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Regularity diagnostics
applied to a turbulent boundary layer

By H. J. Bae, J. D. Gibbon†, R. M. Kerr‡ AND A. Lozano-Durán

Regularity diagnostics for the Navier-Stokes equations based on rescaled high-order
vorticity moments are applied to direct numerical simulation (DNS) of plane turbu-
lent channel flow and calculations of high-Reynolds-number vortex reconnection. At the
wall-normal height typical of the tips of hairpin vortices, the temporal evolution of the
vorticity moments is qualitatively similar to that of controlled high-Reynolds-number
vortex reconnection in the absence of walls. Both the channel flow and vortex reconnec-
tion data exhibit higher measure of vorticity than previous results from decaying and
forced isotropic turbulence. This allows for future analysis of vortex dynamics based on
new results detailing the vorticity and helicity dynamics of reconnection events.

1. Introduction

In analysis of numerical turbulence, the maximum vorticity, ωp = ‖ω‖∞, and enstrophy,
Z = ‖ω‖22/V , have historically been the main quantities of interest, where ω is vorticity
and V is the volume of the computational domain. Although enstrophy is physically
meaningful given its proportionality to the energy dissipation rate, for many years, the
best bound for singular growth was provided by ωp, with the caveat that the bound has
a large prefactor that is dependent on the size of the periodic computational box (Kerr
2018b). By extending the analysis to the strain and production terms of the Cayley-
Hamilton framework (Ashurst et al. 1987), a more complete description in terms of
the reduced Vieillefosse/restricted Euler equations can be made. However, this reduced
model neglects pressure effects. Indeed, it has been observed numerically that the Euler
equations do not display singular behaviors (see Kerr 2013a, and references therein).
An approach that avoids the direct accounting of pressure is to use the rescaled vorticity

moment hierarchy given by

Ωm(t)=

(
V −1

∫

V
|ω|2mdV

)1/(2m)

, (1.1)

for which (kinematically) Ωm+1 ≥ Ωm always holds due to Hölder’s inequality.
To address the dynamics of the Navier-Stokes equations using time inequalities, a more

convenient rescaling is given by

Dm(t) =
[
̟−1

0 Ωm(t) + 1
]αm

, αm =
2m

4m− 3
, (1.2)

where ̟0 is a relevant frequency as defined by Gibbon et al. (2014). From a variety of
numeric experiments with periodic boundary conditions, it has been observed that the
Dm are almost always ordered on a descending scale such that Dm+1 < Dm for m ≥ 1.

† Department of Mathematics, Imperial College, UK
‡ School of Engineering, Warwick University, UK

247



Bae et al.

Figure 1. The regimes in the D1–Dm plane. Regime I is bound by the lower concave curve
(λ = 1) derived from Hölder’s inequality and the upper concave curve (λ = 2), which is the
upper limit of the regular regime. The dotted curves approximately denote the region where
previous computations lie.

This property derives from the fact that Dm can be parametrically written in terms of
D1 such that

Dm = D
Am,λ

1 , Am,λ =
[λm(t)− 1](m− 1) +m

4m− 3
, (1.3)

where 1 ≤ λm ≤ 4 is a set of time-dependent parameters (Gibbon et al. 2014). Eq.
(1.3) can be interpreted in the following manner: instead of considering the magnitude
of members of the sequence {D1, D2, D3, . . . , Dm} as functions of time, the magnitude
of Dm with respect to D1 is measured using the parameters λm(t). Thus, we have the
sequence {D1, λ2, λ3, . . . , λm}, which is parameterized by the relative logarithmic ratio

λm =
(4m− 3) logDm/ logD1 − 1

m− 1
, (1.4)

as illustrated in Figure 1. Regime I (1 ≤ λm ≤ 2) is regular, whereas solutions in Regime
II (2 ≤ λm ≤ 4) are potentially singular. In Gibbon et al. (2014), λm ≤ 1.2 is observed for
almost all of the times in periodic forced and decaying turbulent flows. Exceptions were
found for decaying turbulence when enstrophy had its maximum growth with λm ≈ 1.25
and a low Reynolds number version of the reconnection calculation here when there was
a brief spurt with λm ≈ 1.3.

In the present work, we identify transient events with higher λm, indicative of stronger
enstrophy growth, and provide comparisons suggesting that the tips of the boundary
layer hairpin vortices are commensurable with vortex reconnection events. The paper is
organized as follows. In Section 2, in order to isolate the dynamics of mutual interaction
among vortical motions, we describe the anti-parallel reconnection event and apply the
regularity diagnostics. Section 3 presents the turbulent channel flow simulations and the
regularity diagnostics applied to the channel flow. Section 4 introduces the invariants of
the velocity gradient tensor (R and Q), and regularity diagnostics results are conditioned
to the (R,Q) phase plane. Section 5 focuses on the similarities between hairpins and
reconnection events, concluding that the tips of the boundary layer hairpin vortices are
consistent with reconnection events. The paper concludes with a summary in Section 6.
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Figure 2. (a) Three-dimensional isosurfaces of the anti-parallel vortices at t = 24. (b) Growth
of the dissipation ǫ = νZ for ν = 2× 10−3 (gray dot dashed), 1× 10−3 (gray dashed), 5× 10−4

(gray solid), 2.5×10−4 (black dot dashed), 1.25×10−4 (black dashed), and ν = 9×10−5 (black
solid). Times t = 24 and t = 28 are given by straight dashed lines.

2. Anti-parallel reconnection

The data obtained are from DNS of an anti-parallel vortex reconnection event with
three periodic dimensions for kinematic viscosity, ν, ranging from 2 × 10−3 to 9 × 10−5

(Kerr 2018b). The initial vortices, aligned along the z axis with axial direction y, are
propagated in the x direction as in Kerr (2013b), where an internal vorticity profile and
a symmetric perturbation of the trajectory are designed to avoid the internal instabilities.
This allows the axial direction to be expanded in a manner such that the initial dynamics
near y = 0 are not be immediately affected. The simulation utilizes the symmetric filtered
pseudo-spectral calculations, and Figure 2(a) shows the full symmetrized configuration
at one time instance. The symmetric quadrants used for the calculations in Figure 2 are
(Lx, Ly, Lz) = (4π, 4π, 2π) for ν = 2×10−3 and 1×10−3, (Lx, Ly, Lz) = (4π, 4π, 4π)
for ν = 5 × 10−4 to 1.25 × 10−4 and (Lx, Ly, Lz) = (4π, 4π, 6π) for ν = 9 × 10−5.
The domain size is adjusted to maintain a ν-independent convergence of the

√
νZ scaling

regime at the end of the reconnection event, as first identified for trefoils in Kerr (2018a)
and further discussed for the anti-parallel vortex reconnection cases in Kerr (2018b).

The reconnection in Kerr (2018b) approximately spans the period 16 ≤ t ≤ 24, where
the nonlinear timescale is tf = δ2z/Γ ≈ 3.2 with Γ being the initial circulation of the
vortices and δz their initial separation in z. During the reconnection, the dissipation rate
ǫ = νZ(t) grows linearly as shown in Figure 2(b), particularly for ν ≤ 5 × 10−4. For
ν ≤ 1.25 × 10−4 there is a burst in the growth of ǫ up to t ≈ 28. At t ≈ 30, a roughly
steady ν-independent ǫ begins to appear. The dissipation rate ǫ rather than

√
νZ is

plotted in Figure 2(b) to investigate whether a finite dissipation anomaly, that is, finite

∆E =
∫ T

0 ǫdt by a fixed time T as ν → 0, is beginning to form. A collection of vortex
rings propagating in x could be the structures responsible for the strong 24 ≤ t ≤ 28
growth of ǫ that could be consistent with a dissipation anomaly, developing in a finite
time T , without evidence for singularities of any form.

The regularity diagnostic, in particular the computation of λm from Eq. (1.4), is applied
to the reconnection event (Figure 3a). In contrast to previous computations discussed in
the introduction, the new high-Reynolds-number reconnection calculations (Kerr 2018b)
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Figure 3. (a) Broad temporal peak of λm(t) for m = 2 (solid), 3 (dashed), 4 (dot-dashed), 5
(dotted) during reconnection. Time t = 24 given by straight dashed line. (b) Comparison of λm,
m = 2, 3, 4, 5 (gray lines) and log(ωp)/4 (black solid line) as a function of x for t = 20 (bottom)
and t = 24 (top).

display larger peak values of λm > 1.45. However, λm < 2 for all times, which is an
indication of regularity.

The regularity diagnostic is repeated by integrating in the y, z direction only, such that

Ωm(x, t) =

(
1

LyLz

∫ ∫
|ω|2mdydz

)1/(2m)

(2.1)

is a function of the propagation direction x and t. The quantities Dm and λm are com-
puted analogously. Figure 3(b) illustrates the vorticity profiles in x using ωp and λm.
The profiles of other vorticity diagnostics, including the enstrophy and its production
Rω, are not shown here as they are similar to ωp. Note that the leading edge location of
the log(ωp) profile (scaled for better comparison with λm) coincides with the maxima of
λm.

Figure 3 provides the specific footprint of reconnection events identified in periodic
domains. In the next section, the nature of the vorticity and λm profiles extracted for
hairpin vortices from a turbulent boundary layer is compared to those in Figure 3(b).

3. Turbulent channel flow

The data obtained are from DNS of a plane turbulent channel flow with two periodic
directions and no-slip condition at the wall from Lozano-Durán & Jiménez (2014) and
Lozano-Durán, Holzner & Jiménez (2016). In the following, the streamwise, wall-normal,
and spanwise directions are denoted by x, y, and z, respectively. The friction Reynolds
number of the simulation is Reτ = uτδ/ν ≈ 950, where uτ is the friction velocity and δ
is the channel half-height. Wall units are defined in terms of uτ and ν and are denoted
by the superscript (·)+. The size of the computational domain is 2πδ, 2δ, and πδ in the
streamwise, wall-normal, and spanwise directions, respectively. The simulation is time-
resolved with a time step between stored flow fields of ∆t+ ≈ 4.

As before, the regularity diagnostic is applied to channel flow data by integrating only
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Figure 4. Spatial evolution of (a) Dm and (b) λm as a function of wall-normal height for
m = 2 (solid), 3 (dashed), 4 (dot-dashed), 5 (dotted) for a single time instance at Reτ ≈ 950.

in the homogeneous directions such that

Ωm(y, t) =

(
1

LxLz

∫ ∫
|ω|2mdxdz

)1/(2m)

, (3.1)

where Lx and Lz are the streamwise and spanwise computational domain lengths, respec-
tively. Dm and λm are analogously defined as functions of y and t. The results for a single
time instance as a function of wall-normal height are shown in Figure 4. As in the triply
periodic cases, the Dm hierarchy (Dm+1 < Dm) still holds for all times. The resulting
λm spans a similar range of values as the reconnection event from Figure 4(b), and its
spatial evolution is qualitatively similar to the temporal evolution of the reconnection
event from Figure 3(a). The sustained value of λm ≥ 1.3 at y+ ≈ 100 suggests that
strong reconnection events are also present at this wall-normal height, which coincides
with the wall-normal distance of the tip of hairpin vortices (Adrian 2007).

4. The (R,Q) phase plane

To further investigate regularity diagnostics on turbulent channel flows, we analyze
reconnection events conditioned to the invariants of the velocity gradients tensor for
incompressible flows, namely, R and Q. The approach, first introduced by Chong et al.
(1990), has proven to be a useful tool to study flows characterized by the wide range of
scales encountered in turbulence.
We consider the characteristic equation for the velocity gradient tensor for the incom-

pressible Navier-Stokes equations given by λ3 +Qλ+ R = 0, where Q = 1/2(−SijSij +
RijRij) and R = −1/3(SijSjkSki + 3RijRjkSki), with Sij and Rij being the strain rate
and rotation rate tensors, respectively. In the present study, R and Q are computed
following the grid resolution requirements provided by Lozano-Durán et al. (2015). The
discriminant of the characteristic equation D = 27/4R2 +Q3 = 0 and R = 0 is used to
divide the R–Q plane into four regions, as depicted in Figure 5(a). Data from different
turbulent flows have shown that the joint probability density function of R and Q has a
very particular skewed tear-drop shape (Mart́ın et al. 1998; Ooi et al. 1999), with many
points accumulated along the so-called Vieillefosse tail (D = 0 and R > 0).
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Figure 5. (a) Phase plane of (R,Q) invariants of the characteristic equation of the velocity
gradient. Zero discriminant D = 27/4R2 +Q3 = 0 given in solid lines. Quadrants of the (R,Q)
invariant plane S1, S2, S3, and S4 are labeled. V T denotes the Vieillefosse characteristic (or
tail). (b) Spatial evolution of λm conditionally sampled on the Vieillefosse characteristic (top)
and S4 (bottom) for the turbulent channel flow at Reτ ≈ 950.

The dynamical evolution of the velocity gradient tensor has also been addressed in
many statistical and reduced models. The restricted Euler equations, e.g., the time evo-
lution of Q and R neglecting viscous and pressure effects, show that the fluid particles
follow clock-wise trajectories in the R–Q plane around R = Q = 0 and are attracted
to the Vieillefosse tail. The fourth quadrant of the (R,Q) plane (S4 in Figure 5a) is
also notorious because it is associated with sweep and ejection events that, in turn, re-
late to unstable-node saddle-saddle topologies and unstable-focus compression topologies
(Wallace 2016) that generate hairpin vortices (Zhou et al. 1999; Adrian et al. 2000).

Noting the aforementioned relevance of the Vieillefosse tail and S4 quadrant for the flow
dynamics, we compute λm conditionally sampled to each region. The results, included in
Figure 5(b), are labeled as λS4

m and λV T
m for λm conditionally sampled to the S4 quadrant

and the Vieillefosse tail, respectively. Strong peaks are observed at y+ ≈ 100, with the
largest values located in the S4 quadrant starting at y+ ≈ 80 with a maximum around
y+ ≈ 150. This range of heights covers roughly the positions of the tips of the boundary
layer hairpin vortices. The peaks decrease at larger y+ as the hairpin vortices leave the
boundary layer.
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Figure 6. (a) Space-time correlation of λV T
m (y, t) and λm(y + ∆y, t + ∆t) for the turbu-

lent channel flow at Reτ ≈ 950 for y+ ≈ 100. (b) Space-time correlation of λm(xmax, t) and
Ωm(xmax +∆x, t+∆t) for a vortex reconnection event with ν = 1.25× 10−4. The solid contour
lines indicate correlation levels of 0.4, 0.5, and 0.6. Dashed lines are ∆y = 0 and ∆t = 0.

5. Space-time correlation

To demonstrate the evolution of coherent structures from the conditional regularity
diagnostic on different (R,Q) quadrants, the space-time correlation of Ωm(y, t), Dm(y, t),
λm(y, t), and λm(y, t) conditionally sampled on the four quadrants and the Vieillefosse
tail are computed for the channel flow. Similarly, the space-time correlation of λm(x, t),
Ωm(x, t), and Dm(x, t) are studied for the reconnection event.
The space-time correlation for two vorticity moments A and B for the channel flow is

defined as

CA,B(∆y,∆t; y) =
〈A−(y, t) · B−(y +∆y, t+∆t)〉t

(〈A−(y, t)2〉t · 〈B−(y +∆y, t)2〉t)1/2
, (5.1)

where the superscript (·)− indicates quantities with the mean removed and 〈·〉t indicates
average in time. The results for CλV T

m ,λm are given in Figure 6(a), which shows a clear
diagonal shape spanning the first and third quadrant of the ∆y–∆t plane. The first
quadrant events correspond to the ejections and the third quadrant to the sweeps, which
is consistent with the fact that S4 events are associated with such motions.
Similarly, the space-time correlation for vorticity moments A and B for the reconnec-

tion event is defined as

CA,B(∆x,∆t) =
〈A−(xmax, t) ·B−(xmax +∆x, t+∆t)〉t

(〈A−(xmax, t)2〉t · 〈B−(xmax +∆x, t)2〉t)1/2
, (5.2)

where xmax is the x-location at which vorticity becomes significant (ωp(x) > 0.3max(ωp)).
As demonstrated in Figure 2(b), there is a non-trivial correlation for Cλm,Ωm in the first
quadrant of the ∆x–∆t plane, illustrating how λm precedes Ωm both in time and space.

6. Summary

Regularity diagnostics using rescaled vorticity moments (Gibbon et al. 2014) are ap-
plied to high-Reynolds-number anti-parallel vortex reconnection and turbulent channel
flow calculations. In both cases, we have identified events associated with values of λm
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larger than previous computations of forced and decaying isotropic turbulence, which are
indicative of stronger enstrophy growth. However, 1 ≤ λm ≤ 2 (Regime I) is observed
at all times. This suggests that, for both periodic domains and boundary layers, firstly,
Dm+1 ≤ Dm holds, whereDm is the rescaling of the Ωm vorticity moments, and secondly,
the events are regular for all times with λm ≤ 1.5.

Application of regularity diagnostics to channel flow reveals strong peaks of λm at
y+ ≈ 100. The result proves the viability of the present diagnostic for identifying intense
vorticity behavior for both isolated vortex reconnection events as well as collective events
characteristic of boundary layer bursts. Moreover, conditional sampling of events based
on the quadrants of the (R,Q) invariant plane uncovers additional information related
to the nature of the processes involved.

Future work will be devoted to conditionally sampling the space-time correlations of
λm for different (R,Q) quadrants. The approach will help identify collective and recur-
ring events and their associated spatio-temporal locations, as well as the details of the
contributing structures. Connections with the observations reported in Kerr (2018a) re-
garding helicity will also be examined. To further investigate the relation between hairpin
vortices and vortex reconnection events, DNS of a single time-evolving hairpin structure
in wall-bounded flow will be considered (Zhou et al. 1999).
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