows from

(3.3) that β(R∗) is closed under multiplication. In view of Proposition 3.9 and (3.3) we have

that, for each u ∈ R, both maps Au : p 7→ p+u and Mu : p 7→ pu are continuous. Therefore

we can define topological dynamical systems (βR, SA) and (β(R∗), SM ), where SA and SM

are the additive and multiplicative sub-semigroups of AR, respectively. Invoking again (3.3)

one can check that any closed SA-invariant subset of βR is a semigroup for addition, and

any closed SM -invariant subset of βR∗ is a semigroup for multiplication.

In view of Proposition 2.54 there exist minimal non-empty compact SA-invariant subsets

of βR and minimal non-empty compact SM -invariant subsets of β(R∗). An additive minimal

idempotent is a non-principal ultrafilter p ∈ βR which belongs to a minimal compact SA-

invariant set and such that p+p = p. A multiplicative minimal idempotent is a non-principal

ultrafilter p ∈ β(R∗) which belongs to a minimal compact SM -invariant set and such that

pp = p.

Definition 3.10. Let R be a ring. We denote by AMI the set of all additive minimal idem-

potents in βR and we denote byMMI the set of all multiplicative minimal idempotents

in β(R∗).

A set C ⊂ R is called additively central if there exists p ∈ AMI such that C ∈ p.

Similarly, any member of an ultrafilter p ∈ MMI is called multiplicatively central. We

will be interested in sets C ⊂ R which are simultaneously additively and multiplicatively

central.

Unfortunately, the sets AMI and MMI are in general disjoint (cf [HS98, Corollary

13.15]). However, at least when R is an LID, the closure AMI has non-trivial intersection

withMMI (see Proposition 3.22 below).

Definition 3.11.

• Let G = AMI ∩MMI.

• A set C ⊂ R is called DC (doubly central) if there exists an ultrafilter p ∈ G such

that C ∈ p.
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• A set C ⊂ R is called DC∗ if it has non-empty intersection with every DC set1.

Observe that a set C ⊂ R is DC∗ if and only if it is contained in every ultrafilter p ∈ G

(this follows directly from Definition 3.11 and the definition of ultrafilters).

Remark 3.12. Observe that a DC set A ⊂ R in a LID is central with respect to both

the additive and the multiplicative structure, hence the name doubly central. On the other

hand, it follows from Theorem 5.35 that not every set A which is central both additively and

multiplicatively is a DC set.

We will need the following technical lemma

Lemma 3.13. Let G be a group and let H ⊂ G be a normal subgroup with finite index.

Then for any ultrafilter p ∈ βG in the closure of the idempotents we have H ∈ p.

Proof. The set of ultrafilters containing H is a closed set, hence we can assume that p is

itself an idempotent. Since H has only finitely many cosets, exactly one of them, say aH

is in p. Therefore, given g ∈ G we have g−1aH ∈ p if and only if g−1a ∈ aH. This is

equivalent to g ∈ aHa−1 = H (because H is normal). Since aH ∈ p = p+ p we conclude

{g ∈ G : g−1aH ∈ p} ∈ p ⇐⇒ H ∈ p

Corollary 3.14. Let G be a countable commutative group, let (xα)α∈F be an IP-set in G

and let H ⊂ G be a subgroup with finite index. Then there exists a sub-IP-set (yβ)β∈F of

(xα)α∈F taking values in H.

Proof. In view of Proposition 2.28, (xα)α∈F is a member of an ultrafilter p in the closure

of the idempotents. By Lemma 3.13, H is in p and hence so is {xα : α ∈ F} ∩H. Invoking

again Proposition 2.28 it follows that the intersection contains a sub-IP-set (yβ)β∈F of

(xα)α∈F .
1We call the reader’s attention to the fact that there is no relation between the ∗ in DC∗ and the ∗ in

R∗.
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A particular case of Lemma 3.13 is when R is a LID, H is a non-trivial ideal and p ∈ G.

If p ∈ β(R∗) contains an ideal bR for some b ∈ R∗, then one can define an ultrafilter b−1p

as the family q of those sets E ⊂ R such that bE ⊂ p. Observe that in this case bq = p.

The following lemma is the analogue of Theorem 5.4 in [BH90] (where it is stated and

proved for N).

Lemma 3.15. Let R be a LID, let p ∈ AMI and let u ∈ R∗. Then both up and u−1p

belong to AMI.

Proof. Since Mu : p 7→ up and M−1
u : p 7→ u−1p are continuous (on their respective

domains), it suffices to show that if p ∈ AMI then also both up and u−1p are in AMI.

It follows directly from Proposition 3.9 that up+ up = u(p+ p) = up, so up is an additive

idempotent. Checking the definitions easily yields that also u−1p is an additive idempotent.

All that remains to show is that up and u−1p are both (additively) minimal.

(1) up ∈ AMI

In view of Proposition 2.30, it suffices to show that every E ∈ up is additively piecewise

syndetic. From the definition of multiplication, E ∈ up ⇐⇒ E/u ∈ p. Since R is a

LID, Lemma 3.13 implies that uR ∈ p, hence u · (E/u) = E ∩ uR ∈ p and therefore

is piecewise syndetic (because of Proposition 2.30). It now follows from Lemma 3.4

that E/u and hence E itself must be (additively) piecewise syndetic.

(2) u−1p ∈ AMI

We use a similar argument: a set E ∈ u−1p ⇐⇒ uE ∈ p. Therefore Proposition 2.30

and Lemma 3.4 imply that every member of u−1p is piecewise syndetic, which in view

of Proposition 2.30 is equivalent to the statement that u−1p belong to the closure of

(additively) minimal ultrafilters.

Lemma 3.16. Let X be a compact space and let (xu)u∈R be a sequence in X indexed by a

countable ring R. Then for each k ∈ R∗ and p ∈ βR we have p - lim
u
xku = kp - lim

u
xu.
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Proof. Let x = p - lim
u
xku and let U ⊂ X be a neighborhood of x. By definition, the

set E = {u ∈ R : xku ∈ U} ∈ p. Note that E = {u ∈ R : xu ∈ U}/k, and hence

{u ∈ R : xu ∈ U} ∈ kp. Since U is an arbitrary neighborhood of x we conclude that

kp - lim
u
xu = x.

3.4 Affine syndeticity and thickness

In this section we will develop the notions of affinely syndetic and affinely thick subsets of

R. The definitions and proofs are parallel to the usual notions of syndetic and thick. Recall

that, for a discrete semigroup G, a set S ⊂ G is syndetic if finitely many translates of S

cover G (see Definition 2.15).

Recall from equation (3.2) the notation θgE = {g(x) : x ∈ E} for a set E ⊂ R and

g ∈ AR. When F ⊂ AR, S ⊂ R and x ∈ R we write

θ−1
F S :=

⋃
g∈F

θ−1
g S and θFx :=

⋃
g∈F

g(x)

Definition 3.17. Let R be a ring. A set S ⊂ R is affinely syndetic if there exists a finite

set F ⊂ AR such that θ−1
F S = R.

Observe that if a set S ⊂ R∗ is syndetic in either the group (R,+) or the semigroup

(R∗, ·), then S is affinely syndetic. Indeed, assume, for instance, that S is syndetic in

(R,+) and let F ⊂ R be a finite set such that S − F = R. Then considering the subset

{Au : u ∈ F} ⊂ AR we deduce that θ−1
F S = R and hence S is affinely syndetic. On the

other hand, S can be affinely syndetic and not be syndetic for neither the group (R,+) nor

the semigroup (R∗, ·) (this follows from Example 3.19 and Proposition 3.20 below).

Recall that, for a discrete semigroup G, a set T ⊂ G is thick if it contains a shift of an

arbitrary finite set (see Definition 2.17).

Definition 3.18. A set T ⊂ R is affinely thick if for every finite set F ⊂ AR there exists

x ∈ R such that θFx ⊂ T .
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Observe that if T ⊂ R is affinely thick, then it is thick in both the group (R,+) and

the semigroup (R∗, ·). The following example shows that there exist sets T which are not

affinely thick (even when R is a field) but thick in both (R,+) and (R∗, ·):

Example 3.19. We take the ring R = Q of rational numbers. Let (GN ) be an increasing

sequence of finite subsets of Q whose union is Q. For any sequence (aN ) ⊂ Q∗, the set

E =
( ∞⋃
N=1

(
a2N−1 +G2N−1

))
∪
( ∞⋃
N=1

(
a2NG2N

))
=
∞⋃
N=1

EN

is additively thick and multiplicatively thick, where EN = aN + GN when N is odd and

EN = aNGN when N is even. However, if (aN ) is growing sufficiently fast, then E is not

affinely thick. Indeed, for every point x ∈ Q we may have

θ{Id,A1M2}x = {x, x+ 1, 2x} 6⊂ E

To see this, let a0 = 1 and E0 := {0}. Let ∆GN denote the set defined by ∆GN =

{x2 − x1, x3 − x2, . . . , xk − xk−1} where x1 < x2 < · · · < xk is an ordering of the elements

of GN . Let MN = min
{
|x| : x ∈ GN \ {0}

}
. Define recursively

aN =

 2 max (EN−1) + max (GN )− 2 min (GN ) if N is odd
1

min(∆GN ) + 2 max(EN−1)
MN

if N is even

Note that if N is even and x ∈ EN , then x + 1 /∈ EN . If N is odd and x ∈ EN , then

x ≥ min(GN ) + aN which implies that 2x > max(GN ) + aN and hence 2x /∈ EN . Thus for

any N ∈ N and x ∈ Q, the set {x, x+ 1, 2x} is not a subset of EN .

Since min{|x| : x ∈ EN+1 \ {0}} > 2 max{|x| : x ∈ EN}, if x ∈ EN , then 2x /∈ EN+1

(and in fact 2x /∈ EL for any L > N) and hence {x, x+ 1, 2x} is not a subset of E for any

x ∈ Q.

The following proposition is an immediate consequence of the definitions.

Proposition 3.20. A set S ⊂ R is affinely syndetic if and only if it has non-empty in-

tersection with every affinely thick set. A set T ⊂ R is affinely thick if and only if it has

non-empty intersection with every affinely syndetic set.
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Now we connect affine syndeticity and thickness in countable fields with upper and

lower density with respect to double Følner sequences.

Theorem 3.21. Let K be a countable field. A set S ⊂ K is affinely syndetic if and only if

for every double Følner sequence (FN ) in K, we have d̄(FN )(S) > 0. A set S ⊂ K is affinely

thick if and only if there exists a double Følner sequence (FN ) in K such that d(FN )(T ) = 1.

Proof. Assume S ⊂ K is affinely syndetic and let F ⊂ AK be a finite set such that

θ−1
F S = K. Then for any double Følner sequence (FN ), using parts (1) and (2) of Lemma

3.7 we have

1 = d̄(FN )(K) = d̄(FN )

⋃
g∈F

θg−1S

 ≤∑
g∈F

d̄(FN )(θg−1S) = |F |d̄(FN )(S)

and hence d̄(FN )(S) ≥ 1/|F | > 0.

Now assume that T ⊂ K is affinely thick and let (GN ) be an arbitrary (left) Følner

sequence in AK . For each N ∈ N let xN ∈ K be such that FN := θGNxN ⊂ T and |FN | =

|GN |. To see why this is possible, note that for any affine transformations g1, g2 ∈ AK with

g1 6= g2, there is at most one solution x ∈ K to the equation g1(x) = g2(x). Thus there are

only finitely many x ∈ K such that g1x = g2x for some pair g1 6= g2 ∈ GN . On the other

hand, since T is affinely thick, there are infinitely many x ∈ K such that θGNx ⊂ T (and

indeed an affinely thick set of such x).

We now show that (FN ) is a double Følner sequence in K. For any fixed g ∈ AK we

have

FN ∩ θgFN = θGNxN ∩ θg(θGNxN ) ⊃ θGN∩gGNxN

and hence

1 ≥ lim sup
N→∞

|FN ∩ gFN |
|FN |

≥ lim inf
N→∞

|FN ∩ gFN |
|FN |

≥ lim
N→∞

|GN ∩ gGN |
|GN |

= 1

because (GN ) is a left Følner sequence in AK . This implies that (FN ) is a double Følner

sequence in K. Since for each N ∈ N we have FN ⊂ T we conclude that d(FN )(T ) = 1.
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Now if S is not syndetic then it follows from Proposition 3.20 that K \ S is thick.

Therefore there exits a double Følner sequence (FN ) such that d(FN )(K \S) = 1. From part

(4) of Lemma 3.7 if follows that d̄(FN )(S) = 0.

Finally, if T is not thick, then K \ T is syndetic and hence for every double Følner

sequence (FN ) we have d̄(FN )(K \ T ) > 0. By part (4) of Lemma 3.7 we have d(FN )(T ) < 1

for every double Følner sequence in K.

In every countable semigroup, any thick set is central (cf. Proposition 2.31). The same

phenomenon occurs in our affine setting:

Proposition 3.22. Let R be a LID. Then every affinely thick set in R is DC (see Definition

3.11).

Proof. Let T ⊂ R be an affinely thick set. For g ∈ AR define θg−1T ⊂ βR by equations

(3.2) and (2.1). Note that, for any finite set F ⊂ AR:

⋂
g∈F

θg−1T =
⋂
g∈F

θg−1T = {x ∈ R : θFx ⊂ T}

Since T is affinely thick, the family of compact sets
{
θg−1T : g ∈ AR

}
has the finite inter-

section property, and hence the intersection T :=
⋂
g∈AR θg−1T is a non-empty compact

subset of βR. We have the following description of T :

p ∈ T ⇐⇒ (∀g ∈ AR)p ∈ θg−1T ⇐⇒ (∀g ∈ AR)θg−1T ∈ p

If p, q ∈ T , we claim that both p+ q ∈ T and pq ∈ T . Indeed, for all g ∈ AR and u ∈ R we

have A−1
u θg−1T = (θgAu)−1T . Therefore we have:

θg−1T ∈ p+ q ⇐⇒ {u ∈ R : A−1
u θg−1T ∈ q} ∈ p ⇐⇒ {u ∈ R : (θgAu)−1T ∈ q} ∈ p

Since q ∈ T the set {u ∈ R : (θgAu)−1T ∈ q} = R ∈ p, so we conclude that p+ q ∈ T . The

same argument with obvious modifications implies that pq ∈ T proving the claim.

We now have that (T , SA) is a topological dynamical system. Hence by Proposition 2.54

there exists a minimal subsystem. It follows from (3.3) that each minimal subsystem is
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actually an (additive) left ideal in βR, and hence, in view of Theorem 2.11, there exist

(additive) minimal idempotents in T . Therefore the intersection T1 := AMI ∩ T is a

non-empty compact subset of T .

If u ∈ R∗ and p ∈ T1, it follows from Lemma 3.15 that up ∈ AMI, and thus up ∈ T1.

This means that (T1, SM ) is a topological dynamical system and hence by Proposition 2.54

it has minimal subsystems. By Ellis lemma (Theorem 2.11) each minimal system contains

some multiplicative idempotent. Let p be a multiplicative minimal idempotent in T1. Since

T1 ⊂ T we conclude that T ∈ p. Since T1 ⊂ AMI we conclude that p ∈ AMI, and hence

p ∈ G.

Remark 3.23. An immediate consequence of Propositions 3.22 and 3.20 is that every DC∗

set is affinely syndetic.

3.5 An affine version of Furstenberg’s correspondence principle

We will need an extension of Furstenberg’s Correspondence Principle for an action of a

group on a set (the classical versions deal with the case when the group acts on itself by

translations, cf. [Fur77]).

Theorem 3.24. Let X be a set, let G be a countable group and let (τg)g∈G be an action

of G on X. Assume that there exists a sequence (GN ) of finite subsets of X such that for

each g ∈ G we have the property:

|GN ∩ (τgGN )|
|GN |

→ 1 as N →∞ (3.4)

Let E ⊂ X and assume that d̄(GN )(E) := lim supN→∞
|GN∩E|
|GN | > 0.

Then there exists a compact metric space Ω, a probability measure µ on the Borel sets of

Ω, a µ-preserving G-action (Tg)g∈G on Ω, a Borel set B ⊂ Ω such that µ(B) = d̄(GN )(E),

and for any k ∈ N and g1, . . . , gk ∈ G we have

d̄(GN ) (τg1E ∩ · · · ∩ τgkE) ≥ µ (Tg1B ∩ ... ∩ TgkB)
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Proof. Define the family of sets

S :=


k⋂
j=1

τgjE : k ∈ N, gj ∈ G ∀j = 1, . . . , k

 ∪ {X}
Note that S is countable, so using a diagonal procedure we can find a subsequence (G̃N )

of the sequence (GN ) such that d̄(GN )(E) = lim
N→∞

|E ∩ G̃N |/|G̃N | and, for each S ∈ S, the

following limit exists

lim
N→∞

|S ∩ G̃N |
|G̃N |

Note that (3.4) holds for any subsequence of (GN ), and in particular for (G̃N ). Let

B(X) be the space of all bounded complex-valued functions on X. The space B(X) is a

Banach space with respect to the norm ‖f‖ = supx∈X |f(x)|. Let ρ ∈ `∞(N)∗ be a Banach

limit2.

Define the linear functional λ : B(X)→ C by

λ(f) = ρ


 1
|G̃N |

∑
x∈G̃N

f(x)


N∈N


The functional λ is positive (i.e. if f ≥ 0 then λ(f) ≥ 0) and λ(1) = 1. For any

f ∈ B(X), g ∈ G and x ∈ X, the equation fg(x) = f(τgx) defines a new function fg ∈ B(X).

By (3.4) we have that λ(fg) = λ(f) for all g ∈ G, so λ is an invariant mean for the action

(τg)g∈G. Moreover, d̄(GN )(E) = λ(1E) and, for any S ∈ S, we have d̄(GN )(S) ≥ λ(1S).

Note that the Banach space B(X) is a commutative C∗-algebra (with the involution

being pointwise conjugation). Now let Y ⊂ B(X) be the (closed) subalgebra generated by

the indicator functions of sets in S. Then Y is itself a C∗-algebra. It has an identity (the

constant function equal to 1) because X ∈ S. If f ∈ Y then fg ∈ Y for all g ∈ G. Moreover,

since S is countable, Y is separable. Thus, by the Gelfand representation theorem (see,

for instance, [Arv76], Theorem 1.1.1), there exists a compact metric space Ω and a map

Φ : Y → C(Ω) which is simultaneously an algebra isomorphism and a homeomorphism.

The linear functional λ induces a positive linear functional L on C(Ω) by L
(
Φ(f)

)
=

λ(f). Applying the Riesz Representation Theorem we have a measure µ on the Borel sets
2This means that ρ : `∞(N) → C is a shift invariant positive linear functional such that for any convergent

sequence x = (xn) ∈ `∞(N) we have ρ(x) = lim xn.
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of Ω such that

λ(f) = L
(
Φ(f)

)
=
∫

Ω
Φ(f)dµ ∀ f ∈ B(X)

The action (τg)g∈G induces an anti-action (or right action) (Ug)g∈G of G on C(Ω) by

UgΦ(f) = Φ(fg), where fg(x) = f(τgx) for all g ∈ G, f ∈ Y and x ∈ X. It is not hard

to see that, for each g ∈ G, Ug is a positive invertible isometry of C(Ω). By the Banach-

Stone theorem ([Sto37]), for each g ∈ G, there is a homeomorphism Tg : Ω → Ω such that

Ugφ = φ◦Tg for all φ ∈ C(Ω). Moreover for all g, h ∈ G we have φ◦Tgh = Ughφ = UhUgφ =

Uh(φ◦Tg) = φ◦ (Tg ◦Th). This means that (Tg)g∈G is an action of G on Ω. For every f ∈ Y

we have λ(fg) = λ(f) and hence

∫
Ω

Φ(f) ◦ Tgdµ =
∫

Ω
UgΦ(f)dµ =

∫
Ω

Φ(fg)dµ

= λ(fg) = λ(f) =
∫

Ω
Φ(f)dµ

Therefore the action (Tg) preserves measure µ.

Note that the only idempotents of the algebra C(Ω) are indicator functions of sets.

Therefore, given any set S ∈ S, the Gelfand transform Φ(1S) of the characteristic function

1S of S is the characteristic function of some Borel subset (which we denote by Φ(S)) in Ω.

In other words, Φ(S) is such that Φ(1S) = 1Φ(S). Let B = Φ(E). We have

d̄(GN )(E) = λ(1E) =
∫

Ω
Φ(1E)dµ =

∫
Ω

1Bdµ = µ(B)

Since the indicator function of the intersection of two sets is the product of the indicator

functions, we conclude that for any k ∈ N and any g1, ..., gk ∈ G we have

d̄(GN )

(
k⋂
i=1

τgiE

)
≥ λ

(
k∏
i=1

1τgiE

)
=
∫

Ω
Φ
(

k∏
i=1

1τgiE

)
dµ

=
∫

Ω

k∏
i=1

Φ
(
1τgiE

)
dµ =

∫
Ω

k∏
i=1

Ug−1
i

Φ (1E) dµ

=
∫

Ω

k∏
i=1

1B ◦ Tg−1
i
dµ =

∫
Ω

k∏
i=1

1TgiBdµ = µ

(
k⋂
i=1

TgiB

)
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3.6 An affine topological correspondence principle

The elegant idea of using topological dynamics to study partition regular configurations on

N was developed by Furstenberg and Weiss in [FW78]. They considered each coloring χ :

N→ {1, . . . , r} as a point in the symbolic system ({1, . . . , r}N, T ) (where T is the left shift),

and observed that it is possible to reformulate van der Waerden’s theorem (and several other

statements) as a multiple recurrence result on minimal subsystems of ({1, . . . , r}N, T ). By

proving the resulting multiple recurrence theorem ([FW78, Theorem 1.5]), they obtained

a new proof of van der Waerden’s theorem (and indeed of it’s multidimensional version,

Theorem 2.36). This correspondence is now a standard technique; for instance it was used

by Bergelson and Leibman in their proof of the polynomial van der Waerden’s theorem

[BL96, Corollary 1.11] (see Corollary 6.7).

Unfortunately, the procedure described in the previous paragraph does not allow one

to obtain dynamical formulations regarding the partition regularity of certain polynomial

configurations. This is essentially because configurations such as {x+y, xy} are not invariant

under shifts (additive or multiplicative): if P is a set of the form {xy, x+y} and c ∈ N, then

in general neither P + c nor Pc is of the same form. By contrast, observe that arithmetic

progressions are invariant under both addition and multiplication, in the sense that for any

arithmetic progression P and any c ∈ N, both P + c and Pc are arithmetic progressions of

the same length.

Nevertheless we have the following correspondence principle. Observe that any AR-

topological system (X, (Tg)g∈AR) naturally induces an additive (R,+)-topological system

(X, (Su)u∈R), by letting Su := TAu . A point x ∈ X is called additively minimal if it is a

minimal point for the system (X, (Su)u∈R) (cf. Section 2.5).

Theorem 3.25. Let R be a LID and let AR denote the semigroup of all affine transfor-

mations of R. There exists an AR-topological system (X, (Tg)g∈AR) with a dense set of

additively minimal points, such that each map Tg : X → X is open and injective, and

with the property that for any finite coloring R = C1 ∪ · · · ∪ Cr there exists an open cover
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X = U1 ∪ · · · ∪ Ur such that for any g1, . . . , gk ∈ AR and t ∈ {1, . . . , r},

k⋂
`=1

Tg`(Ut) 6= ∅ =⇒
k⋂
`=1

g`(Ct) 6= ∅. (3.5)

Remark 3.26. It follows from the proof of Theorem 3.25 that the system (X, (Tg)g∈AR)

also has the property that for any piecewise syndetic set Ct ⊂ R there exists a non-empty

open set Ut ⊂ X such that (3.5) holds for any g1, . . . , gk ∈ AR.

Remark 3.27. It follows from the proof of Theorem 3.25 that the intersection
⋂k
j=1 gj(Ct)

(both in the theorem and in Remark 3.26) is not only non-empty but is in fact piecewise

syndetic.

The remainder of this section is dedicated to the proof of Theorem 3.25. The construc-

tion of X is quite explicit as a subset of the Stone-Čech compactification βR of R. In this

setting, the action of AR on X is natural. The idea of using the Stone-Čech compactifica-

tion to prove the correspondence principle was inspired by its implicit use in [Bei11] (in the

setting of measurable dynamics).

There is a natural action (Tg)g∈AR of AR on the set βR \R of non-principle ultrafilters,

described as follows. For g ∈ AR, the map Tg : βR \R→ βR \R takes p ∈ βR \R to

Tg(p) :=
{
E ⊂ R : θ−1

g (E) ∈ p
}

=
{
E ⊂ N : {x ∈ R : g(x) ∈ E} ∈ p

}
(3.6)

Remark 3.28. An equivalent way to define Tg is to start with a map Tg : βR→ βR, defined

on principal ultrafilters via the formula Tg(px) = pg(x) and then extend it to βR using the

universal property of the Stone-Čech compactification. One can then check that for a non-

principle ultrafilter p ∈ βR \R, the image Tg(p) is in fact in βR \R and corresponds to the

ultrafilter described in (3.6). We will not make use of this fact.

Lemma 3.29. For each g ∈ AR, the map Tg : βR \ R → βR \ R is continuous, open and

injective. Moreover, for g, h ∈ AR one has Tg ◦ Th = Tgh.

Proof. One can easily check (using only the definitions) that Tg(p) is indeed a non-principle

ultrafilter and that Tg ◦ Th = Tgh. To show that Tg is continuous, take a basic open set
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E ⊂ βR for E ⊂ R infinite; we need to show that T−1
g (E) is open. We have

p ∈ T−1
g (E) ⇐⇒ E ∈ Tg(p) ⇐⇒ g−1(E) ∈ p

therefore T−1
g (E) = g−1(E) is open and Tg is continuous.

To show that Tg is injective, let p 6= q be in βR\R and let E ∈ p\ q. Since g : R→ R is

injective we have that g−1(g(E)) = E; since E /∈ q, it follows that g(E) /∈ Tg(q). Moreover,

g−1(g(E)) = E ∈ p, therefore g(E) ∈ Tg(p) and hence Tg(p) 6= Tg(q), proving injectivity.

Finally we show that Tg is open. Let E ⊂ R be infinite; we will show that Tg(E \R) =

g(E) \ R, which will imply that Tg : βR \ R → βR \ R is indeed open. As in the proof

of injectivity, if p ∈ E is non-principal, then g(E) ∈ Tg(p), proving one of the inclusions.

Conversely, if p ∈ βR \ R is such that g(E) ∈ Tg(p), then E = g−1(g(E)) ∈ p, establishing

the other inclusion and finishing the proof.

Lemma 3.29 implies that (Tg)g∈AR is an action on βR\R and hence
(
βR\R, (Tg)g∈AR

)
is an AR-topological dynamical system. We are now ready to prove Theorem 3.25.

Proof of Theorem 3.25. Let Y ⊂ βR \ R be the set of all additively minimal points in(
βR \R, (Tg)g∈AR

)
and let X := Y be its closure. It is usual to denote Y = K(βR,+). We

will show that for each g ∈ AR, Tg maps X into X.

According to Proposition 2.30, an ultrafilter p ∈ βR is in X = K(βR,+) if and only if

every member E ∈ p is piecewise syndetic. Take p ∈ X and g ∈ AR; we claim that Tg(p) ∈

X. Using the definition, it suffices to show that if g−1(E) is piecewise syndetic, then so is E.

It follows from Lemma 3.4 that if g−1(E) is piecewise syndetic, then so is g(g−1(E)) = E.

This shows that each g ∈ AR induces a natural continuous map Tg : X → X. Moreover,

a similar argument shows that if p ∈ βR \ R and g ∈ AR are such that Tg(p) ∈ X, then

p ∈ X; therefore Tp : X → X is also open.

So far we constructed a compact Hausdorff space X together with an action (Tg)g∈AR of

AR on X by continuous injective open maps with a dense set of additively minimal points.

To finish the proof, consider a coloring N = C1 ∪ · · · ∪ Cr and let Ut := {p ∈ X : Ct ∈

p} = Ct ∩ X for each t ∈ {1, . . . , r}. Then each Ut is a (possibly empty) open subset of
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X and each p ∈ X belongs to some Ut. Now let g1, . . . , gk ∈ AR and t ∈ {1, . . . , r} be

such that
⋂k
`=1 Tg`(Ut) 6= ∅. Then, since the maps Tg` : X → X are open, it follows that⋂k

`=1 Tg`(Ut) is a non-empty open subset of X. Take any p in this intersection; we claim

that g`(Ct) ∩ N ∈ p for any ` ∈ {1, . . . , k}.

Indeed, for each ` ∈ {1, . . . , k}, there exists p` ∈ Ut ⊂ Ct such that p = Tg`(p`). Since

g−1
` (g`(Ct)) = Ct ∈ p`, it follows that indeed g`(Ct) ∈ p, as desired. Finally, it follows that

the finite intersection
⋂k
`=1 g`(Ct) is also in p and hence is non-empty.
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CHAPTER 4

POLYNOMIAL EXTENSION OF DEUBER’S THEOREM

4.1 Introduction

In this chapter we present recent work from [BJM] extending the scope of Deuber’s theorem

(Theorem 1.10) to the setting of polynomial configurations in abelian groups (Theorem 4.7)

and to (linear configurations on) arbitrary commutative semigroups (Theorem 4.6). Our

proofs are based on a multidimensional polynomial extension of the central sets theorem,

Theorem 4.8.

In the spirit of Deuber’s original result in [Deu73], we also obtain a partition regularity

result concerning the (linear) extension of Deuber’s theorem to commutative semigroups.

Roughly speaking, we show that for any finite coloring of a “large enough (but finite) config-

uration” there exists a monochromatic "smaller configuration" (see Theorem 4.15 below for

a precise formulation). However, it is not clear how to obtain a similar partition regularity

result for polynomial Deuber sets (our Theorem 4.7 requires one to finitely color the whole

(infinite) group in order to obtain the desired monochromatic configuration).

In order to formulate our results we will need the following definitions.

Definition 4.1. Let G be a countable commutative semigroup.

1. A shape in G is a triple (m, ~F , c) where m ∈ N, c : G→ G is a homomorphism and ~F

is an m-tuple ~F = (F1, . . . , Fm) where each Fj is a finite set of functions from Gj to

G.

2. Given a shape (m, ~F , c) and s = (s0, . . . , sm) ∈ (G \ {0})m+1, the (m, ~F , c)-set gener-
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ated by s is the set

D(m, ~F , c; s) :=



c(s0)

f(s0) + c(s1), f ∈ F1

f(s0, s1) + c(s2), f ∈ F2
...

...

f(s0, . . . , sm−1) + c(sm), f ∈ Fm


Observe that Schur triples {x, y, x + y} are precisely the (m, ~F , c) sets when m = 1, c

is the identity map and F1 consists only of the identity map. More generally, the family

which appears in Deuber’s theorem (Theorem 1.10) for a given m, p, c ∈ N corresponds to

the shape (m, ~F , c̃), where c̃ is the map c̃ : x 7→ cx and Fj is the set of all maps f : Nj → Z

of the form f : x 7→ 〈x, ξ〉 with ξ ∈ {−p, . . . , p}j .

Polynomial and multidimensional versions of Deuber’s theorem

The following theorem is a joint extension of Folkman’s theorem and the polynomial van

der Waerden theorem, in the same way Theorem 1.10 is a joint extension of Folkman’s

theorem and (classical) van der Waerden’s theorem.

Theorem 4.2 (Polynomial Deuber theorem). Let m ∈ N and, for each i = 1, 2, . . . ,m, let

Fi be a finite set of polynomials f : Zi → Z such that f(0) = 0. Let ~F = (F1, . . . , Fm) and

let c : Z → Z be a multiplication by some constant. Then the family associated with the

shape (m, ~F , c) is Ramsey. In other words, for any finite coloring N = C1 ∪ · · · ∪ Cr there

exists a color C ∈ {C1, . . . , Cr} and a vector s ∈ Nm+1 such that D(m, ~F , c; s) ⊂ C.

Theorem 4.2 follows from its multidimensional version, Theorem 4.4 below. We remark

that Theorem 4.2 contains Theorems 1.1, 1.2, 1.3, 1.7, 1.8 and 1.10 as special cases. One

could wonder whether Theorem 4.2 applies to every polynomial Ramsey family (hence

solving Problem 1.12). Unfortunately, this is not the case, as the following result, obtained

independently by Bergelson [Ber10, Theorem 6.1] and Hindman [Hin11], shows:
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Theorem 4.3. For any finite coloring of N there exist x, y, z, t of the same color satisfying

xy = z + t. In other words, the family {x, y, z, xy − z} is Ramsey.

It is not hard to see that the family {x, y, z, xy− z} is not contained in any shape, and

hence Theorem 4.3 can not be derived from Theorem 4.2.

Next we combine Theorem 4.2 with the multidimensional van der Waerden’s theorem

(Theorem 2.36).

Theorem 4.4 (Multidimensional polynomial Deuber theorem). Let d,m ∈ N and, for each

i = 1, 2, . . . ,m let Fi be a finite set of polynomials f : (Zd)i → Zd such that f(0) = 0. Let

~F = (F1, . . . , Fm) and let c : Zd → Zd be a scalar homomorphism (i.e., multiplication by

a constant). For any finite coloring of Zd, there exists s ∈ (Z \ {0})m+1 such that the set

D(m, ~F , c; s) is monochromatic.

As mentioned in Chapter 2, for every finite partition of a countable commutative semi-

group G, one of the colors is a central set (see Definition 2.32). We prove Theorem 4.4 by

showing that in fact every central set contains a set of the form D(m, ~F , c; s).

Theorem 4.5 (Multidimensional polynomial Deuber theorem in central sets). Let d,m ∈ N

and, for each i = 1, 2, . . . ,m let Fi be a finite set of polynomials f : (Zd)i → Zd such that

f(0) = 0. Let ~F = (F1, . . . , Fm) and let c : Zd → Zd be a scalar homomorphism. For any

central set A ⊂ Zd, there exists s ∈ (Z \ {0})m+1 such that D(m, ~F , c; s) ⊂ A.

Theorem 4.5 is in turn a corollary to Theorem 4.7 below. The version of Theorem 4.5

for d = 1 and linear polynomials (i.e. multiplication by a constant) was first proved by

Furstenberg in [Fur81, Theorem 8.22].

Deuber’s theorem in commutative semigroups

We state now a version of Deuber’s theorem which holds in any countable commutative

semigroup. For semigroups G,H, denote by Hom(H,G) the set of all semigroup homomor-

phisms from H to G. Let also End(G) denote Hom(G,G) (elements of End(G) are often

referred to as endomorphisms).
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Theorem 4.6. Let G be a countable commutative semigroup, let A ⊂ G be a central set

and let (m, ~F , c) be a shape in G. Assume that the map c : G→ G is the identity map and,

for each j = 1, . . . ,m, we have Fj ⊂ Hom(Gj , G). Then there exists s ∈ (G \ {0})m+1 such

that D(m, ~F , c; s) ⊂ A.

Next we move to polynomial maps. Recall from Definition 2.42 the notation P(G,H)

to denote the set of all polynomial maps f : G→ H with f(0) = 0.

Theorem 4.7. Let G be a countable abelian group, let A ⊂ G be a central set and let

(m, ~F , c) be a shape in G. Assume that the image of c has finite index in G and, for each

j = 1, . . . ,m, Fj ⊂ P(Gj , G). Then there exists s ∈ (G \ {0})m+1 such that D(m, ~F , c; s) ⊂

A.

Theorems 4.6 and 4.7 are proved at the end of Section 4.2.

Polynomial extensions of the central sets theorem in abelian groups.

The main tool employed by Furstenberg in his proof of the special case of Theorem 4.5

mentioned above was his central sets theorem (cf. Theorem 2.40). Our proof of Theorem

4.7 is based on the following polynomial version of the central sets theorem, which we believe

is of independent interest.

Theorem 4.8 (Multidimensional polynomial central sets theorem). Let G be a countable

abelian group, let j ∈ N and let (yα)α∈F be an IP-set in Gj. Let F ⊂ P(Gj , G) be a finite set

and let A ⊂ G be a central set. Then there exist an IP-set (xβ)β∈F in G and a sub-IP-set

(zβ)β∈F of (yα)α∈F such that

∀f ∈ F ∀β ∈ F xβ + f(zβ) ∈ A

When G = Z and the polynomial maps in F are homomorphisms, this reduces to the

classical central sets theorem. Theorem 4.8 will be derived as a corollary of the more general

Theorem 4.24 below.

Since for any finite coloring of a countable commutative group G one of the colors is a

central set, as a corollary of Theorem 4.8 we deduce that
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Theorem 4.9. Let G be a countable abelian group, let j ∈ N and let (yα)α∈F be an IP-set

in Gj. Let F ⊂ P(Gj , G) be a finite set and let G = C1 ∪ · · · ∪ Cr be a finite coloring of

G. Then there exist a color C ∈ {C1, . . . , Cr}, an IP-set (xβ)β∈F in G and a sub-IP-set

(zβ)β∈F of (yα)α∈F such that

∀f ∈ F ∀β ∈ F xβ + f(zβ) ∈ C

Theorem 4.9 (and in fact a stronger version of it) was obtained by McCutcheon in

[McC99, Theorem A]. The method used by McCutcheon also gives Theorem 4.8, although

it does not appear to have been explicitly stated.

Partition regularity

Call a set A ⊂ N rich if for every linear Ramsey family {f1, . . . , fk} there exists x such

that {f1(x), . . . , fk(x)} ⊂ A. In view of Theorem 1.11, a set is rich if and only if for every

m, p, c ∈ N there exists s ∈ Nm+1 such that D(m, p, c; s) ⊂ A. In view of Furstenberg’s

theorem [Fur81, Theorem 8.22] mentioned above, every central set in N is rich.

One of the main motivations for Deuber to introduce (m, p, c)-sets was to solve a con-

jecture of Rado stating that for a finite partition of a rich set, one of the cells is still rich.

We obtain an analogous result for certain (m, ~F , c)-sets. Before we state the main result in

this direction (Theorem 4.12 below) we need a few definitions.

Definition 4.10. Let G be a countable commutative semigroup. A clique in G is an infinite

(not necessarily countable) set of shapes. Given a clique Λ in G, we say that a set A ⊂ G

is Λ-rich if for every shape (m, ~F , c) ∈ Λ there exists an (m, ~F , c)-set contained in A.

For example, let Λ be the clique in N consisting of the shapes that arise from all possible

triples (m, p, c) ∈ N3. Then a set A ⊂ N is Λ-rich if and only if it is rich in the sense defined

above. Here are more examples.

Example 4.11.
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1. Let k ∈ N, let c : N → N be the identity map, let F1,k = {x 7→ ix : i = 0, . . . , k −

1} ⊂ End(N) and make ~Fk = (F1,k). Then any (1, ~Fk, c)-set contains a “Brauer

configuration” of length k (i.e. an arithmetic progression of length k together with its

common difference, cf. Theorem 1.7).

2. Let c and ~Fk be as in part (1) above. Consider the clique Λ = {(1, ~Fk, c) : k ∈ N}. A

set A ⊂ N is Λ-rich if and only it contains Brauer configurations of arbitrary length.

3. Let again m ∈ N and let c : N → N be the identity map. For each j = 1, . . . ,m, let

Fj,m be the set of all maps f : Nj → N of the form f : x 7→ 〈x, ξ〉 where ξ ∈ {0, 1}j .

Let ~Fm = (F1,m, . . . , Fm,m). Then any (m, ~Fm, c)-set is a set of the form FS(A) for

some set A ⊂ N with cardinality m+ 1.

4. Let c and ~Fm be as in part (3) of this example. Define the shape Λ = {(m, ~Fm, c) :

m ∈ N}. A set A ⊂ N is Λ-rich if and only if it is an IP0 set (cf. Definition 2.24).

One can reinterpret both Theorem 4.6 and Theorem 4.7 as providing an example each

of a clique Λ such that every central set is Λ-rich. Our next theorem provides a natural

example of a clique Λ with the stronger property that, for any finite partition of a Λ-rich

set, one of the cells is still Λ-rich.

Theorem 4.12. Let G be a countable commutative semigroup and let Λt be the clique con-

sisting of all shapes (m, ~F , c) with m ∈ N, c in the center of End(G) and ~F = (F1, . . . , Fm)

where each Fj ⊂ Hom(Gj , G). In other words

Λt =

(m, ~F , c) :
m ∈ N, c is in the center of End(G),

~F = (F1, . . . , Fm), Fj ⊂ Hom(Gj , G) ∀j


For any finite partition of a Λt-rich set, one of the cells is still Λt-rich.

If we take G = N then End(N) is isomorphic to the multiplicative semigroup (N,×)

and hence it is commutative; this means that any shape (m, ~F , c) arising from a triple

(m, p, c) ∈ N3 as explained after Definition 4.1, is in Λt. Therefore Theorem 4.12 recovers
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Deuber’s solution of Rado’s conjecture (that for any finite partition of a rich set, one of the

cells must be rich).

Theorem 4.12 will be derived in Section 4.3 from its finitistic version, Theorem 4.15

below.

Definition 4.13. Let G be a countable commutative semigroup. Let m ∈ N and, for each

i = 1, . . . ,m, let Fi ⊂ Hom(Gi, G) be finite. Also, let ~F = (F1, · · · , Fm) and let c ∈ End(G).

We say that c is concordant with ~F if there exists a non-zero homomorphism b ∈ End(G)

and, for each i ∈ {1, . . . ,m} and f ∈ Fi, there is a homomorphism af ∈ Hom(Gi, G) such

that c◦af = f◦b, where b : Gi → Gi is the homomorphism b(g1, . . . , gi) =
(
b(g1), . . . , b(gi)

)
.

Observe that the identity homomorphism c : x 7→ x is concordant with any ~F . More

generally, if c is in the center of the semigroup End(G), then c is concordant with any ~F

(by taking b = c and af = f).

When c is an automorphism, it is concordant with any ~F . Indeed, one can take b to be

the identity map and af = c−1 ◦ f . In the following example, c is neither in the center of

End(G) nor is it an automorphism.

Example 4.14. Let G = Z2, let m = 1, let c ∈ End(Z2) be the projection onto the first

coordinate and let ~F = (F1) where F1 consists of finitely many endomorphisms of Z2 whose

image is contained in c(Z2). Then c is concordant with ~F .

Indeed, take f ∈ F1. We let b ∈ End(Z2) be the identity map and af = f . Since the

restriction of c to its image is the identity map, we have c ◦ af = f ◦ b.

Theorem 4.15. Let G be a countable commutative semigroup and let Λc be the clique of

all shapes (m, ~F , c) where m ∈ N, Fi ⊂ Hom(Gi, G) for all i = 1, . . . ,m and c is concordant

with ~F .

For any r ∈ N and any shape (m, ~F , c) ∈ Λc there exists another shape (M, ~H,C) ∈

Λc such that any partition of an (M, ~H,C)-set into r-cells, one of the cells contains an

(m, ~F , c)-set.
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Moreover, if c is the identity, we can take C to be the identity as well, and if c is in the

center of End(G) we can take C to be in the center of End(G).

The proof of Theorem 4.15 occupies most of Section 4.3.

4.2 Idempotent ultrafilters and (m, ~F , c)-sets

Theorems 4.7 and 4.6 have similar proofs. To avoid repetition, we unify both results into

a single abstract result; this is Theorem 4.23 below. Before formulating it, we need to

introduce some definitions.

Definition 4.16 (R-family). Let G,H be countable commutative semigroups and let p ∈

βG be an ultrafilter. Let Γ be a set of functions from H → G. We say that Γ is an R-family1

with respect to p if for every finite set F ⊂ Γ, every A ∈ p and every IP-set (yα)α∈F in H,

there exist x ∈ G and α ∈ F such that

x+ f(yα) ∈ A ∀f ∈ F

Example 4.17. Let G be a countable abelian group, let j ∈ N and let H = Gj . Then

the family Γ = P(Gj , G) is an R-family with respect to any minimal idempotent ultrafilter.

Indeed, let p ∈ βG be a minimal idempotent ultrafilter and let A ∈ p. In view of Proposi-

tion 2.30, A is a piecewise syndetic set. Fix a finite set F ⊂ Γ and an IP-set (yα)α∈F in Gj .

It follows from Corollary 2.45 that there exists a ∈ A and α ∈ F such that a + f(yα) ∈ A

for all f ∈ F , and hence Γ is an R-family.

Example 4.18. Let G be a countable commutative semigroup, let j ∈ N and let H = Gj .

Then the family Γ = Hom(Gj , G) is an R-family with respect to any minimal idempotent

ultrafilter. Indeed, let p ∈ βG be a minimal idempotent ultrafilter and let A ∈ p. By

definition, A is a central set, hence a piecewise syndetic set. Fix a finite set F ⊂ Γ and an

IP-set (yα)α∈F in Gj . It follows from Proposition 2.39 that there exists a ∈ A and α ∈ F

such that a+ f(yα) ∈ A for all f ∈ F , and hence Γ is an R-family.
1R stands for returns.
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Definition 4.19. Let G,H be countable commutative semigroups and let Γ be a set of

functions from H to G. We say that Γ is licit if for any f ∈ Γ and any z ∈ H, there exists

a function φz ∈ Γ such that f(y + z) = φz(y) + f(z).

Example 4.20. Let G,H be countable commutative semigroups and let Γ ⊂ Hom(H,G).

It is not hard to see that Γ is licit. Indeed, note that for every f ∈ Γ and any z ∈ H one

can take φz = f in the definition.

Example 4.21. If G,H are countable abelian groups, the set Γ = P(H,G) is licit. Indeed,

for each f ∈ Γ and z ∈ H one can define φz(y) := f(y + z) − f(z). Clearly φ(0) = 0. For

any h ∈ H, we have

φz(y + h)− φz(y) = f(y + z + h)− f(z)− f(y + z) + f(z)

= f
(
(y + z) + h

)
− f(y + z)

If f ∈ P(H,G) has degree d, then f
(
(y + z) + h

)
− f(y + z) is a polynomial map of degree

at most d − 1 in the variable y (now both h and z are constants), and hence φz is also a

polynomial map of degree at most d.

Definition 4.22. Let G be a countable commutative semigroup. An endomorphism c ∈

End(G) is called IP-regular if for every IP-set (xα)α∈F in G there exists an IP-set (yα)α∈F

such that
(
c(yα)

)
α∈F is a sub-IP-set of (xα)α∈F (and in particular

(
c(yα)

)
α∈F is itself an

IP-set).

When G = Z, any nontrivial endomorphism c ∈ End(Z) is IP-regular. It’s not hard to

see that when G is an arbitrary countable abelian group, any endomorphism whose image

has finite index is IP-regular. We can now formulate our abstract theorem (which has

theorems 4.6 and 4.7 as corollaries):

Theorem 4.23. Let G be a countable commutative semigroup, let p ∈ βG be an idempotent

ultrafilter and let Γ1,Γ2, . . . be R-families with respect to p which are licit, where Γj consists

of maps from Gj to G. Let c : G→ G be IP-regular, let m ∈ N and, for each j = 1, . . . ,m,
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let Fj ⊂ Γj be finite. Finally, put ~F = (F1, . . . , Fm). Then for any A ∈ p there exists an

IP-set
(
sα
)
α∈F in Gm+1 such that D(m, ~F , c; sα) ⊂ A for every α ∈ F .

In order to prove Theorem 4.23 we first need to establish an abstract version of the

central sets theorem.

Theorem 4.24. Let G,H be countable commutative semigroups, let p ∈ βG be an idem-

potent ultrafilter, let Γ be an R-family with respect to p which is licit. Then for any finite

set F ⊂ Γ, any A ∈ p and any IP set (yα)α∈F in H, there exists a sub-IP-set (zβ)β∈F of

(yα)α∈F and an IP-set (xβ)β∈F in G such that

∀f ∈ F ∀β ∈ F xβ + f(yβ) ∈ A

Proof. Let B = {n ∈ A : A − n ∈ p}. Because p is an idempotent ultrafilter, B ∈ p.

Moreover, by Lemma 4.14 in [HS98], for any n ∈ B, we have B − n ∈ p. We will construct

sequences x1, x2, . . . in G and α1 < α2 < · · · in F inductively, so that for each n we have

∀f ∈ F ∀β ⊂ [n], β 6= ∅ xβ + f(zβ) ∈ B (4.1)

where zβ =
∑
i∈β yαi .

Since Γ is an R-family with respect to p, we can find α1 ∈ F and x1 ∈ G such that

x1 + f(yα1) ∈ B for all f ∈ F ; in other words we get (4.1) for n = 1.

Now assume we have found x1, . . . , xn in G and α1 < · · · < αn in F such that (4.1) is

true. Let

C = B ∩

 ⋂
∅6=β⊂[n]
f∈F

B − xβ − f(zβ)


Each of the sets of the intersection is in p, and because p is closed under finite intersections,

also C ∈ p. We now take advantage of the fact that Γ is licit to find, for each f ∈ F

and each nonempty β ⊂ [n], a map φfβ ∈ Γ such that f(zβ + y) = φfβ(y) + f(zβ). Let

Φ = F ∪ {φfβ : ∅ 6= β ⊂ [n]; f ∈ F}. We can now use again the fact that Γ is an R-family

with respect to p and find xn+1 ∈ G and αn+1 > αn in F such that xn+1 + f(zn+1) ∈ C
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for all f ∈ Φ, where zn+1 := yαn+1 . We claim that (4.1) holds for n+ 1 with these choices,

which will complete the induction and finish the proof.

Indeed, let f ∈ F and let β ⊂ [n + 1] be non-empty. If β ⊂ [n], then xβ + f(zβ) ∈ B

by the induction hypothesis. If β = {n + 1}, then xn+1 + f(zn+1) ∈ C ⊂ B because

F ⊂ Φ. Otherwise the set defined by γ := β \ {n + 1} ⊂ [n] is nonempty. Recalling that

xβ = xγ + xn+1 and zβ = zγ + zn+1, we have

xn+1 + φfγ(zn+1) ∈ C ⊂ B − xγ − f(zγ),

so

xγ + xn+1 + f(zγ) + φfγ(zn+1) ∈ B

which is equivalent to

xβ + f(zβ) ∈ B.

A concrete corollary of this general result is Theorem 4.8, which can be interpreted as

a polynomial version of the central sets theorem. It follows from Theorem 4.24 by taking

G to be a group and letting H = Gj , Γ = P(Gj , G), and p to be a minimal idempotent.

According to Example 4.17, Γ is an R-family so Theorem 4.8 follows.

We are now in position to prove Theorem 4.23.

Proof of Theorem 4.23. What we need to show is that there exists some IP-set (sα)α∈F in

Gm+1 such that, for all α ∈ F ,

c(sα,0) ∈ A

∀f ∈ F1 f(sα,0) + c(sα,1) ∈ A

∀f ∈ F2 f(sα,0, sα,1) + c(sα,2) ∈ A

...
...

...
...

∀f ∈ Fm f(sα,0, . . . , sα,m−1) + c(sα,m) ∈ A

(4.2)

The proof goes by induction on m; assume first that m = 0. Since A belongs to an

idempotent ultrafilter, it contains an IP-set, say (x̃α)α∈F . Since c is IP-regular, we can find
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an IP-set (xα)α∈F such that
(
c(xα)

)
is a sub-IP-set of (x̃α)α∈F and hence c(xα) ∈ A for

each α ∈ F . Let s(0)
α := xα for each α ∈ F .

Now suppose that m ≥ 1 and we have an IP-set in Gm

(s(m−1)
α )α∈F =

((
s

(m−1)
α,0 , s

(m−1)
α,1 , . . . , s

(m−1)
α,m−1

))
α∈F

such that for any α ∈ F we have D(m − 1, ~F , c; s(m−1)
α ) ⊂ A; in other words, if we take

si = s
(m−1)
α,i for each i = 0, . . . ,m− 1 we get the first m lines of (4.2), for any α ∈ F .

Now apply Theorem 4.24 with H = Gm, Γ = Γm, F = Fm and (yα)α∈F = (s(m−1)
α )α∈F .

We obtain a sub-IP-set (tα) of (s(m−1)
α ) in Gm and some IP set (xα)α∈F in G such that

∀α ∈ F ∀f ∈ Fm xα + f(tα) ∈ A. (4.3)

Since c is IP-regular we can find an IP-set (yβ)β∈F in G such that
(
c(yβ)

)
β∈F is a sub-

IP-set of (xα)α∈F ; in other words, there exist α1 < α2 < · · · such that c(yβ) =
∑
i∈β xαi for

all β ∈ F . To ease the notation, let αβ denote the set αβ :=
⋃
i∈β αi ∈ F . Then

∀β ∈ F c(yβ) = xαβ (4.4)

Now define (s(m)
β )β∈F by taking the corresponding sub-IP-set of (tα)α∈F for the first m

coordinates and letting (yβ)β∈F be the last coordinate. More precisely we have:

s(m)
β =

(
tαβ , yβ

)
∈ Gm+1

Now fix β ∈ F ; we need to show that D(m, ~F , c; s(m)
β ) ⊂ A. If j ∈ {0, 1, . . . ,m − 1} and

f ∈ Fj then

f
(
s

(m)
β,0 , . . . , s

(m)
β,j−1

)
+ c(s(m)

β,j ) = f
(
s

(m−1)
αβ ,0 , . . . , s

(m−1)
αβ ,j−1

)
+ c(s(m−1)

αβ ,j
) (4.5)

and the expression in (4.5) is in A by induction. If j = m then

f
(
s

(m)
β,0 , . . . , s

(m)
β,j−1

)
+ c(s(m)

β,j ) = f(tαβ ) + c(yβ) = c(yβ) + f(tαβ ) (4.6)

By (4.4), the expression in (4.6) is equal to xαβ + f(tαβ ) and hence, by (4.3), it is also in

A. We conclude that D(m, ~F , c; s(m)
β ) ⊂ A. This finishes the induction process and the

proof.
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We notice that Theorem 4.23 allows for repeated terms in D(m, ~F , c; s), in other words,

one could have 1 ≤ i ≤ j ≤ m and f ∈ Fi, g ∈ Fj such that

f(s0, . . . , si−1) + c(si) = g(s0, . . . , sj−1) + c(sj)

In fact, under the same conditions as Theorem 4.23, one may not be able to find s for which

D(m, ~F , c; s) has no repeated terms. However, if one makes the additional assumption that

for every j ∈ {1, . . . ,m} and every f, g ∈ Fj the set
{
x ∈ Gj : f(x) = g(x)

}
is finite, then

one can modify the above proof to guarantee the additional property that D(m, ~F , c; s) has

no repeated terms.

Indeed, observe that this condition implies that, for every j ∈ {1, . . . ,m}, the set

{
x ∈ Gj : (∃f, g ∈ Fj) : f(x) = g(x)

}
is finite. Thus, given any IP-set (xα)α∈F in Gj there exists a sub-IP-set (yβ)β∈F such that

for all β ∈ F and f, g ∈ Fj one has f(yβ) 6= g(yβ). Only one modification of the proof

of Theorem 4.23 is needed to obtain this condition: after choosing the sub-IP-set (tα) of

(s(m−1)
α ) with the property (4.3), pass to a further sub-IP-set (yβ) of (tα) with the property

that for all β ∈ F and all f, g ∈ Fj one has f(yβ) 6= g(yβ).

The following theorem summarizes the above discussion.

Theorem 4.25. Let G, p, c,m, F1, . . . , Fm, ~F be as in Theorem 4.23. Assume that for every

j ∈ {1, . . . ,m} and every f, g ∈ Fj the set
{
x ∈ Gj : f(x) = g(x)

}
is finite. Then for any

A ∈ p there exists an IP-set
(
sα
)
α∈F in Gm+1 such that D(m, ~F , c; sα) is contained in A and

has no repeated terms. More precisely, for every α ∈ F and for all i, j with 1 ≤ i ≤ j ≤ m

and f ∈ Fi, g ∈ Fj we have

f(sα,0, . . . , sα,i−1) + c(sα,i) 6= g(sα,0, . . . , sα,j−1) + c(sα,j)

We will now deduce Theorems 4.6 and 4.7 from our abstract Theorem 4.23.

Proof of Theorem 4.6. Let G be a countable commutative semigroup and let A ⊂ G be a

central set. Thus, there exists a minimal idempotent p ∈ βG with A ∈ p.
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Assume (m, ~F , c) is a shape in G where c is the identity map and that Fj ⊂ Hom(Gj , G)

for each j = 1, . . . ,m. The endomorphism c is trivially IP-regular. For each j ∈ N let

Γj = Hom(Gj , G); it follows from Example 4.18 that each Γj is an R-family with respect

to p. Finally, by Example 4.20 each Γj is licit. We can now apply Theorem 4.23 to find

s ∈ Gm+1 with D(m, ~F , c; s) ⊂ A as desired.

Proof of Theorem 4.7. Let G be a group and (m, ~F , c) is a shape in G where c is an endo-

morphism whose image has finite index in G and, for each j = 1, . . . ,m, Fj ⊂ P(Gj , G). To

see that c is IP-regular, observe that in view of Corollary 3.14 any IP-set has a sub-IP-set

contained in the image of c, and that IP-sets carry through homomorphisms. For each

j ∈ N let Γj = P(Gj , G); it follows from Example 4.17 that each Γj is an R-family with

respect to p. By Example 4.21 each Γj is licit. We can now apply Theorem 4.23 to find

s ∈ Gm+1 with D(m, ~F , c; s) ⊂ A as desired.

4.3 Proof of partition regularity of (m, ~F , c)-sets

In this section we prove Theorems 4.12 and 4.15. Our proof of Theorem 4.15 is inspired by

a proof of Deuber’s original result presented in [Gun02]. Before we start with the proofs

we need a definition.

Definition 4.26. Let G be a countable commutative semigroup, let (m, ~F , c) be a shape

in G, let s ∈ Gm+1 and let k ∈ {0, 1, . . . ,m}. The k-th line of the (m, ~F , c)-set D(m, ~F , c; s)

is the set

{f(s0, . . . , sk−1) + c(sk) : f ∈ Fk}

Observe that D(m, ~F , c; s) is the union of its m+ 1 lines.

The proof of Theorem 4.15 goes by induction. Due to its complicated nature it is

convenient to isolate the induction step as a separate lemma.

Lemma 4.27. Let G be a countable commutative semigroup with identity 0, let Λc be the

clique defined in Theorem 4.15, let (m, ~F , c) ∈ Λc and let r ∈ N. Then there exists a shape

(M, ~H,C) ∈ Λc such that for any r-coloring of an (M, ~H,C)-set such that the last k lines
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are each monochromatic (but different lines can have different colors) there exists a subset

which is an (m, ~F , c)-set whose last k + 1 lines are each monochromatic.

Moreover, if c is the identity map, we can take C to be the identity map as well, and if

c is in the center of End(G) we can take C to be in the center of End(G).

Proof. Since any subset of a monochromatic set is monochromatic, we can work with conve-

niently chosen supersets of the Fi’s. Hence we may and will assume that each Fi contains the

projection homomorphisms πj : Gi → G (in each coordinate) and the zero homomorphism.

We will also add to each Fi all the homomorphisms of the form

φ(x0, . . . , xi−1) = f(x0, . . . , xj−1) with f ∈ Fj and j < i

The main technical tool of our proof is Hales-Jewett’s theorem (Theorem 2.38). Let n =

HJ(|Fm−k|, r) be such that any r-coloring of Fnm−k contains a monochromatic combinatorial

line. Since c is concordant with ~F , there exists an endomorphism b : G→ G and, for each

f ∈ Fm−k, there exists af ∈ Hom(Gm−k, G) such that c◦af = f ◦b (where b ∈ End(Gm−k)

is defined by b(x1, . . . , xm−k) = b(x1) + · · ·+ b(xm−k)).

For convenience we denote by N the product N = n(m − k) and let M = N + k. For

each j = 1, . . . ,M , let Hj be a finite set of homomorphisms from Gj → G that will be

determined later. Let HN be the set of all homomorphisms φ : GN → G of the form

φ(t0, . . . , tN−1) =
n−1∑
i=0

fi ◦ b(ti(m−k), ti(m−k)+1, . . . , ti(m−k)+m−k−1)

with f0, . . . , fn−1 ∈ Fm−k. Finally, make ~H = (H1, . . . ,HM ) and C = c ◦ b. Observe that

if c is in the center of End(G), then b = c, and hence C is also in the center of End(G).

Moreover, if c is the identity map, then b is also the identity map, and so is C.

Let t0, . . . , tM ∈ G be arbitrary and let SH be the (M, ~H,C)-set they induce. It will

simplify considerably the notation to let

Ti := (ti(m−k), ti(m−k)+1, . . . , ti(m−k)+m−k−1) ∈ Gm−k

for each i = 0, . . . , n− 1. Thus, in particular, we can write

HN =
{
φ : (t0, . . . , tN−1) 7→

n−1∑
i=0

fi ◦ b(Ti) : f0, . . . , fn−1 ∈ Fm−k

}
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Assume that we are given a coloring of SH into r colors such that each of the last k lines

are monochromatic (but not necessarily of the same color).

Color w = (f0, . . . , fn−1) ∈ Fnm−k with the color of
n−1∑
i=0

fi ◦ b(Ti) + C(tN ) (4.7)

Observe that the elements in (4.7) are in the Nth line of SH . It follows from the Hales-

Jewett theorem that one can find a variable word w ∈ (Fm−k ∪ {∗})n which induces a

monochromatic combinatorial line. We let 〈n〉 = {0, . . . , n− 1}, let A = {i ∈ 〈n〉 : wi = ∗}

and let B = 〈n〉 \A. Now define

uj =



b(tM−m+j) if m− k < j ≤ m∑
i∈B

awi(Ti) + b(tN ) if j = m− k

∑
i∈A

b(ti(m−k)+j) if 0 ≤ j < m− k

(4.8)

Note that, for each ` = 0, . . . ,m, the point um−` depend only on t0, . . . , tM−`.

We claim that, with the right choice of ~H, the (m, ~F , c)-set SF generated by u0, . . . , um

is a subset of SH and that each of the last k + 1 lines of SF are monochromatic. Indeed,

for m− k < j ≤ m, the j-th line of SF is the set

{f(u0, . . . , uj−1) + c(uj) : f ∈ Fj} = {f(u0, . . . , uj−1) + C(tM−m+j) : f ∈ Fj}

This will be a subset of the line M − m + j of SH if we make HM−m+j contain all the

homomorphisms φ of the form

φ(t0, . . . , tM−m+j−1) = f(u0, . . . , uj−1)

for any f ∈ Fj , any possible choice of A,B ⊂ 〈n〉 and any wi ∈ Fm−k (with the uj ’s being

determined by (4.8)). Hence the j-th line of SF is monochromatic.

The (m− k)-th line of SF is the set

{f(u0, . . . , um−k−1) + c(um−k) : f ∈ Fm−k}

=
{
f

(∑
i∈A

b(Ti)
)

+
∑
i∈B

c ◦ awi(Ti) + C(tN ) : f ∈ Fm−k

}

=
{∑
i∈A

f ◦ b(Ti) +
∑
i∈B

wi ◦ b(Ti) + C(tN ) : f ∈ Fm−k

}
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which is precisely the monochromatic combinatorial line found by applying the Hales-

Jewett’s theorem. Hence the (m− k)-th line of SF is inside SH and it is monochromatic.

For j < m− k, the j-th line of SF is the set

{f(u0, . . . , uj−1) + c(uj) : f ∈ Fj}

=
{
f(u0, . . . , uj−1) + c

(∑
i∈A

b(ti(m−k)+j)
)

: f ∈ Fj

}

Let a = maxA. Then the j-th line of SF can be written asf(u0, . . . , uj−1) +
∑

i∈A\{a}
C(ti(m−k)+j) + C(ta(m−k)+j) : f ∈ Fj


which will be contained in the a(m− k) + j-th line of SH if we make Ha(m−k)+j contain all

the homomorphisms φ of the form

φ(t0, . . . , ta(m−k)+j) =
∑
i∈A

f(u0, . . . , uj−1) + C(ti(m−k)+j)

for any f ∈ Fj and any possible choice of A ⊂ 〈a〉, where the dependence of ui on ti is given

by (4.8).

It is routine to verify that C is concordant with H. This finishes the proof.

We move now to proving Theorem 4.15.

Proof of Theorem 4.15. If r = 1 there is nothing to prove so we assume r > 1. Let

(m, ~F , c) ∈ Λc, let n = m(r − 1) and, for each j = 1, . . . , n, let H(0)
j be a finite set

of homomorphisms φ : Gj → G of the following form. Take ` ∈ {1, . . . , j} and let

0 ≤ i1 < · · · < i` < j be arbitrary. Let f ∈ F` and define

φf,i1,...,i`(x0, . . . , xj−1) = f(xi1 , xi2 , . . . , xi`)

We let H(0)
j =

{
φf,i1,...,i`

∣∣∣` ∈ {1, . . . , j}, f ∈ F`, 0 ≤ i1 < · · · < i` < j
}
. Now let ~H(0) =

(H(0)
1 , . . . ,H

(0)
m0). Finally, put c0 = c and m0 = n.

Applying repeatedly Lemma 4.27, we construct inductively sequences (mi)ni=0,
(
~H(i))n

i=0

and (ci)ni=0, such that the shape (mi, ~H
(i), ci) satisfies the conclusion of Lemma 4.27 when

we input the shape (mi−1, ~H
(i−1), ci−1) and set k = n− i.
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Let M = mn, ~H = ~H(n) and C = cn. By construction, for any r-coloring of an

(M, ~H,C)-set SH we can find a subset which is a (mn−1, ~H
(n−1), cn−1)-set with the last line

monochromatic. Iterating, we obtain for each i = 0, . . . , n, a sub (mi, ~H
(i), ci)-set with the

last n− i lines monochromatic. In particular, setting i = 0 we obtain a (n, ~H(0), c)-set with

each line monochromatic (but different lines can have different colors).

Let t = (t0, . . . , tn) be the generator of this (n, ~H(0), c)-set. Applying the pigeonhole

principle one can find, among the n + 1 lines of D(n, ~H(0), c; t), m + 1 lines of the same

color, say the lines `0, `2, . . . , `m. For each j = 0, . . . ,m let sj = t`j and let s = (s0, . . . , sm).

By the construction of H(0)
j we deduce that the j-th line of D(m, ~F , c; s) is contained in

`j-th line of D(n, ~H(0), c; t). Therefore D(m, ~F , c; s) is monochromatic as desired.

To derive Theorem 4.12 from Theorem 4.15 we need first to establish a lemma.

Definition 4.28. Given two shapes λ1 = (m1, ~F
(1), c1) and λ2 = (m2, ~F

(2), c2) in a count-

able commutative semigroup G, we say that λ1 contains λ2 if for every s1 ∈ Gm1+1 there

exists s2 ∈ Gm2+1 such that

D(m1, ~F
(1), c1; s1) ⊃ D(m2, ~F

(2), c2; s2).

Lemma 4.29. Let G be a countable commutative semigroup and let Λt be the clique defined

in Theorem 4.12. For any two shapes λ1, λ2 ∈ Λt there exists some shape λ ∈ Λ which

contains both λ1 and λ2.

Proof. Let (mi, F
(i), ci) = λi for i = 1, 2. Let c = c1 ◦c2 = c2 ◦c1 and let m = max(m1,m2).

We can assume that m1 = m2 = m, putting F
(i)
k = ∅ for k > mi if necessary. For

each i = 1, 2 and n = 1, . . . ,m, let ci ∈ End(Gn) be the map ci : (g0, . . . , gn−1) 7→(
ci(g0), . . . , ci(gn−1)

)
and let

Fn =
{
f ◦ c2 : f ∈ F (1)

n

}
∪
{
f ◦ c1 : f ∈ F (2)

n

}
Let F = (F1, . . . , Fm) and let λ = (m, ~F , c). Since both c1 and c2 are in the center of

End(G), so is c and hence λ ∈ Λt.
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Finally, given any s ∈ Gm we need to show that D(m, ~F , c; s) contains an (mi, F
(i), ci)-

set for each i = 1, 2. Let s(1) = c2(s) =
(
c2(s0), . . . , c2(sm)

)
and let s(2) = c1(s) =(

c1(s0), c1(s1), . . . , c1(sm)
)
. We claim that

D
(
mi, F

(i), ci; s(i)) ⊂ D(m, ~F , c; s)

Indeed, for any i = 1, 2, any n = 0, 1, . . . ,m and any f ∈ F (i)
n we have

ci(s(i)
n ) + f

(
s

(i)
n−1, . . . , s

(i)
0
)

= ci
(
c3−i(sn)

)
+ f

(
c3−i(sn−1, . . . , s0)

)
(4.9)

Since ci ◦ c3−i = c and for f ∈ F (i)
n we have f ◦ c3−i ∈ Fn, we deduce that the element (4.9)

is in D(m, ~F , c; s) as desired.

Proof of Theorem 4.12. Let A be a Λt-rich set and consider an arbitrary finite partition

A = A1 ∪ · · · ∪ Ar. Assume none of the Ai is Λ-large. Then for each i ∈ {1, . . . , r} there

exists a shape λi ∈ Λt such that Ai does not contain an (m, ~F , c)-set of shape λi.

Applying Lemma 4.29 r − 1 times, one can find a shape λ ∈ Λt that contains each of

the shapes λ1, . . . , λr. Therefore, none of the Ai can contain an (m, ~F , c)-set of shape λ.

It follows from Theorem 4.15 that there exists a shape (M, ~H,C) ∈ Λt such that any

partition of an (M, ~H,C)-set into r cells contains a (m, ~F , c)-set in a single cell. On the one

hand, because A was assumed to be Λt-large, it will contain an (M, ~H,C)-set. On the other

hand, this implies that some Ai contains an (m, ~F , c)-set, contradicting the construction

above. This contradiction implies that some Ai must be Λt-large.

Theorems 4.15 and 4.12 deal only with shapes (m, ~F , c) where each component Fi of ~F

is a set of homomorphisms. It is not clear if the methods used to prove them can be adapted

to more general cliques, such as those where the Fi are allowed to contain polynomial maps.

4.4 Applications to systems of equations in commutative semigroups

In this section we derive some corollaries of our results that pertain to partition regularity

of homogeneous systems of equations. In particular we show that the sufficient condition
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in Rado’s theorem, when appropriately formulated, applies to any countable commutative

semigroup. Our departure point is Rado’s theorem itself.

Definition 4.30. Let d, k ∈ N, let A be a k × d matrix with integer coefficients and let

c1, . . . , cd ∈ Zk be the columns of A. We say that A satisfies the columns condition if there

exist m ∈ N and integers 0 = d0 < d1 < d2 < · · · < dm < dm+1 = d such that for every

0 ≤ j ≤ m, the sum

cdj+1 + cdj+2 + · · ·+ cdj+1

is in the linear span (over Q) of the set {ci : i ≤ dj} (with the understanding that the only

vector in the linear span of the empty set is 0).

Theorem 4.31 (Rado [Rad33]). Let d, k ∈ N and let A be a k × d matrix with integer

entries. Then for any finite coloring of N there exists x = (x1, . . . , xd) ∈ Nd with all

coordinates in the same color and Ax = 0 if and only if A satisfies the columns condition

(possibly after some permutation of the columns of A).

The ‘if’ direction of Rado’s theorem follows directly from Deuber’s Theorem 1.11. The

idea is that the columns condition implies the existence of a triple (m, p, c) ∈ N3 such that

any (m, p, c)-set contains a solution to Ax = 0.

More precisely, using the columns condition one can find a d× (m+ 1) matrix B such

that AB = 0 and, for any s ∈ Nm+1, the entries of the vector Bs are contained in the

(m, p, c)-set D(m, p, c; s) for some c, p ∈ N that only depend on A. Then, for any finite

coloring of N one can find s ∈ Nm+1 such that D(m, p, c; s) is monochromatic, and in

particular, all coordinates of Bs are monochromatic. Since AB = 0, also A(Bs) = 0. The

details of this deduction can be found, for instance, in [GRS90].

We now turn to linear systems of equations in countable commutative semigroups and

establish an analogue of the columns condition in this setting.

Definition 4.32. Let G be a countable commutative semigroup with identity 0, let k, d ∈ N

and let A : Gd → Gk be a homomorphism. For each i = 1, . . . , d let ci : G → Gk be the

map defined by ci(x) = A(0, . . . , 0, x, 0, . . . , 0),where the x appears in the i-th position.
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We say that A satisfies the columns condition if there exist c ∈ End(G), m ∈ N and

0 = d0 < d1 < · · · < dm+1 = d such that

1. The composition (c1 + c2 + · · ·+ cd1) ◦ c is the zero map;

2. For each 1 ≤ t ≤ m there are f (t)
1 , . . . , f

(t)
dt
∈ End(G) such that

(cdt+1 + · · ·+ cdt+1) ◦ c+
(
c1 ◦ f (t)

1 + · · ·+ cdt ◦ f
(t)
dt

)
= 0 (4.10)

This definition can be seen as a direct extension of Definition 4.30. Indeed, when G = Z,

the only homomorphisms are multiplication by a fixed integer and equation (4.10) expresses

the fact the sum cdt+1 + · · ·+ cdt+1 is a linear combination of c1, . . . , cdt .

The next proposition is an extension of the ‘if’ part of Rado’s theorem to countable

commutative semigroups.

Proposition 4.33. Let G be a countable commutative semigroup with identity 0, let k, d ∈ N

and let A : Gd → Gk be a homomorphism which satisfies the columns condition for some

c ∈ End(G) that is either in the center of End(G) or is IP-regular. Then for any finite

coloring of G there exists x = (x1, . . . , xd) with all entries in the same color such that

A(x) = 0.

Proof. Letm ∈ N and c ∈ End(G) be given by the columns condition. For each j = 1, . . . ,m

let

Fj =

f :
(
s0, . . . , sj−1

)
7→

j−1∑
`=0

f
(m−`)
i (s`) : dm−j < i ≤ dm+1−j


and let ~F = (F1, . . . , Fm). Assume we are given a finite coloring of G. Appealing to either

Theorem 4.15 or Theorem 4.23 (according to whether c is in the center of End(G) or IP-

regular) we can find s ∈ Gm+1 such that the (m, ~F , c)-set D(m, ~F , c; s) is monochromatic.

For each i = 1, . . . , d, let j ∈ {0, . . . ,m} be such that dm−j < i ≤ dm+1−j (and observe that

j is uniquely determined). Let

xi =
j−1∑
`=0

f
(m−`)
i (s`) + c(sj)
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Observe that xi ∈ D(m, ~F , c; s) and hence all the entries of the vector x = (x1, . . . , xd) ∈ Gd

are of the same color. Finally we need to check that A(x) = 0. Let c1, . . . , cd be as in

Definition 4.32 and observe that each ci : G→ Gk is a homomorphism. We have

A(x) =
d∑
i=1

ci(xi) =
m∑
j=0

dm−j+1∑
i=dm−j+1

ci(xi)

=
m∑
j=0

dm−j+1∑
i=dm−j+1

ci

j−1∑
`=0

f
(m−`)
i (s`) + c(sj)


=

m∑
j=0

dm−j+1∑
i=dm−j+1

(ci ◦ c)(sj) +
m∑
j=0

dm−j+1∑
i=dm−j+1

j−1∑
`=0

(ci ◦ f (m−`)
i )(s`)

=
m∑
`=0

 dm−`+1∑
i=dm−`+1

(ci ◦ c) +
m−`−1∑
j=0

dm−j+1∑
i=dm−j+1

(ci ◦ f (m−`)
i )

 (s`)

=
m∑
t=0

 dt+1∑
i=dt+1

ci

 ◦ c+
dt∑
i=1

ci ◦ f (t)
i

 (s`)

= 0

where the last equality follows from the columns conditions.

While Proposition 4.33 provides a quite satisfactory extension of the sufficient condition

in Rado’s theorem to a general seting, it is not even clear how to formulate the necessary

condition.

Problem 4.34. Let G be a countable commutative cancelative semigroup, let k, d ∈ N and

let A : Gd → Gk be a homomorphism. Give necessary and sufficient conditions for A so

that for any finite partition of G there exists a non-zero x = (x1, . . . , xd) with all entries in

the same cell of the partition and such that A(x) = 0.

We conclude by remarking that an analogue of the columns condition can be concocted

for polynomial equations in such a way that an analogue of Proposition 4.33 holds, but the

condition is cumbersome and so it appears to be of little practical value.
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CHAPTER 5

PATTERNS {x+ y, xy} IN LARGE SETS OF COUNTABLE FIELDS

In this chapter we present work from [BM16a] and [BM16a] on the presence (and abundance)

of {x+ y, xy} patterns in large subsets of countable fields.

5.1 Introduction

Theorem 4.2, stated in the previous section, is a polynomial extension of Deuber’s theo-

rem, which in turn characterizes the linear Ramsey families in N. However, as mentioned

above, not every polynomial Ramsey family is included in the (m, ~F , c)-sets which appear

in Theorem 4.2. One reason for this is that Theorem 4.2 was obtained as the joint extension

of the polynomial van der Waerden theorem and the (linear) Folkman’s theorem. Recall-

ing that the classical Deuber’s theorem is itself the outcome of combining the (linear) van

der Waerden’s theorem with Folkman’s theorem, perhaps in order to obtain every polyno-

mial Ramsey family one has to combine the polynomial van der Waerden’s theorem with a

polynomial version of Folkman’s theorem.

Unfortunately, it is not clear what a polynomial version of Folkman’s theorem would

look like. One option was suggested in the book [GRS90] of Graham, Rothschild and

Spencer in the late 1970’s:

Conjecture 5.1 ([GRS90, end of Section 3.4]). For every finite coloring of N and every

m ∈ N there exists a color C and a set A ⊂ N with |A| = m such that FS(A)∪FP (A) ⊂ C,

where we denote by FP (A) the finite product set, i.e., the analogue of FS(A) for the

multiplicative semigroup structure (N,×).
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We can state Conjecture 5.1 in the language of Ramsey families as saying that for every

m ∈ N the family {SA : ∅ 6= A ⊂ {1, . . . ,m}} ∪ {PA : ∅ 6= A ⊂ {1, . . . ,m}} is Ramsey in

N, where for any non-empty A ⊂ {1, . . . ,m} the functions SA, PA : Nm → N are defined as

SA : (x1, . . . , xm) 7→
∑
i∈A

xi and PA : (x1, . . . , xm) 7→
∏
i∈A

xi

The case m = 2 of Conjecture 5.1 is precisely Conjecture 1.4 from the introduction

and corresponds to a polynomial version of Schur’s theorem. As even the case m = 2 is

still open, it is possible that Conjecture 5.1 will be very hard to solve. On the other hand,

Conjecture 5.1 is only a special case of Problem 1.12.

Very recently we have established a weaker version of Conjecture 1.4 (see Theorem 1.5).

In this chapter we study certain density analogues of this kind of questions in countable

fields and certain subrings. Besides its intrinsic interest, the ideas and techniques developed

in this chapter also paved the way for the proof of Theorem 1.5 in [Mor] (presented in the

next chapter).

{x+ y, xy} patterns in large subsets of countable fields

Not every set of positive (additive) upper density in N contains a configuration {x+ y, xy}.

Indeed no such pair can consist solely of odd numbers and in fact there are sets A ⊂

N which are simultaneously thick with respect to addition and to multiplication (hence

having density one with respect to suitable Følner sequences), and yet contain no non-trivial

configurations {x + y, xy} (see Theorem 5.35 below). However, as we saw in Chapter 3,

the affine structures of N and of Q are significantly different: the affine semigroup AN

of N is non-amenable, while AQ is a solvable (hence amenable) group. In particular, Q

possesses double Følner sequences (see Proposition 3.6) and hence there are finitely additive

probability measures on all subsets of Q which are invariant under any affine transformation.

We show that any large set in Q with respect to an affinely invariant mean contains the

sought-after configurations, which leads to a partition result involving three-element sets

having the form {x, y + x, yx}. In fact, the ergodic method that we employ works equally

well in the framework of arbitrary countable fields.
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Theorem 5.2. Let K be a countable field, let (FN )N∈N be a double Følner sequence in K

and let E ⊂ K be such that d̄(FN )(E) > 0. Then there are infinitely many pairs x, y ∈ K∗

with x 6= y such that

{x+ y, xy} ⊂ E (5.1)

A precise formulation of how large is the set of pairs (x, y) that satisfy equation (5.1)

is given by Theorem 5.10 below. In view of the correspondence principle (Theorem 3.24 in

Chapter 3), Theorem 5.2 can be easily derived from the following ergodic result, which can

be seen as an affine version of Khintchine’s recurrence theorem.

Corollary 5.3. Let K be an infinite countable field, let
(
X,B, µ, (Tg)g∈AK

)
be a probability

measure preserving system and let B ∈ B. Then, for any δ ∈ (0, 1), the set

R(B, δ) :=
{
u ∈ K : µ

(
T−1
Mu
B ∩ T−1

Au
B
)
> δµ(B)2

}
(5.2)

is affinely syndetic.

It is not hard to see that the quantity µ(B)2 in (5.2) is the largest possible (consider

for example the case when the action of AK is strongly mixing).

Corollary 5.3 is in turn derived from the following analogue of von Neumann’s mean

ergodic theorem:

Theorem 5.4. Let K be an infinite countable field, let (Ug)g∈AK be a unitary representation

of AK on a Hilbert space H, let I =
{
f ∈ H : (∀g ∈ AK) Ugf = f

}
be the invariant subspace

and let P : H → I be the orthogonal projection onto I. Then for any f ∈ H and any double

Følner sequence (FN )N∈N in K we have

lim
N→∞

1
|FN |

∑
u∈FN

UMuA−uf = Pf (5.3)

Employing a method developed by Bergelson in [Ber86] we can then quickly deduce

from Corollary 5.3 the following partition statement:

Theorem 5.5 (see Theorem 5.18 for a more precise formulation). Let K be a countable

field. Given a finite coloring K =
⋃
Ci, there exists a color Ci and x, y ∈ K such that

{x, x+ y, xy} ⊂ Ci.
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We remark that it follows from Theorem 5.18 below that x and y can in fact be chosen

from outside any prescribed finite set.

When trying to obtain analogues of Corollary 5.3 or Theorem 5.4 for Z or other rings

one runs into serious difficulties, the main problem being the lack of amenability of the affine

semigroup. Therefore it is a priori not clear what kind of statement similar to Theorem 5.4

can be formulated (and proved) if one replaces fields by more general rings. In particular,

one would like to know if the corresponding set R(B, δ) from (5.2) is non-empty (or indeed

affinely syndetic) for any measure preserving action of the affine semigroup AZ of Z.

We developed an alternative approach to obtaining Corollary 5.3 which does not rely

on the existence of a double Følner sequence. This approach, based on convergence along

ultrafilters, not only allows one to a have reasonable analogue of Theorem 5.4 to actions of

affine semigroups of general LID’s, but also leads to a strong generalization of Corollary 5.3

which guarantees that the sets R(B, δ) are not only affinely syndetic but actually possess

the filter property.

Theorem 5.6. Let R be an LID, let t ∈ N and, for each i = 1, ..., t, let (Ωi, µi) be a

probability space, let (T (i)
g )g∈AR be a measure preserving action of the affine semigroup AR

of K on (Ωi, µi) and let Bi ⊂ Ωi be a measurable set with positive measure. Let δ ∈ (0, 1)

and let R(Bi, δ) be defined as in equation (5.2) with respect to the action (T (i)
g )g∈AR . Then

the intersection

R(B1, δ) ∩ ... ∩R(Bt, δ) (5.4)

is affinely syndetic (and, in particular, nonempty).

Observe that, in general, affinely syndetic sets do not have the finite intersection prop-

erty. For example, the subsets of rational numbers defined by

E1 =
⋃
n∈Z

[2n, 2n+ 1) ⊂ Q E2 =
⋃
n∈Z

[2n− 1, 2n) ⊂ Q

are both additively (hence affinely) syndetic, but have empty intersection.

Remark 5.7. To appreciate the power of the ultrafilter approach, one should note that the

Cesàro convergence results established in [BM16a] imply only the affine syndeticity of the
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intersections

R
(
B1, 0

)
∩ ... ∩R

(
Bt, 0

)
(5.5)

of return sets R(Bi, 0), rather than the affine syndeticity of the intersection of the ‘optimal’

return sets R(Bi, δ), as in (5.4).

The filter property achieved in Theorem 5.6 is deduced from the fact that the sets of

the form R(B, δ) are DC∗ (see Definition 3.11):

Theorem 5.8. Let R be an LID, let (Ω, µ) be a probability space, let (Tg)g∈AR be a measure

preserving action of AR on Ω, let B ⊂ Ω be a measurable set and let ε > 0. Then the set

{
u ∈ R : µ

(
A−1
u B ∩M−1

u B
)
> µ(B)2 − ε

}
is DC∗ and, in particular, affinely syndetic.

This in turn allows us to obtain, as a corollary, the following analogue of formula (5.3)

for measure preserving actions (Tg)g∈AR of the affine semigroup of an LID and a ultrafilter

p ∈ G (see Theorem 5.19 below for a more precise formulation):

p - lim
u
µ(T−1

Au
B ∩ T−1

Mu
B) ≥ µ(B)2

In view of Theorem 5.8 we can now extend Theorem 5.2 to a more general setting, in

a sense halfway towards a proof that the family {x+ y, xy} is Ramsey in N. The following

theorem lists some special cases of a more general Theorem 5.32, to be found in Chapter 5:

Theorem 5.9.

1. For any finite partition Q = C1 ∪ · · · ∪ Cr of the rational numbers, there exists a cell

i ∈ {1, . . . , r} and many1 x ∈ Q, n ∈ N such that {x+ n, xn} ⊂ Ci.

2. More generally, if K is a number field and OK is its ring of integers, for any finite

partition K = C1∪· · ·∪Cr, there exists a cell i ∈ {1, . . . , r} and many x ∈ K, n ∈ OK

such that {x+ n, xn} ⊂ Ci.
1In Theorem 5.32 we describe more precisely how large is the set of such x and n.
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3. Let ~F be a finite field, let K denote the field of rational functions (i.e. quotients of

polynomials) over ~F and let ~F [x] denote the ring of polynomials. Then for any finite

partition K = C1 ∪ · · · ∪ Cr, there exists a cell i ∈ {1, . . . , r} and many f ∈ K,

g ∈ ~F [x] such that {f + g, fg} ⊂ Ci.

5.2 An affine Khintchine theorem

The following is a more precise version of Theorem 5.2:

Theorem 5.10. Let K be a countable field and let E ⊂ K be such that d̄(LN )(E) > 0 for

some double Følner sequence (LN )N∈N. Then for each ε > 0 there is a set D ⊂ K∗ such

that for every double Følner sequence (FN )N∈N

d(FN )(D) ≥ ε

ε+ d̄(LN )(E)− d̄(LN )(E)2

and for all u ∈ D we have

d̄(LN )
(
(E − u) ∩ (E/u)

)
> d̄(LN )(E)2 − ε

In this section we derive Theorem 5.10 from ergodic results concerning actions of the

affine groups AK of a groups. The proof of the ergodic results will be given in Section 5.3.

We begin with the following analogue of the mean ergodic theorem for affine actions.

Theorem 5.11. Let (Ω,B, µ) be a probability space and suppose that AK acts on Ω by

measure preserving transformations. Let (FN ) be a double Følner sequence on K. Then for

each B ∈ B we have2

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uB) ≥ µ(B)2

and, in particular the limit exists.

In the case when the action of AK is ergodic, we can replace one of the sets B with a

potentially distinct set C. This is the content of the next theorem.
2By slight abuse of language we use the same symbol to denote the elements (such as M1/u and A−u)

of AK and the measure preserving transformation they induce on Ω.
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Theorem 5.12. Let (Ω,B, µ) be a probability space and suppose that AK acts ergodically

on Ω by measure preserving transformations. Let (FN ) be a double Følner sequence on K.

Then for any B,C ∈ B we have

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uC) = µ(B)µ(C)

and, in particular, the limit exists.

Remark 5.13. We note that Theorem 5.12 fails without ergodicity. Indeed, take the nor-

malized disjoint union of two copies of the same measure preserving system. Choosing B

to be one of the copies and C the other we get

A−uB ∩M1/uC = ∅ for all u ∈ K∗

We can extract some quantitative bounds from Theorems 5.11 and 5.12. This is sum-

marized in the next corollary (which is an enhanced version of Corollary 5.3).

Corollary 5.14. Let (Ω,B, µ) be a probability space and suppose that AK acts on Ω by

measure preserving transformations. Let (FN ) be a double Følner sequence on K, let B ∈ B

and let ε > 0. Then we have

d(FN )

({
u ∈ K∗ : µ(A−uB ∩M1/uB) > µ(B)2 − ε

})
≥ ε

ε+ µ(B)− µ(B)2

Moreover, if the action of AK is ergodic and B,C ∈ B, the set

Dε :=
{
u ∈ K∗ : µ(A−uB ∩M1/uC) > µ(B)µ(C)− ε

}
satisfies

d(FN )(Dε) ≥ max
(

ε

ε+ µ(B)(1− µ(C)) ,
ε

ε+ µ(C)(1− µ(B))

)
(5.6)

Corollary 5.14 will be proved in Section 5.3. We will use it now, together with the

correspondence principle, to deduce Theorem 5.10.

Proof of Theorem 5.10. Let X = K, let G = AK and let (GN ) = (LN ). Applying the

correspondence principle (Theorem 3.24), we obtain, for each E ⊂ K, a measure preserving
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action (Tg)g∈AK of AK on a probability space (Ω,B, µ), a set B ∈ B such that µ(B) =

d̄(LN )(E), and for all u ∈ K∗ we have d̄(FL)(A−uE ∩M1/uE) ≥ µ(TA−uB ∩ TM1/uB). To

simplify notation we will denote the measure preserving transformations TA−u and TM1/u

on Ω by just A−u and M1/u. Also, recalling that A−uE = E−u and M1/uE = E/u we can

rewrite the previous equation as

d̄(LN )(E − u ∩ E/u) ≥ µ(A−uB ∩M1/uB) ∀u ∈ K∗

Now assume that d̄(LN )(E) > 0 and let ε > 0. Let

Dε := {u ∈ K∗ : d̄(LN )
(
(E − u) ∩ (E/u)

)
> d̄(LN )(E)2 − ε}

By Corollary 5.14 we have, for any double Følner sequence (FN )N∈N,

d(FN )(Dε) ≥ d(FN )

({
u ∈ K∗ : µ(A−uB ∩M1/uB) > µ(B)2 − ε

})
≥ ε

ε+ µ(B)− µ(B)2

= ε

ε+ d̄(LN )(E)− d̄(LN )(E)2

5.3 Proof of the affine ergodic theorem

In this section we will prove Theorems 5.11 and 5.12 and Corollary 5.14. Throughout this

section let K be a countable field, let (Ω,B, µ) be a probability space, let (Tg)g∈AK be a

measure preserving action of AK on Ω and let (FN ) be a double Følner sequence on K.

Let H = L2(Ω, µ) and let (Ug)g∈AK be the unitary Koopman representation of AK (this

means that (Ugf)(x) = f(g−1x)). By a slight abuse of notation we will write Auf instead

of UAuf and Muf instead of UMuf .

Let PA be the orthogonal projection from H onto the subspace of vectors which are

fixed under the action of the additive subgroup SA and let PM be the orthogonal projection

from H onto the subspace of vectors which are fixed under the action of the multiplicative

subgroup SM .
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We will show that the orthogonal projections PA and PM commute, which can be

surprising considering that the subgroups SA and SM do not. The reason for this is that

for each k ∈ K∗, the map Mk : K → K is an isomorphism of the additive group.

Lemma 5.15. For any f ∈ H we have

PAPMf = PMPAf

Proof. We first prove that for any k ∈ K∗, the projection PA commutes with Mk. For this

we will use Theorem 2.50, Lemma 3.8 and equation (3.1):

MkPAf = Mk

 lim
N→∞

1
|FN |

∑
u∈FN

Auf

 = lim
N→∞

1
|FN |

∑
u∈FN

MkAuf

= lim
N→∞

1
|FN |

∑
u∈FN

AkuMkf = lim
N→∞

1
|FN |

∑
u∈kFN

AuMkf = PAMkf

Now we can conclude the result:

PMPAf = lim
N→∞

1
|FN |

∑
u∈FN

MuPAf = PA

 lim
N→∞

1
|FN |

∑
u∈FN

Muf

 = PAPMf

Lemma 5.15 implies that PMPAf is invariant under both SA and SM . Since those two

subgroups generate AK , this means that PMPA is the orthogonal projection onto the space

of functions invariant under AK .

Let P : H → H be the orthogonal projection onto the space of functions invariant under

the action of the group AK . We have P = PAPM = PMPA.

We can now prove the Hilbert space version of the ergodic theorem:

Theorem 5.4. Let K be an infinite countable field, let (Ug)g∈AK be a unitary representation

of AK on a Hilbert space H, let I =
{
f ∈ H : (∀g ∈ AK) Ugf = f

}
be the invariant subspace

and let P : H → I be the orthogonal projection onto I. Then for any f ∈ H and any double

Følner sequence (FN )N∈N in K we have

lim
N→∞

1
|FN |

∑
u∈FN

UMuA−uf = Pf
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In particular, the limit exists.

Proof. We assume first that PAf = 0. For u ∈ K∗, let au = MuA−uf . Then for each

b ∈ K∗ we have

〈aub, au〉 = 〈MubA−ubf,MuA−uf〉

= 〈MbA−ubf,A−uf〉

= 〈A−ubf,M1/bA−uf〉

= 〈A−ubf,A−u/bM1/bf〉

= 〈A−u(b−1/b)f,M1/bf〉

where we used equation (3.1) and the fact that the operators are unitary. Now if b 6= ±1

then b − 1
b = b2−1

b 6= 0 and so the sequence of sets
(
− b2−1

b FN
)
N

is again a double Følner

sequence on K, by Lemma 3.8. Thus, applying Theorem 2.50 we get (keeping b 6= ±1 fixed)

lim
N→∞

1
|FN |

∑
u∈FN

〈aub, au〉 =
〈

lim
N→∞

1
|FN |

∑
u∈FN

A−u(b−1/b)f,M1/bf

〉

=
〈

lim
N→∞

1
|FN |

∑
u∈− b2−1

b
FN

Auf,M1/bf

〉

= 〈PAf,M1/bf〉 = 0

Thus it follows from Proposition 2.53 that

lim
N→∞

1
|FN |

∑
u∈FN

MuA−uf = 0

Now, for a general f ∈ H, we can write f = f1 + f2, where f1 = PAf and f2 = f −PAf

satisfies PAf2 = 0. Note that f1 is invariant under Au. Therefore

lim
N→∞

1
|FN |

∑
u∈FN

MuA−uf = lim
N→∞

1
|FN |

∑
u∈FN

MuA−uf1

= lim
N→∞

1
|FN |

∑
u∈FN

Muf1

= PMf1 = PMPAf = Pf
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Remark 5.16. Theorem 5.4 can be interpreted as an ergodic theorem along a sparse subset

of AK (namely the subset {MuA−u : u ∈ K∗}).

Proof of Theorem 5.11. Let B ∈ B. By Theorem 5.4 applied to the characteristic function

1B of B we get that

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uB) = lim
N→∞

1
|FN |

∑
u∈FN

∫
Ω
A−u1BM1/u1Bdµ

= lim
N→∞

1
|FN |

∑
u∈FN

∫
Ω

(MuA−u1B)1Bdµ

=
∫

Ω
(P1B)1Bdµ

We can use the Cauchy-Schwartz inequality with the functions P1B and the constant func-

tion 1, and the trivial observation that P1 = 1, to get

∫
Ω

(P1B)1Bdµ = ‖P1B‖2 ≥ 〈P1B, 1〉2 = 〈1B, P1〉2 = 〈1B, 1〉2 = µ(B)2

Putting everything together we obtain

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uB) ≥ µ(B)2

Proof of Theorem 5.12. Let B,C ∈ B. By Theorem 5.4 applied to the characteristic func-

tion 1B of B we get that

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uC) = lim
N→∞

1
|FN |

∑
u∈FN

∫
Ω
A−u1BM1/u1Cdµ

= lim
N→∞

1
|FN |

∑
u∈FN

∫
Ω

(MuA−u1B)1Cdµ

=
∫

Ω
(P1B)1Cdµ

Since the action of AK is ergodic, P1B = µ(B), and hence

lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uC) = µ(B)
∫

Ω
1Cdµ = µ(B)µ(C)
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Proof of Corollary 5.14. Let B,C ⊂ B be arbitrary and observe that

µ(A−uB ∩M1/uB) ≤ µ(M1/uB) = µ(B).

For each ε > 0 let Dε be the set Dε := {u ∈ K : µ(A−uB ∩M1/uB) > µ(B)2 − ε}.

Now let (F̃N )N∈N be a subsequence of (FN )N∈N such that

d(FN )(Dε) = lim
N→∞

|Dε ∩ F̃N |
|F̃N |

Thus d(FN )(Dε) = d(F̃N )(Dε) = d̄(F̃N )(Dε). By Theorem 5.11, we now have

µ(B)2 = lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uB)

= lim
N→∞

1
|F̃N |

∑
u∈F̃N

µ(A−uB ∩M1/uB)

= lim
N→∞

1
|F̃N |

 ∑
u∈F̃N∩Dε

µ(A−uB ∩M1/uB) +
∑

u∈F̃N\Dε

µ(A−uB ∩M1/uB)


≤ µ(B)d̄(F̃N )(Dε) +

(
µ(B)2 − ε

)(
1− d(F̃N )(Dε)

)
= µ(B)d(FN )(Dε) +

(
µ(B)2 − ε

)(
1− d(FN )(Dε)

)
From this we conclude that d(FN )(Dε) ≥ ε/

(
ε+ µ(B)

(
1− µ(B)

))
.

Now assume that the action of AK is ergodic. Note that trivially µ(A−uB ∩M1/uC) ≤

µ(M1/uC) = µ(C). For each ε > 0 let Dε be the set Dε := {u ∈ K : µ(A−uB ∩M1/uC) >

µ(B)µ(C)− ε}.

Now let (F̃N )N∈N be a subsequence of (FN )N∈N such that

d(FN )(Dε) = lim
N→∞

|Dε ∩ F̃N |
|F̃N |
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Thus d(FN )(Dε) = d(F̃N )(Dε) = d̄(F̃N )(Dε). By Theorem 5.12 we now have

µ(B)µ(C) = lim
N→∞

1
|FN |

∑
u∈FN

µ(A−uB ∩M1/uC)

= lim
N→∞

1
|F̃N |

∑
u∈F̃N

µ(A−uB ∩M1/uC)

= lim
N→∞

1
|F̃N |

 ∑
u∈F̃N∩Dε

µ(A−uB ∩M1/uC) +
∑

u∈F̃N\Dε

µ(A−uB ∩M1/uC)


≤ µ(C)d̄(F̃N )(Dε) +

(
µ(B)µ(C)− ε

)(
1− d(F̃N )(Dε)

)
= µ(C)d(FN )(Dε) +

(
µ(B)µ(C)− ε

)(
1− d(FN )(Dε)

)
From this we conclude that d(FN )(Dε) ≥ ε/

(
ε+µ(C)

(
1−µ(B)

))
. Switching the roles of B

and C we obtain Equation (5.6).

Remark 5.17. Note that the lower bound on d(FN )(Dε) does not depend on the set B, only

on the measure µ(B). Moreover, it does not depend on the double Følner sequence (FN ).

5.4 An application of the coloring trick

In this section we give a proof of Theorem 5.5. We start by giving a more precise statement:

Theorem 5.18. For any finite coloring K =
⋃
Ci there exists a color Ci, a subset D ⊂ K

satisfying d̄(FN )(D) > 0 and, for each u ∈ D, there is a set Du ⊂ K also satisfying

d̄(FN )(Du) > 0 such that for any v ∈ Du we have {u, u+ v, uv} ⊂ Ci.

The proof of Theorem 5.18 uses the fact that sets of recurrence (cf. Definition 2.51) are

partition regular (Lemma 2.52). For other similar applications of this phenomenon see for

instance [Ber86], the discussion before Question 11 in [Ber96] and Theorem 0.4 in [BM96].

Proof of Theorem 5.18. Let K = C1 ∪ C2 ∪ ... ∪ Cr′ be a finite partition of K. Assume

without loss of generality that, for some r ≤ r′, the upper density d̄(FN )(Ci) is positive for

i = 1, ..., r and d̄(FN )(Ci) = 0 for i = r + 1, ..., r′.

For a set C ⊂ K and each u ∈ C define the set Du(C) = (C − u) ∩ (C/u). Let

D(C) =
{
u ∈ C : d̄(FN )

(
Du(C)

)
> 0

}
. We want to show that for some i = 1, ..., r we have

d̄(FN )
(
D(Ci)

)
> 0.
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If for some 1 ≤ i ≤ r we have d̄(FN )
(
D(Ci)

)
= 0 but D(Ci) 6= ∅, we can consider the

more refined coloring obtained by distinguish D(Ci) and Ci \D(Ci). Since

D
(
Ci \D(Ci)

)
⊂
(
Ci \D(Ci)

)
∩D(Ci)

we conclude that D
(
Ci \ D(Ci)

)
= ∅. Thus, without loss of generality, we can assume

that either D(Ci) = ∅ or d̄(FN )
(
D(Ci)

)
> 0. Therefore it suffices to show that for some

i = 1, ..., r we have D(Ci) 6= ∅.

For each i = 1, ..., r let Ri = {MuA−u : u ∈ Ci} ⊂ AK and let R = R1 ∪ ... ∪ Rr.

We claim that R is a set of recurrence. Indeed, given any probability preserving action

(Ω, µ, (Tg)g∈AK ) of AK and any measurable set B ⊂ Ω with positive measure, by Theorem

5.11 we find that the set {u ∈ K∗ : µ(A−uB ∩M1/uB) > 0} has positive upper density. In

particular, for some u ∈ C1∪...∪Cr we have that µ(MuA−uB∩B) = µ(A−uB∩M1/uB) > 0.

Since MuA−u ∈ R we conclude that R is a set of recurrence.

By Lemma 2.52 we conclude that for some i = 1, ..., r the set Ri is a set of recurrence.

We claim that D(Ci) 6= ∅.

To see this, apply the correspondence principle (Theorem 3.24) with X = K, G = AK ,

GN = FN and E = Ci to find a probability preserving action (Tg)g∈AK of AK on some

probability space (Ω, µ) and a measurable set B ⊂ Ω satisfying µ(B) = d̄(FN )(Ci) and

d̄(FN )
(
A−uCi ∩M1/uCi

)
≥ µ

(
TA−uB ∩ TM1/uB

)
for all u ∈ K∗. Since Ri is a set of recurrence, there is some u ∈ Ci such that

0 < µ(TMuA−uB ∩B) = µ
(
TA−uB ∩ TM1/uB

)
≤ d̄(FN )

(
A−uCi ∩M1/uCi

)
= d̄(FN )

(
Du(Ci)

)
We conclude that u ∈ D(Ci), hence d̄(FN )(Di) > 0.

Let D = D(Ci) ⊂ Ci and for each u ∈ D let Du = Du(Ci). Now let v ∈ Du. Then we

have u+ v ∈ Ci and uv ∈ Ci. We conclude that {u, u+ v, uv} ⊂ Ci as desired.
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5.5 Finite intersection property of sets of return times

In this section we study isometric anti-representations3 (Ug)g∈AR of the affine semigroup AR

of a ring R on a Hilbert space H (this means that 〈Ugφ,Ugψ〉 = 〈φ, ψ〉 and Ug(Uhφ) = Uhgφ

for any g, h ∈ AR and φ, ψ ∈ H).

Recall that if G is a semigroup and (Ug)g∈G is an isometric (anti-)representation of G

on a Hilbert space H, then a vector φ ∈ H is called compact if the orbit {Ugφ : g ∈ G} ⊂ H

is pre-compact in the norm topology. The set of compact vectors forms a closed subspace.

When G is the additive sub-semigroup SA of the affine semigroup AR, we denote the

orthogonal projection onto the space of compact vectors by VA and when G is the multi-

plicative sub-semigroup SM of the affine semigroup AR, we denote the orthogonal projection

onto the space of compact vectors by VM . Our main ergodic-theoretic result is the following

analogue of Theorem 5.4, with Cesàro averages (which are unavailable in our current situ-

ation) replaced with limits along ultrafilters p ∈ G = AMI ∩MMI (see Definition 3.11).

Theorem 5.19. Let R be an LID (see Definition 3.1), let H be a Hilbert space and let

(Ug)g∈AR be an isometric anti-representation of AR on H. Then, for any φ, ψ ∈ H and

p ∈ G (see Definition 3.11) we have

p - lim
u
〈Auφ,Muψ〉 = 〈VAφ, VMψ〉.

In this section we will always work under the assumptions of Theorem 5.19.

Projection onto the space of compact vectors

We have the following result:

Lemma 5.20. If p ∈ G (see Definition 3.11) and φ ∈ H then

VMφ = p - lim
u
Muφ in the topology of weak convergence

3We deal here with anti-representations instead of (a priori more natural) representations because a
measure preserving action (Tg)g∈G of a non-commutative semigroup G induces a natural anti-representation
of G by isometries on the corresponding L2 space. Of course, the results obtained in this section hold true
for isometric representations as well.
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If p ∈ AMI and k ∈ R∗ then

VAφ = p - lim
u
Akuφ in the topology of weak convergence.

Proof. Since p ∈ MMI, the first equality follows4 from Corollary 4.6 on [Ber03]. By the

same corollary we have that VAφ = q - lim
u
Auφ for every additive minimal idempotent q.

It follows from Lemma 3.16 that p - lim
u
Akuφ = kp - lim

u
Auφ. In view of Lemma 3.15 we

have that kp ∈ AMI. Since the map q 7→ q - lim
u
Auφ is continuous we conclude that

p - lim
u
Akuφ = kp - lim

u
Auφ = VAφ

Lemma 5.21. For every φ ∈ H we have VAVMφ = VMVAφ.

Proof. Let p ∈ G. For each k ∈ R∗, it follows from Lemma 5.20 that

MkVAφ = Mk

(
p - lim

u
Auφ

)
= p - lim

u
MkAuφ = p - lim

u
AkuMkφ = VAMkφ

Therefore

VMVAf = p - lim
k
MkVAφ = p - lim

k
VAMkφ = VA

(
p - lim

k
Mkφ

)
= VAVMφ

In view of Lemma 5.21, the operator V := VAVM is an orthogonal projection. This gives

the following simple corollary of Lemma 5.21 which will be needed in the proof of Theorem

5.8 below.

Corollary 5.22. Let φ, ψ ∈ H and assume that Ugψ = ψ for every g ∈ AR. Then

|〈φ, ψ〉|2 ≤ ‖ψ‖2 · 〈VAφ, VMφ〉
4In [Ber03] the results are stated and proved for groups only, but it is easy to check that the proofs work

for discrete semigroups as well (as is observed in the first paragraph after the remark following Theorem 4.1
in [Ber03]).
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Proof. We have

‖ψ‖2 · 〈VAφ, VMφ〉 = ‖ψ‖2 · 〈V φ, φ〉 = ‖ψ‖2 · ‖V φ‖2

≥
∣∣〈V φ, ψ〉∣∣2 =

∣∣〈φ, V ψ〉∣∣2 =
∣∣〈φ, ψ〉∣∣2

where the inequality follows from Cauchy-Schwarz inequality.

Dealing with VAφ

The scheme of the proof of Theorem 5.19 is as follows: first we decompose φ = VAφ +

φ⊥ (where φ⊥ := φ − VAφ) into its ‘additively compact’ and ‘additively weak mixing’

components. Observe that, since VA is an orthogonal projection, VA(VAφ) = VAφ and

VAφ
⊥ = 0. The two main steps are to show that p - limu〈AuVAφ,Muψ〉 = 〈VAφ, VMψ〉 and

that p - limu〈AuVAφ⊥,Muψ〉 = 0. In this subsection we deal with the first step.

Lemma 5.23. Let φ ∈ H be additively compact (i.e. such that VAφ = φ). Then for any

p ∈ G

p - lim
u
‖Auφ− φ‖ = 0

In other words, for all ε > 0 the set S := {u ∈ K : ‖Auφ− φ‖ < ε} is DC∗.

Proof. From the definition of VA, the orbit closure X = {Auφ : u ∈ R} of φ is compact.

Hence it follows from Lemma 2.55 (applied to the system (X, (Au)u∈R)) that S intersects

non-trivially every IP0 set in (R,+). Invoking Theorem 2.29 it follows that S intersects

every piecewise syndetic set in (R∗,×). Since every DC set is central (and hence piecewise

syndetic, according to Corollary 2.33) in (R∗,×), it follows that S is DC∗.

Lemma 5.24. For all p ∈ G and φ, ψ ∈ H we have

p - lim
u
〈Au(VAφ),Muψ〉 = 〈VAφ, VMψ〉

Proof. We will assume, without loss of generality, that ‖φ‖, ‖ψ‖ ≤ 1. In view of Lemma

5.20 we have

p - lim
u
〈VAφ,Muψ〉 =

〈
VAφ,

(
p - lim

u
Muψ

)〉
= 〈VAφ, VMψ〉
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Therefore, for every ε > 0, the set

S1 =
{
u ∈ R : |〈VAφ,Muψ〉 − 〈VAφ, VMψ〉| <

ε

2

}

belongs to p.

Applying Lemma 5.23 with VAφ we get that the set S2 := {u ∈ R : ‖AuVAφ− VAφ‖ <

ε/2} is also in p. Using the Cauchy-Schwarz inequality we have that for any u ∈ S2

|〈VAφ,Muψ〉 − 〈AuVAφ,Muψ〉| <
ε

2

Finally let S := S1 ∩ S2 ∈ p and let u ∈ S. We conclude that

|〈AuVAφ,Muψ〉 − 〈VAφ, VMψ〉| < ε

which finishes the proof.

Dealing with φ⊥ when R is a field

We now turn our attention to the weak mixing component φ⊥ := φ − VAφ. Dealing with

this component in the general case requires some technical steps which obscure the main

ideas. In order to clarify these ideas we restrict our attention in this subsection to the case

where R is a field; the general case is treated in the next subsection. (Of course the results

of this subsection also follow logically from the results in the next one.)

We will use the following version of the van der Corput trick.

Proposition 5.25 (cf. [BM07, Theorem 2.3]). Let p ∈ G, let H be a Hilbert space, let

(au)u∈R∗ be a bounded sequence in H indexed by R∗. If p - lim
u
〈abu, au〉 = 0 for all b in a

co-finite subset of R∗ then p - lim
u
au = 0 in the weak topology of H.

Lemma 5.26. Let K be a field, let H be a Hilbert space, let (Ug)g∈AK be a unitary anti-

representation of AK on H and let φ⊥, ψ ∈ H, where we assume that VAφ⊥ = 0. Then, for

all p ∈ G we have

p - lim
u
〈Auφ⊥,Muψ〉 = 0
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Proof. Observe that, since we deal with an anti-representation, the distributive law (see

(3.1)) takes the form

AvMu = MuAvu (5.7)

for any v ∈ K and u ∈ K∗. Let au = M1/uAuφ
⊥. Then for all b ∈ K \ {−1, 0, 1}, using

(5.7) and the fact that isometries preserve scalar products we have

〈aub, au〉 = 〈M1/ubAubφ
⊥,M1/uAuφ

⊥〉 = 〈Au(b−1/b)φ
⊥,Mbφ

⊥〉

Therefore, it follows from Lemma 5.20 that for every p ∈ G we have

p - lim
u
〈aub, au〉 =

〈
p - lim

u
Au(b−1/b)φ

⊥,Mbφ
⊥
〉

= 〈VAφ⊥,Mbφ
⊥〉 = 0

By Proposition 5.25 we conclude that p - lim
u
M1/uAuφ

⊥ = p - lim
u
au = 0. Hence we have

p - lim
u
〈Auφ⊥,Muψ〉 = p - lim

u
〈M1/uAuφ

⊥, ψ〉

=
〈
p - lim

u
M1/uAuφ

⊥, ψ
〉

= 0

Dealing with φ⊥ when R is a general LID

In this subsection we extend the scope of Lemma 5.26 from the previous sub-section to the

case when we have a general LID (not necessarily a field). Namely, we will prove:

Lemma 5.27. Assume R is an LID, let H be a Hilbert space, let (Ug)g∈AR be an isometric

anti-representation of AR on H and let φ⊥, ψ ∈ H. Assume that VAφ⊥ = 0. Then, for all

p ∈ G we have

p - lim
u
〈Auφ⊥,Muψ〉 = 0

In the proof of this lemma we will need a few facts about isometric anti-representations

of AR. First observe that, unlike the case when R is a field,Mu is not necessarily invertible.

Thus its adjoint MT
u (defined so that 〈Muφ, ψ〉 = 〈φ,MT

u ψ〉 for all φ, ψ ∈ H) may not be in

AR. However, since Au is invertible (and hence unitary) we have the following distributivity

relation:
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Lemma 5.28. Under the assumptions of Lemma 5.27 we have

AuvM
T
u = MT

u Av

Proof. We have, for any φ, ψ ∈ H

〈AuvMT
u φ, ψ〉 = 〈φ,MuA−uvψ〉 = 〈φ,A−vMuψ〉 = 〈MT

u Avφ, ψ〉.

This implies the identity in question.

Another difficulty which is present in our current context is the fact that the composition

MnM
T
n is not necessarily the identity map. The following lemma allows us to circumvent

this difficulty when R is an LID.

Lemma 5.29. Under the assumptions of Lemma 5.27, there exists an orthogonal projection

P : H → H such that for every φ ∈ H we have

p - lim
u
‖MuM

T
u φ− Pφ‖ = 0

Proof. Let Pu = MuM
T
u . Since Mu is an isometry, Pu is the orthogonal projection onto the

image of Mu. Observe that, in particular, the image of Pu1u2 is contained in the image of

each Pui , i = 1, 2.

Let {r1, r2, . . . } be an arbitrary enumeration of the elements of R∗ and let un =
∏n
i=1 ri.

Let Sn be the image of Mun , so that Pun is the orthogonal projection onto Sn. Note that

Sn+1 ⊂ Sn. Let S =
⋂
n≥1 Sn and let P : H → S be the orthogonal projection. Let E0 be an

orthonormal basis for S and, for each n ≥ 1 let En be an orthonormal basis for Sn∩(Sn+1)⊥.

Thus E =
⋃
n≥0En is an orthonormal basis for H. Write φ in terms of the basis E as

φ =
∑
n≥0

∑
e∈En cee. For a fixed ε > 0 let m ∈ N be such that

∑
n≥m

∑
e∈En |ce|

2 < ε2.

Next, let u be in the ideal umR. We have that the image of Pu is contained in the image

of Pum , so Puh ∈ Sm and hence

Puφ =
∑
e∈E0

cee+
∞∑
n=m

∑
e∈En

cee = Pφ+
∞∑
n=m

∑
e∈En

cee

Therefore ‖Puφ − Pφ‖ < ε. Since the ideal umR has finite index as an additive group,

it follows from Lemma 3.13 that it belongs to p. We conclude that p - limMnM
T
n φ =

p - limPnφ = Pφ in the strong topology, as desired.
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Finally, we need a strengthening of Lemma 5.20.

Definition 5.30. Let R be an integral domain, let b ∈ R and let p ∈ βR. Assume that

bR ∈ p. Given a sequence (xu)u∈R in a compact space X we define p - limu xu/b to be the

point x ∈ X such that for every neighborhood U of x, the set {u ∈ bR : xu/b ∈ U} ∈ p.

Lemma 5.31. Let R be an LID, let p ∈ G and let k, b ∈ R∗. For any unitary anti-

representation (Ug)g∈AR of the semigroup AR on a Hilbert space H and any φ ∈ H we

have

p - lim
u
Aku/bφ = VAφ in the weak topology

Proof. First observe that the p - lim is well defined since the ideal bR has finite index in R,

p belongs to the closure AMI of the additive minimal idempotents and hence, in view of

Lemma 3.13, bR ∈ p.

It follows from Lemma 3.16 that p - limuAku/bφ = kp - limuAu/bφ. Since, in view of

Lemma 3.15, kp ∈ AMI, we can and will assume that k = 1. Next, let q = b−1p be the

ultrafilter defined so that E ∈ q ⇐⇒ bE ∈ p. It follows from Lemma 3.15 that q ∈ AMI.

Therefore, it follows from Lemma 5.20 that for any ψ ∈ H and ε > 0 the set

E = {u ∈ R :
∣∣〈Auφ− VAφ, ψ〉∣∣ < ε} ∈ q

We conclude that

bE = {u ∈ bR :
∣∣〈Au/bφ− VAφ, ψ〉∣∣ < ε} ∈ p

We can now give a proof of Lemma 5.27:

Proof of Lemma 5.27. Denoting by MT
u the adjoint of Mu, we can write 〈Auφ⊥,Muψ〉 =

〈MT
u Auφ

⊥, ψ〉, so the lemma will follow if we show that p - limMT
u Auφ

⊥ = 0 (in the weak

topology). To do this we will use the van der Corput trick (Proposition 5.25), and so it

suffices to show that

p - lim
u
〈MT

ubAubφ
⊥,MT

u Auφ
⊥〉 = 0 ∀b ∈ R \ {−1, 0, 1} (5.8)
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Since the operator Au is unitary we can rewrite the inner product in (5.8) as

〈MT
ubAubφ

⊥,MT
u Auφ

⊥〉 = 〈A−uMuM
T
ubAubφ

⊥, φ⊥〉.

By (5.7) we have A−uMu = MuA−u2 (recall this is an anti-representation). Also, assuming

that u ∈ bR and evoking Lemma 5.28 we conclude that

〈MT
ubAubφ

⊥,MT
u Auφ

⊥〉 = 〈MuM
T
ubAub−u/bφ

⊥, φ⊥〉 = 〈Aub−u/bφ⊥,MbMnM
T
n φ
⊥〉

By Lemma 5.31 we have that p - limAub−u/bφ
⊥ = VAφ

⊥ = 0 in the weak topology.

By Lemma 5.29 we have that p - limuMbMuM
T
u φ
⊥ exists in the strong topology. Thus

we conclude that p - lim〈Aub−u/b)φ⊥,MbMnM
T
n φ
⊥〉 = 0, which gives (5.8) and finishes the

proof.

Proofs of 5.19 and some corollaries

We have now gathered all the ingredients necessary to prove Theorem 5.19:

Proof of Theorem 5.19. Let φ⊥ = φ − VAφ, so that VAφ⊥ = 0. Using Lemmas 5.24 and

5.27 we deduce that

p - lim〈Auφ,Muψ〉 = p - lim〈AuVAφ,Muψ〉+ 〈Auφ⊥,Muψ〉 = 〈VAφ, VMψ〉

As a corollary we now deduce Theorem 5.8.

Proof of Theorem 5.8. Let R be an LID, let (Ω, µ) be a probability space, let (Tg)g∈AR be

a measure preserving action of AR on Ω, let B ⊂ Ω be a measurable set and let ε > 0. We

need to show that the set

R(B, ε) :=
{
u ∈ R : µ

(
A−1
u B ∩M−1

u B
)
≥ µ(B)2 − ε

}
is DC∗.
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LetH = L2(Ω, µ) and, for each g ∈ AR, define the operator (Ugφ)(x) = φ(Tgx). Observe

that UgUh = Uhg, so this induces an isometric anti-representation (Ug)g∈AR of AR in H.

Let B ⊂ Ω. Observe that

1T−1
g B(x) = 1 ⇐⇒ Tgx ∈ B ⇐⇒ 1B(Tgx) = 1 ⇐⇒ Ug1B(x) = 1

Therefore µ(A−1
u B ∩M−1

u B) =
∫

ΩAu1B ·Mu1Bdµ = 〈Au1B,Mu1B〉. It follows from Theo-

rem 5.19 that for any ε > 0 the set

{
u ∈ R : 〈Au1B,Mu1B〉 ≥ 〈VA1B, VM1B〉 − ε

}
is DC∗. Finally, it follows from Corollary 5.22 (applied with φ = 1B and ψ ≡ 1) that

〈VA1B, VM1B〉 ≥ µ(B)2.

Observe that Theorem 5.6 easily follows from Theorem 5.8. Indeed, given p ∈ G it

follows from the definition of DC∗ sets and Theorem 5.8 that R(Bi, δ) ∈ p for every i.

Therefore also the intersection R = R(B1, δ) ∩ · · · ∩R(Bt, δ) belongs to p. Since p ∈ G was

arbitrary, it follows that R is itself a DC∗ set. Finally, Remark 3.23 implies that R must

be affinely syndetic.

We now present the main combinatorial corollary of Theorem 5.8:

Theorem 5.32. Let K be a countable field and let R ⊂ K be a sub-ring which is a LID.

Let E ⊂ K with d̄(FN )(E) > 0 for some double Følner sequence (FN ) and let ε > 0. Then

the set {
u ∈ R : d̄(FN )

(
(E − u) ∩ (E/u)

)
> d̄(FN )(E)2 − ε

}
(5.9)

is DC∗ and, in particular, affinely syndetic in R.

Proof. Using the correspondence principle (Theorem 2.8 in [BM16a]) one can construct a

measure preserving action (Tg)g∈AK of AK on a probability space (Ω,B, µ) and a set B ∈ B

such that µ(B) = d̄(FN )(E) and, for each u ∈ K∗

d̄(FN )
(
(E − u) ∩ (E/u)

)
≥ µ(A−1

u B ∩M−1
u B)
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The result now follows from Theorem 5.8.

One can deduce parts (2) and (3) of Theorem 5.9 from Theorem 5.32 using the fact

that for any finite partition of a countable field, one of the cells of the partition has positive

upper density with respect to a double Følner sequence. Then using that cell Ci of the

partition as E, for any element n of the (non-empty) set defined in (5.9) and for any x in

the (non-empty) intersection (Ci − n) ∩ (Ci/n) we have {x+ n, xn} ⊂ Ci.

To deduce part (1) of Theorem 5.9, one needs an additional fact:

Proposition 5.33. The subset N of the ring Z belongs to every non-principal multiplicative

idempotent.

Proof. Let p ∈ βZ be a non-principal multiplicative idempotent. Assume, for the sake

of a contradiction, that N /∈ p. Then −N ∈ p = pp, which by definition implies that

{n ∈ Z∗ : −N/n ∈ p} ∈ p. Observe that

−N/n = {a ∈ Z∗ : an ∈ −N} =

 N if n ∈ −N

−N if n ∈ N

Therefore {n ∈ Z∗ : −N/n ∈ p} = N /∈ p, which is the desired contradiction.

To deduce part (1) of Theorem 5.9 one applies Theorem 5.32 with K = Q, R = Z and

E being a cell of the partition with positive upper density with respect to a double Følner

sequence. The set S defined by (5.9) is DC∗ in Z, which means that for any p ∈ G we

have S ∈ p. Since any p ∈ G is a non-principal multiplicative idempotent, it follows from

Proposition 5.33 that also N ∈ p, and therefore S ∩N ∈ p and hence is non-empty. For any

n in that intersection the set (E − n) ∩ (E/n) is non-empty and any x in this intersection

yields {x+ n, xn} ⊂ E.

5.6 Notions of largeness and configurations {xy, x+ y} in N

In this section we discuss notions of largeness which guarantee the presence of configurations

of the form {x + y, xy}. In the next chapter we will show that for any finite partition of
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the natural numbers, one of the cells of the partition must contain such a configuration

(and indeed significantly more general configurations), however there is no analogue of

Theorem 2.23 in the affine setting and hence it is not clear which notion(s) of largeness

imply the existence of such a configuration (we are being purposefully vague about the

term "notion of largeness" to accommodate any potential candidate). The understanding

of which notions of largeness imply the presence of {x + y, xy} patterns would likely lead

to new results on partition regularity of other configurations, for instance by combining it

with procedures similar to those employed in Section 5.4.

It is a trivial observation that the set of odd numbers in N or in Z does not contain

pairs {x + y, xy}. Therefore, additively syndetic sets (i.e. sets which are syndetic with

respect to the additive semigroup) do not contain, in general, configurations {x+ y, xy}. It

is thus somewhat surprising that multiplicatively syndetic subsets in any integral domain

do contain such patterns:

Theorem 5.34. Let R be an infinite countable integral domain and let S ⊂ R∗ be multi-

plicatively syndetic (i.e. syndetic as a subset of the semigroup (R∗, ·)). Then S contains

(many) pairs of the form {x+ y, xy}.

Proof. Let F ⊂ R∗ be a finite set such that R∗ =
⋃
n∈F S/n (the existence of such F is

equivalent, by definition, to the statement that S is multiplicatively syndetic). Thus R∗ is

finitely partitioned into multiplicative shifts of S and hence there exist (many) a, b ∈ R∗

such that a + bF ⊂ S 5. Since ab ∈ R∗ =
⋃
n∈F S/n, there exist some n ∈ F such that

abn ∈ S. We conclude that
{
a+ bn, a(bn)

}
⊂ S as desired.

While it is not hard to see that there exist partitions of N or Z with none of the cells

of the partition being multiplicatively syndetic, it is a classical fact that for any finite

partition of a semigroup, one of the cells is piecewise syndetic. One could then hope

that any multiplicatively piecewise syndetic subset of R∗ contains a pattern {x + y, xy}.

Unfortunately, the next example refutes this assertion.
5This can be easily proved with the help of the Hales-Jewett theorem. Alternatively, one may combine

Proposition 2.39 with Lemma 2.22.
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Theorem 5.35. There exists a set E ⊂ N which is additively thick and multiplicatively

thick (and so, in particular, E is a multiplicatively piecewise syndetic subset of N) but does

not contain a pair {x+ y, xy} with x, y > 2.

Proof. Let (pN ) be a sequence of primes such that p1 = 5 and, for each N ∈ N, we have

pN+1 > 4(NpN )4. For each N ∈ N, let

E2N−1 = pN [1, N ] and E2N = [(NpN )2 + 1, 2(NpN )2 − 3]

where we use the notation [a, b] to denote the set {a, a + 1, . . . , b}. Let E =
⋃
EN . It

follows directly from the construction that E is additively thick as a subset of either N or

Z and is multiplicatively thick as a subset of N. Moreover, E ∪ (−E) is a multiplicatively

thick subset of Z∗. Since N is a multiplicatively syndetic subset of Z∗, it follows that E is

a multiplicative piecewise syndetic subset of Z∗.

We first show that no set E2N contains a pair {x+y, xy}: assume that a = x+y ∈ E2N

and x, y ≥ 2. Let b = xy. Then b ≥ 2(a − 2) ≥ 2[(NpN )2 + 1 − 2] = 2(NpN )2 − 2, so b is

too large to be in E2N .

Next we show that no set E2N−1 contains such a pair. Assume xy ∈ E2N−1, say

xy = npN , then without loss of generality we have x = pNd and y = n/d for some divisor

d of n. But then x+ y < pN (d+ 1) because n/d ≤ N < pN . Hence x+ y /∈ E2N−1.

For each N ∈ N we have (maxE2N−1)2 = (NpN )2 < (NpN )2 + 1 = minE2N and

(maxE2N )2 = (2(NpN )2 − 3)2 < 4(NpN )4 < pN+1 = minE2N+1. Fix a pair x, y ∈ N with

both x, y ≥ 2, let a = xy and b = x+ y. We observe that b ≤ a ≤ (b/2)2.

If b ∈ E, say b ∈ En, then minEn ≤ b ≤ a ≤ (b/2)2 < [(maxEn)/2]2 < minEn+1 so

a can not be in Em for any m 6= n. Since we already showed that a /∈ En (otherwise En

would contain {b, a} = {x+y, xy}), we conclude that a /∈ E and this finishes the proof.

We observe that the complement Ẽ = N \ E of the set constructed in Theorem 5.35 is

also rather large. In particular d̄(Ẽ) = 1, where, as usual, for a subset S ⊂ N, d̄(S) denotes

its upper density (see (2.3)). The next result shows that sets having upper density 1 are

large not only additively, but also multiplicatively.
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Theorem 5.36. Let E ⊂ N satisfy d̄(E) = 1. Then E is affinely thick.

Proof. Since d̄ is the upper density with respect to an additive Følner sequence, it is not

hard to see that d̄
(
(E − n) ∩ E) = 1 for any n ∈ N. We claim that also d̄

(
(E/n) ∩ E) = 1

for any n ∈ N.

Assuming the claim for now, let F = {g1, . . . , gk} ⊂ AN be an arbitrary finite set. We

can write each gi as the map gi : x 7→ aix + bi. Let E0 = E and, for each i = 1, . . . , k, let

Ai =
(
(Ei−1 − bi)∩Ei−1

)
and Ei =

(
(Ai/ai)∩Ai). It follows by induction that each of the

sets Ei, Ai satisfies d̄(Ei) = d̄(Ai) = 1. Take x ∈ Ek, we will show that gi(x) ∈ E for every

i. Indeed, x ∈ Ek ⊂ Ei =
(
(Ai/ai) ∩ Ai), so aix ∈ Ai =

(
(Ei−1 − bi) ∩ Ei−1

)
and hence

aix+ bi = gi(x) ∈ Ei−1 ⊂ E as desired.

Now we prove the claim. We will write [1, x] to denote the set {1, 2, . . . , bxc}, where

bxc is the largest integer no bigger than x.

Let n ∈ N and take ε > 0 arbitrary. For some arbitrarily large N ∈ N we have

|E ∩ [1, N ]| >
(

1− ε

2n

)
N = N − εN

2n

This implies that

|nE ∩ [1, N ]| =
∣∣∣∣E ∩ [1, Nn ] ∣∣∣∣ > N

n
− εN

2n

Using the general fact that |X ∪Y |+ |X ∩Y | = |X|+ |Y | we deduce that nE ∩E ∩ [1, N ] =

(nE ∩ [1, N ]) ∩ (E ∩ [1, N ]) has cardinality

∣∣nE ∩ E ∩ [1, N ]
∣∣ =

∣∣E ∩ [1, N ]
∣∣+ ∣∣nE ∩ [1, N ]

∣∣− ∣∣∣(nE ∩ [1, N ]
)
∪
(
E ∩ [1, N ]

)∣∣∣
≥ N − εN

2n + N

n
− εN

2n − N

= N

n
(1− ε)

Dividing by n (and observing that every number in the intersection nE ∩ E ∩ [1, N ] is

divisible by n) we deduce that

|E ∩ (E/n) ∩ [1, N/n]| = |nE ∩ E ∩ [1, N ]| ≥ N

n
(1− ε)

As N can be taken arbitrarily large and ε arbitrarily small we conclude that d̄
(
E∩(E/n)

)
=

1, proving the claim.

106



It is clear that, for any y ∈ N, any affinely thick set contains configurations of the form

{x + y, xy}. This observation applies, in particular, to the complement Ẽ of the set E

constructed in Theorem 5.35.

Recall now the notion of DC set (see Definition 3.11) and observe that for any finite

partition of N one of the cells is a DC set. It follows from Corollary 2.33 that any DC set is

both additively piecewise syndetic and multiplicatively piecewise syndetic. For a partition

of N into two cells, one has the following dichotomy: either one of the cells has upper density

1 (in which case Theorem 5.36 assures us that it contains configurations {x + y, xy}) or

both cells have positive lower density. In view of this observation we make the following

conjecture:

Conjecture 5.37. Let E ⊂ N be additively and multiplicatively piecewise syndetic and have

positive lower density. Then E contains many configurations of the form {x+ y, xy}.

While Conjecture 5.37 implies that for any partition of N into two cells, one of the cells

contains many configurations {x + y, xy}, the property of having positive lower density is

not stable under partitions. Indeed it is not hard to construct a partition of N into two sets,

both with 0 lower density. However, for any finite partition of a DC set, one of the cells is

still a DC set. Observe that the example E constructed in the proof of the Theorem 5.35

can be split into two sets E = EA ∪ EM such that EA is additively thick, but has density

0 with respect to any multiplicative Følner sequence, and EM is multiplicatively thick but

has density 0 with respect to any additive Følner sequence. Therefore E is very far from

being a DC set. This observation leads to the following conjecture:

Conjecture 5.38. Every DC set in N contains a configuration {x+ y, xy}.

Observe that Conjecture 5.38 is a strengthening of the fact (implied by Theorem 1.5)

that any finite coloring of N yields a monochromatic pair {x + y, xy}. Assuming Conjec-

ture 5.38 is true, the additional knowledge it provides, potentially coupled with a coloring

trick similar to the one used in Section 5.4, may allow one to solve Conjecture 1.4.
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5.7 Some concluding remarks

Iterating Theorem 5.10 one can obtain more complex configurations. For instance, if E ⊂

K∗ is such that d̄(FN )(E) > 0, then there exist x, y ∈ K∗ such that

d̄(FN )
(((

(E − x) ∩ (E/x)
)
− y

)
∩
((

(E − x) ∩ (E/x)
)
/y
))

=

d̄(FN )
(
(E − x− y) ∩ (E/x− y) ∩

(
(E − x)/y

)
∩
(
E/(xy)

))
> 0

In particular there exist x, y, z ∈ K∗ such that {z + y + x, (z + y)x, zy + x, zyx} ⊂ E.

Iterating once more we get x, y, z, t ∈ K∗ such that ((t+ z) + y) + x ((t+ z) + y)× x ((t+ z)× y) + x ((t+ z)× y)× x

((t× z) + y) + x ((t× z) + y)× x ((t× z)× y) + x ((t× z)× y)× x

 ⊂ E
More generally, for each k ∈ N, applying k times Theorem 5.10 we find, for a given set

E ⊂ K∗ with d̄(FN )(E) > 0, a finite sequence x0, x2, ..., xk such that

(. . . (((x0 ◦1 x1) ◦2 x2) ◦3 x3) . . . ) ◦k xk ∈ E

for each of the 2k possible choices of operations ◦i ∈ {+,×}. Note that the sequence

x0, ..., xk depends on k, so we do not necessarily have an infinite sequence x0, x1, ... which

works for every k (in the same way that we have arbitrarily long arithmetic progressions

on a set of positive density but not an infinite arithmetic progression).

This pattern obtained by iteration should be compared with the (less general) patterns

obtained below in Theorem 6.2 (if one restricts the functions involved to be projections on

some coordinate). We remark that such an iterative procedure is not available in the setting

of Theorem 6.2 because of the lack of a notion of largeness responsible for the presence of

the monochromatic patterns.

Note that the stipulation about arbitrarily ‘large’ in Theorem 5.5 is essential since we want

to avoid the case when the configuration {x+ y, xy} degenerates to a singleton. To better

explain this point, let x ∈ K, x 6= 1 and let y = x
x−1 . Then xy = x + y and hence the
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configuration {x+ y, xy} is rather trivial. We just showed that for any finite coloring of K

there are infinitely many (trivial) monochromatic configurations of the form {x + y, xy}.

Note that our Theorem 5.18 is much stronger than this statement, not only because we have

configurations with 3 terms {x, x + y, xy}, but also because for each of "many" x (indeed

an affinely syndetic set of x’s) there exist "many" y (indeed an affinely syndetic set of y’s)

such that {x, x+ y, xy} is monochromatic.

Our main ergodic result (Theorem 5.11) raises the question of whether, under the same

assumptions, one has a triple intersection of positive measure µ(B ∩ A−uB ∩M1/uB) > 0

for some u ∈ K∗. This would imply that, given any set E ⊂ K with d̄(FN )(E) > 0, one can

find u, y ∈ K∗ such that {y, y + u, yu} ⊂ E. Using the methods of Section 5.4, one could

then show that for every finite coloring of K, one color contains a configuration of the form

{u, y, y + u, yu}.

On the other hand, not every set E ⊂ K with d̄(FN )(E) > 0 contains a configuration

{u, y, y+u, yu}. In fact, in every abelian group there exists a syndetic set (hence of positive

density for any Følner sequence) not containing a configuration of the form {u, y, y + u}.

Indeed, let G be an abelian group and let χ : G → R/Z be a non-principal character

(a non-zero homomorphism; it exists by Pontryagin duality). Then the set E := {g ∈ G :

χ(g) ∈ [1/3, 2/3)} has no triple {u, y, y+u}. However it is syndetic because the intersection

[1/3, 2/3) ∩ χ(G) is syndetic in the group χ(G). (This is true and easy to check with χ(G)

replaced by any subgroup of R/Z.)
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CHAPTER 6

POLYNOMIAL RAMSEY FAMILIES IN LIDS

In this chapter we present recent work from [Mor] on polynomial Ramsey families in LID

rings. Our main result is Theorem 6.2 below.

6.1 Introduction

Very recently we established in [Mor] that the family {x + y, xy} is Ramsey in N, settling

an old open problem and establishing an important step towards solving Conjecture 1.4 or

even Conjecture 5.1. More generally, we obtain the following.

Theorem 6.1. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of functions Ni → N

such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N, the function x 7→ f(x1, . . . , xi−1, x) is a

polynomial with 0 constant term. Then the family

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
is Ramsey in N.

In particular, taking s = 1 and F1 = {x 7→ 0, x 7→ x} consisting only of the zero function

and the identity function, we obtain Theorem 1.5.

Our method from [Mor] works equally well in the scope of general LID rings.

Theorem 6.2. Let R be a LID, let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite

set of functions Ri → R such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ R, the function

x 7→ f(x1, . . . , xi−1, x) is a polynomial with 0 constant term. Then the family

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
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is Ramsey in R.

As an illustration of the applications of Theorem 6.2, setting s = 5 in Theorem 6.2

and letting each Fi consist only of the function fi : (x1, . . . , xi) 7→ x1 · · ·xi, we obtain the

following (aesthetically pleasing) Ramsey family.

Example 6.3. The following family is Ramsey:

x

xy, x+ y

xyz, x+ yz, xy + z

xyzt, x+ yzt, xy + zt, xyz + t

xyztw, x+ yztw, xy + ztw, xyz + tw xyzt+ w


Theorem 6.1 can also be used to obtain new partition regular equations:

Corollary 6.4. Let k ∈ N and c1, . . . , ck ∈ Z \ {0} be such that c1 + · · ·+ ck = 0. Then for

any finite coloring of N there exist pairwise distinct a0, . . . , ak ∈ N, all of the same color,

such that

c1a
2
1 + · · ·+ cka

2
k = a0.

In particular, setting k = 2 and c1 = 1, c2 = −1, we deduce:

Corollary 6.5. For any finite coloring of N there exists a solution a, b, c of the equation

a2 − b2 = c with all a, b and c of the same color.

Note that the similar equation a2− b = c is not partition regular (cf. [CGS12, Theorem

3]).

Our proof of Theorem 6.2 proceeds by first transferring the problem to the language of

topological dynamics using the correspondence principle (Theorem 3.25). We are then left

to prove the following:

Theorem 6.6. Let (X, (Tg)g∈AR) be an AR-topological system with a dense set of additively

minimal points, and assume that each map Tg : X → X is open and injective. Let s ∈ N
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and, for each i = 1, . . . , s, let Fi be a finite set of functions Ri → R such that for all

f ∈ Fi and any x1, . . . , xi−1 ∈ R, the function x 7→ f(x1, . . . , xi−1, x) is a polynomial with

0 constant term. Then for any open cover U of X there exists an open set U ∈ U in that

cover and infinitely many s-tuples x1, . . . , xs ∈ R such that

U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsAf(xj+1,...,xi)U 6= ∅

The proof of Theorem 6.6 uses ideas developed in [BM16a] and presented in Chapter 5

together with a “complexity reduction” method inspired by [BL96].

The proof of Theorem 6.2 can be made elementary; to illustrate this, we present in

Section 6.4 a short and purely combinatorial proof of Theorem 6.1 which is independent from

the rest of this chapter. While strictly speaking Theorem 6.2 does not directly apply to N

(since N is not a ring and hence not a full-fledged LID) the same proofs apply simultaneously

to Theorems 6.1 and 6.2. To avoid repetition, we chose to present a dynamical proof of

Theorem 6.2 and a combinatorial proof of Theorem 6.1, but of course one can also obtain

a dynamical proof of Theorem 6.1, as was done in [Mor], as well as a combinatorial proof

of Theorem 6.2 (in [Mor] we only a combinatorial proof of the special case Theorem 1.5).

6.2 Reducing Theorem 6.2 to a dynamical statement

In this section we reduce Theorem 6.2 to its dynamical formulation, Theorem 6.6.

The proof of Theorem 6.6 is presented in Section 6.3. In order to derive Theorem 6.2

from its topological counterpart we will make use of the affine topological correspondence

principle, Theorem 3.25.

Proof of Theorem 6.2. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of

functions Ri → R such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ R, the function

x 7→ f(x1, . . . , xi−1, x) is a polynomial with 0 constant term. Let R = C1 ∪ · · · ∪ Cr

be a finite coloring of R. We need to show that there exists a color C ∈ {C1, . . . , Cr}

and (infinitely many) s + 1-tuples x0, . . . , xs ∈ R such that x0 · · ·xs ∈ C and, for every

0 ≤ j < i ≤ s and f ∈ Fi−j , we have x1 · · ·xj + f(xj+1, . . . , xi) ∈ C.
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We append to Fs the zero function f : Rs → {0R} if necessary. Invoking Theorem 3.25

and then Theorem 6.6, we find a color C and (infinitely many) s-tuples x1, . . . , xs ∈ N such

that the intersection

C ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsA−f(xj+1,...,xi)C (6.1)

is non-empty. Take x in the intersection (6.1) and observe that x ∈ x1 · · ·xsC (letting

j = 0, i = s and f ≡ 0). Therefore x0 := x/(x1 · · ·xs) ∈ C (and in particular is an integer).

Finally, for 0 ≤ j < i ≤ s and f ∈ Fi−j , we have x ∈ xj+1 · · ·xs
(
C − f(xj+1, . . . , xi)

)
,

so x0 · · ·xj + f(xj+1, . . . , xi) = x/(xj+1 · · ·xs) + f(xj+1, . . . , xi) ∈ C.

6.3 Proof of Theorem 6.6

We will make use of a version of the polynomial van der Waerden theorem of Bergelson and

Leibman in general abelian groups (Corollary 2.44).

We recall that the proof of the polynomial van der Waerden theorem in [BL96] is derived

from a topological statement. While this topological statement (namely, [BL96, Theorem

C]) is only proved for metrizable spaces, it is remarked in [BL96, Proposition 1.10] that the

result holds in the non-metrizable setting, either by running a similar proof or by applying

the combinatorial version of polynomial van der Waerden directly. We use the second

approach to derive the following corollary, which is a dynamical version of Corollary 2.44

in the form we will use.

Corollary 6.7. Let R be a LID, let (X, (Tg)g∈AR) be an AR-topological dynamical system,

and assume that X contains a dense set of additively minimal points. Let F ⊂ R[x] be a

finite set such that p(0) = 0 for all p ∈ F . Then for any nonempty open set U ⊂ X there

exists n ∈ R such that ⋂
p∈F

Ap(n)U 6= ∅

Proof. Let y ∈ U be an additively minimal point, and let Y = {Any : n ∈ R} be its additive

orbit closure. Since
(
Y, (An)n∈R

)
is a minimal topological system, the union

⋃
nAnU covers
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Y , and by compactness there exists r ∈ N and n1, . . . , nr ∈ R such that the finite union⋃r
t=1AntU covers Y . We define a coloring χ : R→ {1, . . . , r} of R by letting χ(n) be such

that Any ∈ Anχ(n)U .

We invoke Corollary 2.44 (with −F ) to find some t ∈ {1, . . . , r} and x, n ∈ R such that

χ
(
x− p(n)

)
= t for every p ∈ F . In other words, Ax−p(n)y ∈ AntU for all p ∈ F and hence

Ax−nty ∈ Ap(n)U for every p ∈ F . We conclude that

Ax−nty ∈
⋂
p∈F

Ap(n)U,

proving the intersection to be non-empty.

Outline of the proof

There are two main ingredients in the proof of Theorem 6.6. One is a “complexity reduction”

technique similar to the one used by Bergelson and Leibman in [BL96] to prove the poly-

nomial van der Waerden theorem (and also used in [BM16c, Lemma 8.5]). The other main

ingredient is a fact about the algebraic behaviour of the expression g : n 7→MnAf(n) ∈ AR

discovered (and explored) in [BM16a] and [BM16b], namely that the “multiplicative deriva-

tive” n 7→ g(nm)g(n)−1 becomes a purely additive expression whenever f is a polynomial.

This fact is also the heart of Theorem 5.4 and Theorem 5.19 above.

Before we delve into the full details of the proof of Theorem 6.6 in the next subsection,

we explain the main steps of the proof in the special case when R = Z, s = 1 and F1 is a

singleton consisting only of the map x 7→ −x. In other words, we will show that for any

finite cover of a nice AZ-topological system X, there is a set U in the cover and some y ∈ Z

such that U ∩MyA−yU 6= ∅ (after applying the correspondence principle this special case

corresponds essentially to Theorem 1.5).

The idea is to construct a sequence (Bn) of non-empty open sets of X, each contained

inside some member Un of the open cover, such that

∀ n < m, ∃ y = y(n,m) ∈ Z∗, MyA−yBn ⊃ Bm. (6.2)
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Figure 6.1: Construction of the sequence (Bn)

Assuming we construct such sequence, since the open cover is finite we can find n < m for

which both Bn and Bm are contained inside the same member U of the open cover; it then

follows from (6.2) that U ∩MyA−yU 6= ∅, finishing the proof.

The construction of the sequence (Bn) is natural and is illustrated by Figure 6.1: starting

with an arbitrary non-empty open set B0, we find some y1 such that B0 ∩ A−y1B0 6= ∅

(such y1 exists since B0 contains some additively minimal points), and then we “push”

that intersection by My1 to create B1 := My1(B0 ∩ A−y1B0). In particular, (6.2) holds for

n = 0,m = 1 with y = y1. For the next step, we start similarly: assume y2 ∈ Z is such

that B1 ∩ A−y2B1 6= ∅. As long as we take B2 ⊂ My2(B1 ∩ A−y2B1), we will indeed have

B2 ⊂ My2A−y2B1 (and hence (6.2) holds for n = 1 and m = 2). Next we need to force B2

to satisfy (6.2) for n = 0 and m = 2. Since we know how to control the “multiplicative

derivative” of the expression MyA−y, we seek to obtain (6.2) with y(0, 2) = y1y2; in other

words, we want B2 ⊂My1y2A−y1y2B0. Putting both conditions together, we are left to find
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y2 ∈ N so that

My2(B1 ∩A−y2B1) ∩My1y2A−y1y2B0 6= ∅.

ApplyingM−1
y2 it suffices to make B1∩A−y2B1∩My1A−y1y2B0 6= ∅. Using the distributivity

law (3.1), we have that My1A−y1y2 = A−y2
1y2My1 , and since My1B0 ⊃M1, we see that it is

sufficient to find y2 ∈ N such that

B1 ∩A−y2B1 ∩A−y2
1y2B1 6= ∅.

The existence of such a y2 ∈ Z is a consequence of Corollary 6.7, so setting B2 :=

My2(B1 ∩A−y2B1 ∩A−y2
1y2B1) we have successfully constructed B2 and y2 satisfying (6.2)

whenever n ≤ 2.

Proceeding in this fashion we can construct the sequence Bn, each time invoking Corol-

lary 6.7 to choose yn ∈ Z so that

Bn := Myn(Bn−1 ∩A−ynBn−1 ∩A−y2
n−1yn

Bn−1 ∩ · · · ∩A−y2
1 ···y

2
n−1yn

Bn−1)

is non-empty. One can see, using the distributivity law (3.1), that (6.2) indeed holds with

y(n,m) = yn+1 · · · ym. For instance, to see why My2y3y4A−y2y3y4B1 ⊃ B4, observe that

My2y3y4A−y2y3y4B1 = My4A−y2
2y

2
3y4My3My2B1 ⊂My4A−y2

2y
2
3y4B3 ⊂ B4.

Proof of Theorem 6.6

Let (X, (Tg)g∈AR) be an AR-topological system with a dense set of additively minimal

points and assume that each map Tg : X → X is open and injective. Let s ∈ N and, for

each i = 1, . . . , s, let Fi be a finite set of functions Ri → R such that for all f ∈ Fi and

any x1, . . . , xi−1 ∈ R, the function x 7→ f(x1, . . . , xi−1, x) is a polynomial with 0 constant

term. Let U be an open cover of X. We need to find U ∈ U and infinitely many s-tuples

x1, . . . , xs ∈ R such that

U ∩
⋂

0≤j<i≤s

⋂
f∈Fi−j

Mxj+1···xsAf(xj+1,...,xi)U 6= ∅. (6.3)

Since X is compact, we can find a finite subcover U1, . . . , Ur of U with each Ut 6= ∅.

We will construct, inductively, four sequences:
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• (tn)n≥0 in {1, . . . , r},

• (yn)n≥1 in R injective,

• (Bn)n≥0 of non-empty open subsets of X,

• (Dn)n≥1 of non-empty open subsets of X,

such that Bn ⊂ Utn (the set Dn corresponds to the smaller circle inside Bn−1 in Figure 6.1).

It will be convenient to denote by y(m,n) ∈ R the product y(m,n) := ym+1ym+2 · · · yn for

any 0 ≤ m ≤ n, with the convention that the (empty) product y(n, n) equals 1.

Initiate t0 = 1 and B0 = U1. Using Corollary 6.7 we find y1 ∈ R such that

D1 := B0 ∩
⋂
f∈F1

Af(y1)B0 6= ∅.

Since U1, . . . , Ur forms an open cover of X and Mn : X → X is an open map, we can

find t1 ∈ {1, . . . , r} such that B1 := My1D1 ∩ Ut1 is open and nonempty. Next we invoke

Corollary 6.7 again to find y2 ∈ R such that

D2 := B1 ∩

 ⋂
f∈F1

Af(y2)B1 ∩Ay1f(y1y2)B1

 ∩
 ⋂
f∈F2

Ay1f(y1,y2)B1

 6= ∅.

We then choose t2 ∈ {1, . . . , r} such that B2 := My2D2 ∩ Ut2 6= ∅. The third step of the

iteration becomes a little more complicated. Using Corollary 6.7 one more time we find

y3 ∈ R such that

D3 := B2 ∩

 ⋂
f∈F1

Af(y3)B2 ∩Ay2f(y2y3)B2 ∩Ay1y2f(y1y2y3)


∩

 ⋂
f∈F2

Ay2f(y2,y3)B2 ∩Ay1y2f(y1y2,y3)B2 ∩Ay1y2f(y1,y2y3)B2


∩

 ⋂
f∈F3

Ay1y2f(y1,y2,y3)B2

 6= ∅.

We then choose t3 ∈ {1, . . . , r} such that B3 := My3D3 ∩ Ut3 6= ∅.

In general, for n ≥ 2, assume that (tm)n−1
m=0, (ym)n−1

m=1, (Bm)n−1
m=0 and (Dm)n−1

m=1 have

been constructed. For each i ∈ {1, . . . , s} and each f ∈ Fi, we define the collection Gn(f)
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of all functions g : R→ R of the form

g : z 7→ y(m1, n− 1)f
(
y(m1,m2), y(m2,m3), . . . , y(mi, n− 1) · z

)
for any choice 0 ≤ m1 < m2 < · · · < mi < n. If i > n then we set Gn(f) to be empty.

Observe that each g ∈ Gn(f) is a polynomial satisfying g(0) = 0.

Invoking Corollary 6.7, we can find yn ∈ R satisfying

Dn := Bn−1 ∩
s⋂
i=1

⋂
f∈Fi

⋂
g∈Gn(f)

Ag(yn)Bn−1 6= ∅. (6.4)

Let tn ∈ {1, . . . , r} be such that the intersection Bn := MynDn ∩ Utn 6= ∅ (observe that

Bn is open because Myn is an open map). This finishes the construction of yn, tn, Dn,

Bn. It is immediate from the construction that Bn ⊂ Utn for every n ≥ 0. Moreover,

Bn ⊂MynDn ⊂MynBn−1. Iterating this observation we obtain

∀m ≤ n, Bn ⊂My(m,n)Bm. (6.5)

Since the sequence (tn)n≥0 takes only finitely many values, there exists t ∈ {1, . . . , r}

and infinitely many tuples of natural numbers n0 < · · · < ns such that tni = t. For each

i ∈ {1, . . . , s}, let xi = y(ni−1, ni). We claim that (6.3) is satisfied with U = Ut and with

this choice of xi. We will show that the intersection in (6.3) is non-empty by proving that

it contains Bns . Since Bnj ⊂ Ut for every j ∈ {0, . . . , s}, it suffices to show that

∀ 0 ≤ j < i ≤ s, ∀ f ∈ Fi−j , Bns ⊂Mxj+1···xsAf(xj+1,...,xi)Bnj . (6.6)

Now fix 0 ≤ j < i ≤ s and f ∈ Fi−j . Observe that there exists some g ∈ Gni(f) such that

y(nj , ni − 1)f(xj+1, . . . , xi) = g(yni). Using (6.5), we conclude

Bns ⊂ My(ni,ns)Bni ⊂My(ni,ns)Myni
Dni

using (6.4) ⊂ My(ni−1,ns)
(
Ag(yni )Bni−1

)
using (6.5) ⊂ My(ni−1,ns)Ag(yni )My(nj ,ni−1)Bnj

using (3.1) = My(ni−1,ns)My(nj ,ni−1)Ag(yni )/y(nj ,ni−1)Bnj

= Mxj+1···xsAf(xj+1,...,xi)Bnj .

This proves (6.6) and finishes the proof of Theorem 6.6.
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6.4 An elementary proof

In this section we present an elementary rendering of the above proof of Theorem 6.2. To

keep things slightly more concrete, we prove Theorem 6.1; the proof in this section can be

easily adapted to obtain Theorem 6.2 instead. We remark that, while this proof is short

and essentially self contained, it is, in essence, a combinatorial rephrasing of the dynamical

proof.

We will use the following strengthening of the polynomial van der Waerden’s theorem

which can be obtained by combining Theorem 1.3 with Theorem 2.23.

Theorem 6.8 (cf. [BH01, Theorem 4.5]). Let E ⊂ N be piecewise syndetic, and let F ⊂ Z[x]

be finite. Then there exists n ∈ N such that the intersection

E ∩
⋂
f∈F

(
E − f(n)

)
is piecewise syndetic.

Proof of Theorem 6.1. Let s ∈ N and, for each i = 1, . . . , s, let Fi be a finite set of

functions Ni → N such that for all f ∈ Fi and any x1, . . . , xi−1 ∈ N, the function

x 7→ f(x1, . . . , xi−1, x) is a polynomial with 0 constant term. Let r ∈ N and let N =

C1 ∪ · · · ∪ Cr be an arbitrary coloring of N. We need to find t ∈ {1, . . . , r} and (infinitely

many) x0, x1, . . . , xs ∈ N satisfying

{x0 · · ·xs} ∪
{
x0 · · ·xj + f(xj+1, . . . , xi) : 0 ≤ j < i ≤ s, f ∈ Fi−j

}
⊂ Ct. (6.7)

As above, we will construct inductively four sequences:

• an increasing sequence (yn)n≥1 of natural numbers,

• two sequences (Bn)n≥0 and (Dn)n≥1 of piecewise syndetic subsets of N,

• a sequence (tn)n≥0 of colors in {1, . . . , r},

such that Bn ⊂ Ctn for every n ≥ 0.
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It will be convenient to denote by y(m,n) ∈ N the product y(m,n) := ym+1ym+2 · · · yn

for any 0 ≤ m ≤ n, with the convention that the (empty) product y(n, n) equals 1. Initiate

by choosing t0 ∈ {1, . . . , r} such that Ct0 is piecewise syndetic (using Lemma 2.22), and let

B0 := Ct0 .

Assume now that n ≥ 1 and that we have already defined (tm)n−1
m=0, (ym)n−1

m=1, (Bm)n−1
m=0

and (Dm)n−1
m=1. For each i ∈ {1, . . . , s} and each f ∈ Fi, we define the collection Gn(f) of

all functions g : N→ N of the form

g : z 7→ y(m1, n− 1)f
(
y(m1,m2), y(m2,m3), . . . , y(mi, n− 1) · z

)
for any choice 0 ≤ m1 < m2 < · · · < mi < n. If i > n then we set Gn(f) to be empty.

Observe that each g ∈ Gn(f) is a polynomial with rational coefficients satisfying g(0) = 0.

We apply Theorem 6.8 to find yn ∈ N such that

Dn := Bn−1 ∩
s⋂
i=1

⋂
f∈Fi

⋂
g∈Gn(f)

(
Bn−1 − g(yn)

)
(6.8)

is piecewise syndetic. Observe that ynDn is also piecewise syndetic, and therefore Lemma 2.22

provides some tn ∈ {1, . . . , r} such that Bn := ynDn∩Ctn is piecewise syndetic. This finishes

the construction of the sequences.

Note that Bn ⊂ ynDn ⊂ ynBn−1; iterating this fact we obtain

∀ 0 ≤ m < n, Bn ⊂ y(m,n)Bm. (6.9)

Since the sequence (tn)n≥0 takes only finitely many values, there exists t ∈ {1, . . . , r}

and infinitely many tuples of natural numbers n0 < · · · < ns such that tni = t. For each i ∈

{1, . . . , s}, let xi = y(ni−1, ni). Also, let x̃ ∈ Bns be arbitrary and let x0 := x̃/(x1x2 · · ·xs).

Observe that, in view of (6.9), x0 ∈ Bn0 and in particular is an integer. Moreover, (6.9)

also implies that any initial product x0 · · ·xj ∈ Bnj .

We claim that (6.7) is satisfied with this choice of t and xi, which will finish the proof.

Since x0 · · ·xs = x̃ was chosen to belong to Bns ⊂ Ct, all that remains to prove is that for

every 0 ≤ j < i ≤ s and every f ∈ Fi−f ,

x0 · · ·xj + f(xj+1, . . . , xi) ∈ Ct (6.10)
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Observe that there exists some g ∈ Gni(f) such that y(nj , ni − 1)f(xj+1, . . . , xi) = g(yni).

We have

xj+1 · · ·xi
(
x0 · · ·xj + f(xj+1, . . . , xi)

)
= x0 · · ·xi + ynig(yni)

∈ Bni + ynig(yni)

⊂ yniDni + ynig(yni)

⊂ yniBni−1

⊂ yniy(nj , ni − 1)Bj

= xj+1 · · ·xiBj

⊂ xj+1 · · ·xiCt

Dividing by xj+1 · · ·xi we obtain precisely (6.10).

Remark 6.9. As an alternative approach, one could replace piecewise syndetic sets with

sets having positive upper density and replace the polynomial van der Waerden’s theorem

with (a suitable form of) the polynomial Szemerédi’s theorem in [BM96].

6.5 Applications to Ramsey theory

In this section we derive some corollaries of Theorem 6.1, by specifying values of s and sets

of functions Fi of interest.

By letting s = 1 in Theorem 6.1 we obtain the following result:

Corollary 6.10. Let k ∈ N and let f1, . . . , fk ∈ Z[x] satisfy f`(0) = 0 for each `. Then for

any finite coloring of N there exist x, y ∈ N such that the set

{xy, x+ f1(y), . . . , x+ fk(y)}

is monochromatic.

Observe that by putting f1(y) = 0, the monochromatic configuration in the previous

corollary contains x.
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In a different direction, letting s be arbitrary but requiring each Fi to consist of only

the zero function and the function fi(x1, . . . , xi) = x1 · · ·xi we deduce:

Corollary 6.11. For any s ∈ N and any finite coloring of N, there exist x0, . . . , xs ∈ N

such that the set
j∏
`=0

x` : 0 ≤ j ≤ s

 ∪


j∏
`=0

x` +
i∏

`=j+1
x` : 0 ≤ j < i ≤ s


is monochromatic.

Observe that we do not require that each function f ∈ Fi in Theorem 6.1 be a polynomial

in all its variables (but only in the last variable). In particular, we obtain the following

examples:

Example 6.12. The following are Ramsey families:

1. {x, x+ y, xy, xyz, x+ z, x+ zy};

2. {x, xy, xyz, x+ f(y)z} for any function f : N→ Z;

3. {x, xy, xyz, xyzt, x+ zy, x+ tz, x+ f(y)tg(z)} for any functions f, g : N→ N.

Finally, we prove Corollary 6.4 from the introduction.

Corollary 6.4. Let k ∈ N and c1, . . . , ck ∈ Z \ {0} be such that c1 + · · ·+ ck = 0. Then for

any finite coloring of N there exist pairwise distinct a0, . . . , ak ∈ N, all of the same color,

such that

c1a
2
1 + · · ·+ cka

2
k = a0. (6.11)

Proof. Consider the quadratic polynomials

p(t) =
k∑
`=1

c`(1 + `t)2, q(t) =
k−1∑
`=1

c`(1 + `t)2 + ck(1 + 2kt)2.

Both have rational coefficients and a root at t = 0. On the other hand, the derivatives

p′(t) = 2
k∑
`=1

`c`(1 + `t), q′(t) = 2
k−1∑
`=1

`c`(1 + `t) + 4kck(1 + 2kt)
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can not both vanish at t = 0. Therefore at least one of these polynomials must have a

second root at some t ∈ Q \ {0}. Assume p has a second root (an analogous argument

works in the alternative case). Letting d be the denominator of t and u` = d(1+`t) for each

` = 1, . . . , k, we now have pairwise distinct u1, . . . , uk ∈ Z such that c1u
2
1 + · · ·+ cku

2
k = 0.

We can also assume that c1u1 + · · · + ckuk 6= 0 by changing some nonzero u` into −u` if

necessary.

Let b = 2(c1u1 + · · ·+ ckuk). Let χ : N→ {1, . . . , r} be an arbitrary finite coloring of N

and define a new coloring χ̃ of N in r + b− 1 colors by:

χ̃(n) :=

 χ
(
n
b

)
if n is divisible by b

r + (n mod b) otherwise

where n mod b ∈ {0, 1, . . . , b − 1} is the remainder of the division of n by b. Next apply

Corollary 6.10 to find x, y ∈ N such that the set {x, xy, x + y, x + u1y, . . . , x + uky} is

monochromatic with respect to χ̃.

Observe that, in view of the construction of the coloring χ̃, all the numbers x, xy, x+ y

share the same congruence class modulo b, which implies that both x and y are divisible by

b. We deduce that the set
{
xy
b ,

x+u1y
b , . . . , x+uky

b

}
consists of integers and is monochromatic

with respect to χ. Letting a0 = xy
b and a` = x+u`y

b for ` = 1, . . . , k, we have the desired

relation (6.11).

123



BIBLIOGRAPHY

[Arn70] V. I. Arnautov. “Nondiscrete topologizability of countable rings”. In: Dokl.

Akad. Nauk SSSR 191 (1970), pp. 747–750. issn: 0002-3264.

[Arv76] W. Arveson. An invitation to C∗-algebras. Graduate Texts in Mathematics, No.

39. New York: Springer-Verlag, 1976, pp. x+106.

[Aus88] J. Auslander. Minimal flows and their extensions. Vol. 153. North-Holland

Mathematics Studies. Notas de Matemática [Mathematical Notes], 122. North-

Holland Publishing Co., Amsterdam, 1988, pp. xii+265. isbn: 0-444-70453-1.

[BBHS06] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss. “Multiplicative struc-

tures in additively large sets”. In: J. Combin. Theory Ser. A 113.7 (2006),

pp. 1219–1242.

[BBHS08] M. Beiglböck, V. Bergelson, N. Hindman, and D. Strauss. “Some new results in

multiplicative and additive Ramsey theory”. In: Trans. Amer. Math. Soc. 360.2

(2008), pp. 819–847. issn: 0002-9947.

[Bei11] M. Beiglböck. “An ultrafilter approach to Jin’s theorem”. In: Israel J. Math.

185 (2011), pp. 369–374. issn: 0021-2172.

[Ber03] V. Bergelson. “Minimal Idempotents and Ergodic Ramsey Theory”. In: Topics

in Dynamics and Ergodic Theory. Vol. 310. London Math Soc. Lecture Note

Ser. Cambridge: Cambridge Univ. Press, 2003, pp. 8–39.

[Ber05] V. Bergelson. “Multiplicatively large sets and ergodic Ramsey theory”. In: Israel

J. Math. 148 (2005), pp. 23–40. issn: 0021-2172.

124



[Ber06] V. Bergelson. “Combinatorial and Diophantine Applications of Ergodic The-

ory”. In: Handbook of Dynamical Systems. Ed. by B. Hasselblatt and A. Katok.

Vol. 1B. Elsevier, 2006, pp. 745–841.

[Ber10] V. Bergelson. “Ultrafilters, IP sets, dynamics, and combinatorial number the-

ory”. In: Ultrafilters across mathematics. Vol. 530. Contemp. Math. Providence,

RI: Amer. Math. Soc., 2010, pp. 23–47.

[Ber86] V. Bergelson. “A density statement generalizing Schur’s theorem”. In: J. Com-

bin. Theory Ser. A 43.2 (1986), pp. 338–343. issn: 0097-3165.

[Ber87] V. Bergelson. “Ergodic Ramsey theory”. In: Logic and combinatorics (Arcata,

Calif., 1985). Vol. 65. Contemp. Math. Amer. Math. Soc., Providence, RI, 1987,

pp. 63–87.

[Ber96] V. Bergelson. “Ergodic Ramsey theory–an update”. In: Ergodic theory of Zd

actions. Vol. 228. London Math. Soc. Lecture Note Ser. Cambridge: Cambridge

Univ. Press, 1996, pp. 1–61.

[BFM96] V. Bergelson, H. Furstenberg, and R. McCutcheon. “IP-sets and polynomial

recurrence”. In: Ergodic Theory Dynam. Systems 16.5 (1996), pp. 963–974. issn:

0143-3857.

[BH01] V. Bergelson and N. Hindman. “Partition regular structures contained in large

sets are abundant”. In: J. Combin. Theory Ser. A 93.1 (2001), pp. 18–36. issn:

0097-3165.

[BH90] V. Bergelson and N. Hindman. “Nonmetrizable topological dynamics and Ram-

sey theory”. In: Trans. Amer. Math. Soc. 320.1 (1990), pp. 293–320. issn: 0002-

9947.

[BH94] V. Bergelson and N. Hindman. “On IP ∗ sets and central sets”. In: Combina-

torica 14.3 (1994), pp. 269–277. issn: 0209-9683.

125



[BJM] V. Bergelson, J. Johnson, and J. Moreira. “New polynomial and multidimen-

sional extensions of classical partition results”. Submitted, available online at

http://arxiv.org/abs/1501.02408.

[BL96] V. Bergelson and A. Leibman. “Polynomial extensions of van der Waerden’s

and Szemerédi’s theorems”. In: J. Amer. Math. Soc. 9.3 (1996), pp. 725–753.

issn: 0894-0347.

[BL99] V. Bergelson and A. Leibman. “Set-polynomials and polynomial extension of

the Hales-Jewett theorem”. In: Ann. of Math. (2) 150.1 (1999), pp. 33–75. issn:

0003-486X.

[BLL08] V. Bergelson, A. Leibman, and E. Lesigne. “Intersective polynomials and the

polynomial Szemerédi theorem”. In: Adv. Math. 219.1 (2008), pp. 369–388. issn:

0001-8708.

[BLM05] V. Bergelson, A. Leibman, and R. McCutcheon. “Polynomial Szemerédi the-

orems for countable modules over integral domains and finite fields”. In: J.

d’Analyse Math. 95 (2005), pp. 243–296. issn: 0021-7670.

[BM07] V. Bergelson and R. McCutcheon. “Central sets and a non-commutative Roth

theorem”. In: Amer. J. Math. 129.5 (2007), pp. 1251–1275. issn: 0002-9327.

[BM16a] V. Bergelson and J. Moreira. “Ergodic Theorem involving additive and mul-

tiplicative groups of a field and {x + y, xy} patterns”. To appear in Ergodic

Theory Dynam. Systems, available online doi:10.1017/etds.2015.68. 2016.

[BM16b] V. Bergelson and J. Moreira. “Measure preserving actions of affine semigroups

and {x+y, xy} patterns”. To appear in Ergodic Theory Dynam. Systems, avail-

able at http://arxiv.org/abs/1509.07574. 2016.

[BM16c] V. Bergelson and J. Moreira. “Van der Corput’s difference theorem: some mod-

ern developments”. In: Indag. Math. (N.S.) 27.2 (2016), pp. 437–479. issn:

0019-3577.

126



[BM96] V. Bergelson and R. McCutcheon. “Uniformity in the polynomial Szemerédi

theorem”. In: Ergodic theory of Zd actions (Warwick, 1993–1994). Vol. 228.

London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 1996,

pp. 273–296.

[Bra28] A. Brauer. “Über Sequenzen von Potenzresten”. In: Sitzungsberichte de Preussis-

chen Akademie der Wissenschaften, Physicalish-Mathematische Klasse (1928),

pp. 9–16.

[Bro68] T. Brown. “Locally finite semigroups”. In: Ukrain. Mat. Ž. 20 (1968), pp. 732–

738. issn: 0041-6053.

[CGS12] P. Csikvári, K. Gyarmati, and A. Sárközy. “Density and Ramsey type results

on algebraic equations with restricted solution sets”. In: Combinatorica 32.4

(2012), pp. 425–449. issn: 0209-9683.

[Cil12] J. Cilleruelo. “Combinatorial problems in finite fields and Sidon sets”. In: Com-

binatorica 32.5 (2012), pp. 497–511. issn: 0209-9683.

[Deu73] W. Deuber. “Partitionen und lineare Gleichungssysteme”. In: Math. Z. 133

(1973), pp. 109–123. issn: 0025-5874.

[Ell58] R. Ellis. “Distal transformation groups”. In: Pacific J. Math. 8 (1958), pp. 401–

405. issn: 0030-8730.

[ET36] P. Erdős and P. Turán. “On some sequences of integers”. In: J. London Math.

Soc. 11 (1936), pp. 261–264.

[FH] N. Frantzikinakis and B. Host. “Higher order Fourier analysis of multiplicative

functions and applications”. To appear in J. Amer. Math. Soc.; available online

at http://arxiv.org/abs/1403.0945.

[FKO79] H. Furstenberg, Y. Katznelson, and D. Orstein. “The ergodic theoretical proof

of Szemerédi’s theorem”. In: Bull. Amer. Math. Soc. 7 (1979), pp. 427–552.

127



[Fur77] H. Furstenberg. “Ergodic behavior of diagonal measures and a theorem of Sze-

merédi on arithmetic progressions”. In: J. d’Analyse Math. 31 (1977), pp. 204–

256. issn: 0021-7670.

[Fur81] H. Furstenberg. Recurrence in ergodic theory and combinatorial number theory.

Princeton, N.J.: Princeton University Press, 1981, pp. xi+203.

[FW78] H. Furstenberg and B. Weiss. “Topological dynamics and combinatorial number

theory”. In: J. d’Analyse Math. 34 (1978), pp. 61–85. issn: 0021-7670.

[Gla03] E. Glasner. Ergodic theory via joinings. Vol. 101. Mathematical Surveys and

Monographs. American Mathematical Society, Providence, RI, 2003, pp. xii+384.

isbn: 0-8218-3372-3.

[GRS90] R. L. Graham, B. L. Rothschild, and J. H. Spencer. Ramsey theory. Second.

John Wiley & Sons, Inc., New York, 1990, pp. xii+196. isbn: 0-471-50046-1.

[GS16] B. Green and T. Sanders. “Monochromatic sums and products”. In: Discrete

Analysis (2016:5), pp. 1–43.

[Gun02] D. S. Gunderson. “On Deuber’s partition theorem for (m, p, c)-sets”. In: Ars

Combin. 63 (2002), pp. 15–31. issn: 0381-7032.

[Han13] B. Hanson. “Capturing forms in dense subsets of finite fields”. In: Acta Arith.

160.3 (2013), pp. 277–284. issn: 0065-1036.

[Hin11] N. Hindman. “Monochromatic sums equal to products in N”. In: Integers 11.4

(2011), pp. 431–439. issn: 1867-0652.

[Hin74] N. Hindman. “Finite sums from sequences within cells of a partition of N”. In:

J. Combinatorial Theory Ser. A 17 (1974), pp. 1–11.

[HJ63] A. W. Hales and R. I. Jewett. “Regularity and positional games”. In: Trans.

Amer. Math. Soc. 106 (1963), pp. 222–229. issn: 0002-9947.

[HMS96] N. Hindman, A. Maleki, and D. Strauss. “Central Sets and Their Combinatorial

Characterization”. In: Journal of Combinatorial Theory, Series A 74.2 (1996),

pp. 188 –208. issn: 0097-3165.

128



[HS98] N. Hindman and D. Strauss. Algebra in the Stone-Čech compactification. Berlin:

Walter de Gruyter & Co., 1998, pp. xiv+485.

[Khi34] A. Khintchine. “Korrelationstheorie der stationären stochastischen Prozesse”.

In: Math. Ann. 109.1 (1934), pp. 604–615. issn: 0025-5831.

[McC10] R. McCutcheon. “A variant of the density Hales-Jewett theorem”. In: Bull.

Lond. Math. Soc. 42.6 (2010), pp. 974–980. issn: 0024-6093.

[McC99] R. McCutcheon. “An infinitary polynomial van der Waerden theorem”. In: J.

Combin. Theory Ser. A 86.2 (1999), pp. 214–231. issn: 0097-3165.

[Mor] J. Moreira. “Monochromatic sums and products in N”. Submitted, available at

https://arxiv.org/abs/1605.01469.

[Pat88] A. L. T. Paterson. Amenability. Vol. 29. Mathematical Surveys and Mono-

graphs. American Mathematical Society, Providence, RI, 1988, pp. xx+452.

isbn: 0-8218-1529-6.

[Rad33] R. Rado. “Studien zur Kombinatorik”. In: Math. Zeit. 36 (1933), pp. 242–280.

[San68] J. H. Sanders. A generalization of Schur’s theorem. Thesis (Ph.D.)–Yale Uni-

versity. ProQuest LLC, Ann Arbor, MI, 1968, p. 41.

[Sch16] I. Schur. “Über die Kongruenz xm + ym ≡ zm(mod p)”. In: Jahresbericht der

Deutschen Math. Verein. 25 (1916), pp. 114–117.

[Shk10] I. D. Shkredov. “On monochromatic solutions of some nonlinear equations in

Z/pZ”. In: Mat. Zametki 88.4 (2010), pp. 625–634. issn: 0025-567X.

[Sto37] M. H. Stone. “Applications of the theory of Boolean rings to general topology”.

In: Trans. Amer. Math. Soc. 41.3 (1937), pp. 375–481. issn: 0002-9947.

[Sze75] E. Szemerédi. “On the sets of integers containing no k elements in arithmetic

progressions”. In: Acta Arith. 27 (1975), pp. 299–345.

[Sár78] A. Sárkőzy. “On difference sets of sequences of integers. I”. In: Acta Math.

Acad. Sci. Hungar. 31.1–2 (1978), pp. 125–149. issn: 0001-5954.

129



[Vin14] L. A. Vinh. “Monochromatic sum and product in Z/mZ”. In: J. Number Theory

143 (2014), pp. 162–169. issn: 0022-314X.

[Wae27] B. L. van der Waerden. “Beweis einer Baudetschen Vermutung”. In: Nieuw.

Arch. Wisk. 15 (1927), pp. 212–216.

130


	Abstract
	Acknowledgements
	Vita
	List of Figures
	Introduction
	Combinatorial problems
	Connections with dynamics and topological algebra
	Ramsey families

	Preliminaries
	Ultrafilters on commutative semigroups
	Notions of largeness for subsets of semigroups
	Variations on the theme of van der Waerden's theorem
	Ergodic theory
	Topological dynamics

	Affine Semigroups
	Large Ideal Domains and the affine semigroup
	Double Følner sequences
	Ultrafilters with nice affine properties
	Affine syndeticity and thickness
	An affine version of Furstenberg's correspondence principle
	An affine topological correspondence principle

	Polynomial extension of Deuber's theorem
	Introduction
	Idempotent ultrafilters and (m,,c)-sets
	Proof of partition regularity of (m,,c)-sets
	Applications to systems of equations in commutative semigroups

	Patterns {x+y,xy}  in large sets of countable fields
	Introduction
	An affine Khintchine theorem
	Proof of the affine ergodic theorem
	An application of the coloring trick
	Finite intersection property of sets of return times
	Notions of largeness and configurations {xy,x+y} in N
	Some concluding remarks

	Polynomial Ramsey families in LIDs
	Introduction
	Reducing thmmainN to a dynamical statement
	Proof of thmmaindynamical
	An elementary proof
	Applications to Ramsey theory

	Bibliography

