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Preface

These notes are intended to form part of a book on area-preserving
maps. This is the reason why they begin at §1.4 and occasionally refer to
non-existent sections. The reader is asked to excuse this inconvenience.
We believe that they are essentially self-contained and of independent
interest and for this reason we make them available now. We would be
grateful for any comments and criticism.

Chapter 1 is a review of basic notions which the well prepared
reader may prefer to skip. Chapter 2 then presents the theary of orbits of

minimal action for area-preserving twist maps.
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§1.4 Homeomorphisms of the Circle

Invariant circles play a very important role in the theory of area
preserving maps. If T is an invariant circle for T then T induces a
homeomorphism on I. Furthermore we will prove the existence of many
orbits of area-preserving maps with properties similar to those of
orbits of homeomorphisms of the circle. Thus in this section we recall
some of the basic ideas in the theory of the dynamics of
homeomorphisms of the circle. For a more detailed study see [Arnold,
1965, 1983], [Herman,1980] or [Nitecki,1971].

1.4.

Definition Let f:T! > T! bea homeomorphism, and let
T: R~ R/Z=T! bethe covering map (x)=x (mod 1). Thena
Jift F:R-R of fis acontinuous map s.t. forr = JToF.

1.4.2 Remark Different lifts differ only by a constant integer. If f is an
orientation preserving homeomorphism of T! thenF is an orientation
preserving homeomorphism of R (and hence is order preserving) which

commutes with unit translation, i.e. if R(x) = x-1 then FeR = ReF .

1.4.3 Theorem [Poincare, 1885] Let F: R~ R be the lift of an orientation

preserving homeomorphism of T!. Then

Ny) -
p(x) = |lim M_X_.
n- 00 B

exists and is independent of xeT! .
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1.4.4 Definition Since the above limit is independent of x, we may write
p(F) and call this the rotation number of F. By 1.4.2 if Fy and Fp are
both lifts of the same f: T! + T! then their rotation numbers differ
only by an integer.{We thus define p(f), the rotation number of f to
be p(F) (mod 1) for any lift F of f.

,"‘
We give a somewhat unusual proof of 1.4.3 : we will deduce it as a
corollary of the following lemma. The idea is due to Mather. It has the
virtue that it generalizes naturally to commuting pairs of
homeomorphisms of B. For a more standard and direct proof of 1.4.3
see either [Arnold, 19831 or [Nitecki,1971]. .

1.4.5 Lemma Let F: R- R be alift of an orientation preserving
homeomorphism of T!. Then 3 peR , st. V xeR , ¥ (m,n)eZ 2\((0,0))

np>m 2 F(x) -x > m

npem = F(x) - x ¢ m
This p is clearly unique.

1.4.6 Corollary If F and p are as above then V xeR , neZ and
Lnp] = greatest integer strictly less than np
fnp] = least integer strictly greater than np
then
lnpl ¢ FNx)-x ¢ [npl

Thearem 1.4.3 is then an obvious consequence of this. To prove 1.4.5

we use the following three lemmas:

Kl
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§1.4 Homeomorphisms of the Circle

1.4.7 Lemma VpgeZ , VneN |, VxeR ,

Proof

1.4.8 Lemma Given xeR , preZ , qseN , with p/q<r/s st

FARP(x) > x & FNARMP(x) » x
FORP(x) = x @ FNARNP(x) = x
FARP(x) « x & FNARMP(y) ¢ x

=  obvious.

& by elimination.

FAx) - x » p

F3(x) = x » r

Then VmeZ ,neN, st. p/qs m/n¢r/s (seeFigl4.l)

Fx) - x > m

Proof Define

Then

N=rg-sp >0
a=m-ms 0

b =mq - pn2 0

aq + bs = Nn and ap + br = Nm . Sobyl4.7 :

FNMRNMG) - x> g

FPRM(x) - x > @ as required.
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1.4.9 Lemma Suppose 3xyeR , preZ , q,8¢N st
FARP(x) * x and FSRT(y) ¢ y. Then p/q ¢ r/s.

Proof Otherwise the orbits of x and y would get out of order.
Wlog ys x<y+] , hence VkeZ , FR(y) ¢ FK(x) < FK(y) +1 .
So suppose p/q> r/s , choose neN st nps-nrq> 2 .
Thenby 1.4.7 , FMAS(x) 2“x + nps and FMAS(y) £ y + nrq.
Thus [FMS5(y) - FNAS(x)| 2 nip/q-r/sl - Ix -yl > 1 %

B
qeN,
Proof of 1.4.5 For any p.zel,ldefine %q:R-R by

o:pq(x) = FARP(x) - x .

Thenby 1.4.7 V0 :
ocpq(x)> 0 VxeR ® “m.nq(x)’ 0 VxeR
otpq(x)< 0 YxeR @ o:mm(x)< 0 VxeR

So we can define
A* = { p/qeq : %pg(*) > 0 VxeR }
A" = { p/qeqQ : o:pq(x) ¢ 0 VxeR }

Now, for pgeZ sufficiently large, (pg/1)eA ™ and (-pg/1)eA *.

Thus both A* and A™ are non-empty. By 1.4.8 if ab € A* with say
a<b, then [ab] cA” (here[ab] ={ceQ : a¢ c< b})and similarly

for A”. Thus (pg/1) is anupper bound for A* and (-pg/1) a lower bourd
for A”. Let p=sup A*. By 1.4 if p/qe A* andr/s € A™ then
p/q<r/s. Thusinf A~ 2 sup A* . Now, by 1.4.9 there is at most one

May 18, 1985



§1.4 Homeomorphisms of the Circle 5
P/qeQ s.t. apq has a zeroor changes sign in R, thus there is at most
onep/qeQ st p/q ¢ A* yA™ . So [sup A", inf A"} c R does not
contain an open interval and hence inf A~ = sup A* = p. Thus from
148 :

{p/geqQ: p/q> p)} c A”

This proves 1.4.5 for the case n=0, but for n=0 the lemma is trivial.

1.4.10 Remark Periodic orbits of f correspond precisely to zeros of Opgq -

Note that since %pq is continuous, if it has a change of sign, it has a
zero. In other words f has a periodic orbit of rotation number p/q iff
p/q e Q\( A"yA*) . Note that by 1.4.9 there is at most one such p/q.
Since p = inf A = sup A* but A, At =2 we have

either peQ , Q = A7y A* | sothereisnop,g st %nq has a zero in
R , thus f has no periodic orbits.

or p=p/qeQ ,sop/q ¢ A"y A", Thus %pq has at least one
zero, hence f has at least one periodic point of rotation number

p/q.

We now look at the.possible dynamics in each case; we will see a very

similar classification in Chapter 2.

May 16, 1985
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§ 1.4 Homeomorphisms of the Circle 6
Rational Rotation Number

Let F: R - R be the lift of a homeomorphism of T! with p(F)=p/q.

Using 1.4.7 we can classify orbits of xeR under F into three categories:

i

periodic ¥ meZ ,neN st np=m : FPRM(x)

= X
aavancing W meZ , neN i sit. np=m : FPRM(x) > x
retreating vmeZ ,neN st np=m : FPRM(x) < x

As we remarked above in 1.4.10 there is at least one periodic orbit. If
we take p/q in lowest terms with >0 then all periodic orbits have
period q. In fact they are all of so called £ype (p,g/ (see §1.6.9) , that
is FARP(x) = x. If xeR is periodic then so is x + n , ¥ neZ.

Then if x~ ¢ x* are two periodic points s.t. there are no periodic points

in (x"x*):

either all orbits in (x~,x*) are advancing ; then all these orbits are
asymptotic to the orbit of x* asn - o, and to the orbit of x™ as
n- -0 ie. Vye(x"x*), F(y)-FN(x*) asn- o and
FM(y) - FN(x™) as n - -oo (see Fig. 1.4.2).

or  all orbits in (x™,x*) are retreating and are asymptotic to the

orbits of x* and x~ as n - - and n - o respectively.

1.4.12 Irrational Rotation Number

This case was studied by Poincare [1885] and Denjoy [1932]. It is
described by the following theorem:

May 16, 1985
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§ 1.4 Homeomorphisms of the Circle 7

1.4.13 TheoremLet f: T' = T! be a homeomorphism with p(f) = ¢ R\Q.

For any given xeT! let P(x) = {limit points of { fN(x): neZ}} . Then:
i) P is independent of x, it is called the dersved set of f.
ii) P is f-invariant.

iii) P is either the whole circle or a Cantor set.

1.4.14 Lemma Let f be as above. GivenxeT! and kleZ with k=l let Abe

the interval {fXx, f'xL. Then every orbit of f passes through A.

Proof Note that for meN , M-k A is adjacent to f(M-D(-K) A . Thus

consider the collection of intervals {fM{I-K)A : meN). If these do not
cover T! the endpoints of fM(I-K)A must converge to some yeT! as
m- oo Then f(1=K)y = y  soy is a periodic point which contradicts
p(f) irrational. |

Proof of 1.4.13

i) Let yeP(x) , so 3 n(k)» o0 st. FMK)x -y as k- e Wiag
t™k)x - y monotonically from the left. Then given x'cT! by the above
temma 3 1(K)ez st Ky e [MK)y, kD) o] 50 K)oy

i i y=tim MKx ep then f(y)=1tim MK}y ep .

ili) P is closed and non~empty. It has no isolated points because if xeP
then x = lim fNK)x for some sequence n(k) , but n(K)y e p , VkeN | If
P contains an open set, then given any xe T!, since the orbit of x is
dense inP, 3 kJleZ st. A=[fkx, flx] cp . Thenby the lemma above

the images of A under f cover T! and P is f-invariant, thus P = T!.

May 16, 1985
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Otherwise P contains no open set, thus it is nowhere dense and hence a

Cantor set. a

Thus two possible cases arise:
{

Transitive P is the whole of T! and so every orbit is dense on T!
under f. In this case F is topologically conjugate to the uniform
rotation Ry(x) = x + p (where p= p(F) ) i.e. there exists a
homeomorphism h:R=R st heF= Rpoh. To construct h
choose any xeR and define h(FP{x)-m}) =np - m , then extend by
continuity. If F is sufficiently smobth or analytic and p is
sufficiently irrational then this conjugacy turns out to have
some degree of smoothness (see {Arnold, 1965], [Herman, 1980]
and [Yoccoz, 19841).

Intransitive If P is a Cantor set there is no orbit dense in T'.
However every orbit in P is dense in P, while T! \ P is a union of
open intervals (called gaps). The orbit of any point in one of
these intervals is homoclinic to P. This is because the total
length of the gaps is at most 1, so the length of any gap goes to
zero under iteration. Thus the orbit of any point ina gap is
asymptotic to the endpoints of the gap as n - too . In this case F
is only semiconjugate to the rotation Rp i.e. the h defined above
is a continuous surjection but is not 1~1. It collapses each gap

plus its endpoints to a single point. f ] p is called a Denjoy

tinimal System. This intransitive case cannot occur if F is C!
and log DF has bounded variation (hence for instance if F is C2).

See [Denjoy, 1932] and [Nitecki,1971].
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§1.5 The Action Principle for Twist Maps

Recall that in many cases the dynamics of a Hamiltonian system can be
expressed in terms of a variational principle. In a similar fashion the
orbits of a large class of area-preserving maps can be obtained as the
critical (or stationary) points of an action. This approach turns out to
be very fruitful. In Chapters 2 and 3 it enables us to prove the
existence of many dif ferent types of orbits and to investigate their

properties.

Definition We say that a c! diffeomorphism T: R2 - R2 isa (mom‘bom)
twist map if there are coordinates (x,y) and a constant K> 0 s.t.

ax'/ay » K > 0 where (x'y") = T(xy) . 15.2

for all (xy) € R2.

15.2 is usually referred to as the twist condition. It is absolutely
crucial to the development of much of the theory of area-preserving
maps, and in particular when satisfied allows us to give a variational
formulation of their dynamics. Relatively little is known about the
dynamics of area-preserving maps which do not satisfy the twist
condition, at least locally. Note however, that locally, twist is a very
common property. Thus for instance near a typical elliptic fixed point
3 coordinates (6,r) s.t. the map is given by

8 = 6+ Q) +or)

o= o+ o(r?)
with dQ/dr =0 at r = 0 (Birkhoff Normal Form, see §X.X). Then

36'/3r has constant sign in a neighbourhood of r= 0. In §X.X we will

§1.5 The Action Principle 2

show how the results for twist maps extend to local twist maps. It is
possible to give weaker notions of twist than above; for example, we
may only require 9x'/3yto have constant sign on R2 rather than
actually being bounded away from zero, or give a topological
definition, so that T need not necessarily be differentiable. Many
results remain true under these conditions, but there are often extra
technical complications in thé"proofs. Thus for clarity of exposition in
the remainder pf these _notes we shall almost always only consider

maps which satisfy 1.5.2 globally.

For an example of an area-preserving twist map recall the generalised
standard map of §1.1 given by

y' =y + 1)

X' = x+y

where f: R - R isaC! function.

1.5.3 Exercise Show that if T is a twist map then so is T', but T2 need
not be. Note that T' ‘twists’ in the opposite direction to T, i.e. inthe

same coordinates we obtain 1.5.2 with the inequalities reversed.

1.5.4 Remark If T is a twist map then the image of each vertical
{x = constant} cuts each other vertical precisely once. This means that
the map (xy) - (xx') is invertible (e.g. see the proof of 1.5.5) and
(x,x") make perfectly good coordinates for R2 . we shall make frequent

use of this fact, both explicitly and implicitly.

May 16, 1985
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§1.5 The Action Principle 3

1.5.5 Proposition Let T: R2 » R2be aC' area preserving twist map,
with (xy") = T(x,y). Thenthere exists a C™*! function h: RZ - R sdt.
if we denote hy(xx’) = 8h(xx)/3% , ho(xx) = 3nh(xx')/8x' and
hyp (xx7) = 82n(x,x")/3x3x" , then

-hy (x,x) 15.6
hQ(X,X')

y
yl

H

and hip(xx) ¢ C ¢ 0, V (xx)eR 2 |, for some constant C ¢ 0.

1.5.7 Definition The function h above is called the generating function

for the map T.

Proof of 1.5.5 Let m;: R2 -+ R , 'i=l,2 , be the projections' given by
m(xy) = x and p(xy) = y. Given (E,DeR 2 let V,V' be the
verticals V = {x=8} and V' = {x=E) Thenby!53 and154
TVaV and V4 TV each consist of a single point, so define
functions Y'(EE) = mp(TVaV) and Y(EE) = mo(VaT'V'). Thus
y'= Y{xx) andy= Y(xx) (seeFig. 15.1). Fix anarbitrary
(xgX')eR?2, and given (xx)eR2 let »: (0,1 - B2 be a(say
piecewise smooth) path from (xgx'g) to (xx). Thendefine h(xx’) =
IX Y'(E,E0dE - Y(EEdE . This is path independent: use Sfokes‘
Theorem and note that since T is area preserving dY’,df’ = dY,df .
Then hy(xx’) = -¥(xx) = -y and ho(xX) = Y(xx) = y' as
claimed. Finally note that hyp (xx) = -1/(8x'/8y) ¢ ~U/K < 0.

a
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Conversely:

1.5.8 Proposition GivenaC™! function h: B2 = R st. hyp ¢C< 0
for some constant C, then h generates a twist map by 1.5.6.
{
Proof Fix xeR, then since hyp < 0 we can invert y=-hy{xx’) (asa

function of x’) to give x' = a(%y). Thendefine T: B2 - R2 by

T(xy) = (a(xy), ho(x,x(xy))) 159
Then
-hiy /hiz “hg

DT(xy) = 15.10
4 hoy=hoohyy /M -hoo/hpp

where the second derivatives of h are all evaluated at (x,&x(x,y)) . Thus
det DT =1 and hence T is area-preserving, and ox'/3y = 8u«/dy =
~/hyp 2 -1/C > 0 ,andsoTisatwist map.

Thus for example the generalised standard map (1.1X) givenby
y'=y+{(x), x=x+y has generating function
h(xx) = (x-x)2/2 + F(x) , where F is any indefinite integral of f.

1.5.11 Exercise Show that the generating function is unique up to addition

of a constant.

Using the generating function we can characterise orbits of T in terms

of sequences which make an action functional stationary.

May 16, 1985



§1.5 The Action Principle S
15.12 Definition A state x is an bi-infinite sequence {x;eR: i@}, and
a segment Xqn is a finite sub-sequence {xjeR : m¢isn }. Given

mneZ , we define the act/on Wpp of a segment xmp, by
) n=1
WinGmn) = 2 hxq, Xisg )
f=m

We often write Wn(X) for Winn(xmn) - We say that a segment Xmp
has stationary action if Wpp is stationary at xqn wrt variations
fixing the endpoints xm and Xn . Thus BWyn(x)/8x; = 0, V mein . we
call astate stationary if an rinite sub-sequences are stationary
segments.

Segments with stationary action correspond precisely to finite orbit
segments under the map generated by h. Thus:

1.5.13 Proposition Let T be an area-preserving twist map of R2 and h its
action generating function. If {(x;,y;): m¢i¢n } is anorbit segment

of T,1e. (Xjs1.¥is1) = T(xjy;), then {xj: m¢isn } has stationary

action.
Proof npXj-1 Xi) = ¥i = =hy (XXje) Vm¢i<n
Thus
BWma(0/8%; = holxi—y Xi) + Dy (XjXjs) = O Vmei<n

a
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1.5.14 Proposition Suppose that xpn has stationary action. Define

i = b (X441 ) meicn

Yn = NolXn-qXp)
H

Then {(xj,y;): msien } is an orbit segment of T, i.e.

1
(%541 Yie1 ) = TCxy3) for mgi<n .

Proof Recall from 15.9 that T is givenby T(xy) = («x(xy), ho(x,a(xy)))
where o satisfies a(x,~hy(xx")) = x'. Stationarity gives hp(x;-; %)

= -0y (X3.Xje1) . Vmeien . So for mgin

"

T(x;y3) (i, y )0 p(xq,0(x4,y1)))
= (o(x,mhy (X3,%501 ) Db o0x g, 004,70 (X441 1))

= (Xjeph(X X441 )

{ (Xis1 ~Ni(Xia1 X§e2)) mei<n-1
(Xn:\/n) i =0l
= (Xjep e ) m¢i<n

Thus stationary states correspond precisely to orbits under the map T.
From this we deduce that for a stationary state xp-yxp determine
Xne and X9 , and hence X, V i€Z : Xp-y,Xp determine yp by

¥ = holXn-q Xp) . and then (xp,ypy) uniquely determines an orbit (x;,y)
under T. Thig is of course just a re-interpretation of 1.5.4 . Another
way to see this is to note that since hyp < 0 , given Xy Xp, there is 2

unique Xpe; satisfying holxpe.Xp) *+ My (pXpey) = 0.

May 16, 1985
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§1.5 The Action Principle 7

1.5.15 Remark We thus see that if yv are two stationary states, then
Up=VpandUpep = Ve = U=v. Onthe other hand if yyv are
distinct and upy = vpthen (Upey = vpo1) and {Upe - vpey) must have

opposite signs. Again we can deduce this in two ways:

a) recall that T and T twist in opposite directions, let y; = ho(uj-y u;)
and z; = ho(vi-1,v{) . so that (u;.y4), (v.2¢) are the orbits
corresponding to uv respectively. Thenby twist yn <z, =

Unel € Vet o Un-t > Ve - and vice versaif yn >z,

D) From (Xpay et ) = T(XqholXp-1 Xp)) we can evaluate 8%,y /8%~
directly using 1510 . Thus

O%e o 2O xp)
O%n-1 1% M2 (XnXpet)

May 16, 1985
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8.6 Twist Maps of the Cylinder

In the rest of these notes we shall mainly be concerned with
area-preserving twist maps of either the cylinder T!x Ror the
annulus T! x[0,!] . As we remarked in LX , these are the )
area-preserving maps which typically arise in physical applications.
We shall present the theory interms of maps of T!x R since this
avoids the technical difficulties associated with the boundaries of the
annulus. With suitable modifications, however, the theory applies
equally well to maps of THX[0,1]. The precise class of maps we shall

consider are:

Definition An area-preserving twist map of the cylinder is a
c! diffeomorphism ™. 7!« R - T!x R, which presarves area,
arientation and the topological ends of T!x R and which satisfies the
twist condition:

96'/8y 2 K> 0 where (8'y") = T*(8,y)
Givensuch a map it is often convenient to consider a lift T: B2 - R2

to the universal cover (in exactly the same way as we lifted

homeomorphisms of T! to R). Thus:

1.6.2 Definition Let T*: T!xR - T!xR be a homeomorphism,

andlet p : RxR - (R/Z)*R = T!xR be the covering map
p(x.y) = ({x (mod 1)),y) . Thena 7/rt T:R2 B2 of T* isa

continuous map st. TFep=peT.



§1.6 Maps of the Cylinder 2 §1.6 Maps of the Cylinder 3

1.6.3 Remark Let R: RZ - R2 be the unit translation R(x,y) = (x-1y) , then Proof The fact that AW(T‘(I‘)) - Ay(I) is independent of both w and I is an
T commutes with R i.e. TeR=ReT. Different lifts differ only by a obvious consequence of the fact that T preserves . So wlog assume T
power of R, i.e. if T,T' are both lifts of T* then T' = RNeT for some and hence T*(I') are smooth sub-manifolds. Fix Xg and consider the lift
neZ. If T* is an orientation, end and area preserving twist map of of T, this is a smooth periodic curve from x = -e0 to x = oo , let  be one
T! xR then T is an orientation and area preserving twist map of R2. period of this fromixq to xg+! . Asusual if (8,y)el’ , denote ey =
Let h: B2 » R be the generating function of T givenby 1.5.5 , we shall T*(0,y)eT*(T) . Then Ay(T) = § (y-w)de = IZS (y-w)dx and
often also call it the genergting function of T* . Since T commutes AW(TE(D) = §r (y-w)dx’ ='5j3 (y'-w)dx' . Thus
with R, if h is a generating function then so is h’ given by h'(x,x’) = Aw(T’(r)) =AM = J?S (ho(xx) - w)dx' + [ x (hy (xx) + w)dx
h(x-1x"-1). Soby 15.11 h(xx’) - h(x-x’~1) is a constant. We leave = I?f (ho(x,x)dx" + hy (x,x")dx)
the reader to verify that this constant is independent of the choice of ' = h(xg*lx' g*!) - h(xgX'g)
lift of T* and of the function h, and define: = Flux(T’)

o

1.6.4 Definition If h: R2 -+ R generates the area-preserving twist map
T*:T!xR - T!xR ,the net flux or Calabi invariant of' ™ is 1.6.6 Exercise Show that for the generalised standard map of §1.1 given
the constant Flux(T*) = h(xx") - h(x-1,x'-1). by:

y'=y+f(6) where f(6+1) = f(8)
This has the following geometrical interpretation (see Fig 1.6.1): let 8'=0+y
Ty, be the circle T!x{w} c T'x R, and let Vy, = ((8y):y> w}.If T is the net flux is given by § f(8)de.
a homotopically non-trivial curve in Vy, , let V be the component of
the complement of T containing Ty, , and denote Ay (T) = p(VaVy,) = Most of the area-preserving twist maps that we shall study will have
"area between I' and Tw” (where j is the measure given by d6 ,dy zero net flux, e.g. maps of the annulus or punctured plane. Thus for
which is preserved by T*). Then: instance recall from §1.5 how locally in the neighbourhood of an

elliptic fixed point we obtain a twist map of the cylinder; this
1.6.5 Proposition Let ' be any homotopically non-trivial closed curve in obviously has zero net flux.
T! R and choose any weR s.t. both T cV,, and ™) < Vyw - Then
Flux(T*) = A(T*(I)) - Ay(T) = “net area crossing T in one 1.6.7 Example The motion of billiards (or equivalently light rays) in a
iteration of T". smooth convex plane domain can be reduced to the dynamics of an

area-preserving twist map of the cylinder TIx (-1,1) (with zeronet

May 16, 1985 May 16, 1985
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§1.6 Maps of the Cylinder 4

flux). This approach was first taken by [Birkhoff1917,1927}; much of
his work on area-preserving twist maps was motivated by this
example which clearly illustrates the interpiay between the dynamical
and variational viewpoints. The motion can be given by two alternative
definitions :

a) angle of incidence = angle of reflection.

b)  Fermat's principle: light rays take paths with stationary

length subject to fixed endpoints. ‘

We claim that the relation between these points of view is precisely
that givenby 15.13 and 1.5.14. A trajectory is clearly determined by
where and at what angle it hits the boundary. We specify these by the
arc length s along the boundary and by o the angle of incidence to the
normal to the boundary (Fig 1.6.2). Thisgivesamap T: TIx(-11) =
T (-1) by T(s,sin &) = (s'.sin «’). The reader should check' that
this preserves the form ds, d(sinx) and that 8(sin«’)/3s> 0. The
generating function h(s,s) for T is then given by the straight line
distance between s and s' . Note that in this case the twist goes to
zero as we approach y = ¢! and so h is pot defined on the whole of B2,
This is the sort of technical difficulty that we avoid by requiring the

twist to be bounded away from zero on the whole of the cylinder,

Finaily we collect together a number of useful definitions appropriate
to maps of the cylinder. First recall the definition of rotation number
for a homeomorphism of T! from 1.43 and 1.4.4 . In the case of maps
of T!xR the analogous 1imit does not necessarily exist, and will

certainly not be the same for all orbits, but nevertheless the concept

of rotation number of an orbit turns out to be very useful:
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1.6.8 Definition Let T:RZ~ B2 be the lift of an area preserving twist
map of TIxR, and let 7: R2 = R be the projection m{x,y) = x. If for a

given geﬁz the timit ,

;1) - mk)
m!

[}
n- 00 L

pl) =

exists, then it is called the ra}at/'on number of x for T. This limit is
independent of the choice of point on an orbit and thus we can talk of a
rotatien number of an orbit. Note that {p(x) (mod 1)] is independent of
the choice of 1ift of T* and we Can thus also talk of rotation numbers

for orbits under T*.

Periodic orbits of T* always have rotation numbers, it is useful to

classify them as follows:

1.6.9 Definition GivenqeN, peZ (not necessarily co-prime) , an orbit
{(pyp): neZ } of T is saidtobeof fype £, il Xng = ¥n* D,
¥ neZ . Such an orbit is then the lift of a periodic orbit of T* which
has rotation number p/q. The term 'type p,q’ is then also applied to

this periodic orbit, given the choice of lift.

It is a trivial observation that if (x,yp) is anorbit of type p,q, then
the stationary state x = (x: neZ } corresponding to this orbit satisfies
Xn'fq = Xnth, ¥ neZ . We shall refer to such states as states of

type p,q, or evenas periodic states . For these states, rather than

considering the action Wy, of 15.12 it makes sense to define a

‘periodic’ versiorn:
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§1.6 Maps of the Cylinder 6

1.6.10 Definition Let Xpq = { X : Xpq = ¥p*P , VneZ}.
Themap X - (Xq, .. Xq-1) then naturally identifies Xpq = Rd.
Define the action Wp/q: Xpq — Rby
q-1 '
wp/q (XO. e .xq-] ) = z h(xiu Xi+] ) (xq - x0+p)
n=0
16.11 Remark If we define R*: Xy q - Xpq by [R¥(X)]j= xj+1 , then
if T has zeronet flux then Wp/q °R* = Wp/q. S0 Wp/q isa function

on Xp q/R* . This latter space can be identified in the obvious fashion
with B/Z x RA™! , in other words wlog we cantake 0¢ xg ¢ 1.

1.6.12 Lemma Stationary states of wp/q (w.r.t. variations preserving Xq =
Xqg*p) correspond to orbits of type p,g.

Proof Follow the proof of 1512 and 15.13 and use Xpeq = Xn*P -

More generally we want to consider recurrent, and in particular
quasi-periodic states. Recall from 1.X.X the general definition of a
recurrent orbit. Translated into the framework of stationary states
this reads as follows:

1.6.13 Definition A stationary state y is recurrent if givene > 0and
keZ , 3 (mn)eZ 2\(0,0) sit.
|(l-|k+n+ m) - Uk| < €

lugsmey +m) = gl < €

Such a state then corresponds to a recurrent orbit under T* . Thenwe

define:
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1.6.14 Definition A guasi-periodic orbit for T* 1s a recurrent orbit
which has an irrational rotation number. We shall call the stationary

state corresponding to such an orbit a guas/-periodic state .

of particulai‘ interest are quasi-periodic orbits which lie on invariant
circles. We remarked on the ‘importance of invariant circies in §1.3.
For maps of the cylinder we waiit to distinguish a particular class of

such circles:

1.6.15 Definition A rotational invariant circle (r.ic.) for T is an
invariant circle which is homotopically non-trivial (i.e. it "winds once

around the cylinder”) (see Fig 1.6.3) .

Givenany invariant circle I' of a general area-preserving
homeomorphism T, we see that T induces a homeomorphism on T. From
1.4.4 we then obtain a rotation number for this homeomorphism. For
rotational invariant circles this rotation number agrees with that .
given by definition 1.6.8, provided we choose compatible orientations
for the two lifts involved. Also note that for an arbitrary T, if we take
an annular neighbourhood A = T!x(0,1) of T, then T is ar.ic in A(A
may not be invariant under T, but this is mainly a technical problem).
Typically we can find an annular neighbourhood A such that T has twist
in A, thus the study of invariant circles reduces to a large extent to
the study of r.i.c's for twist maps. We show the existence of r.ic’s
under suitable conditions in Chapter 4 and discuss their properties,

and give criteria for their non-existence in Chapter 5. See also §2.4 .
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1.7.1

817 Monotone Sets and Orbits

Recall from §1.4 that for a lift of a homeomorphism of T, orbits must
preserve the order on R . The natural generalisation to the context of

maps of the cylinder is:

Definition (Mather, Katok) Let T: B2 ~ R2 be the lift of a twist
homeomorphism of the cylinder, and R : R2 - RZ be the translation
R{xy) = (x-1y), sothat T and R commute. Let 77: B2 - R be the
projection m(xy)=x. A non-empty se{rwhich is invariant under both

TandRis monotone it |, is injective and:
VixeM, om0 ¢« nlx) = n(TW) ¢« m(TK)) .

- L7.2 Remark If M is monotone then

Vix' eM, neZ, w ¢ nlx) =2 wI) <« m(Tx)).

We shall mainly be interested in the theory of monotone orbits and
states for area-preserving twist maps. We will use this extensively in
Chapters 2 and 3. However in this section we do not need to suppose
that T preserves area, thus by a stationary state we will simply mean a
sequence X = {xn:neZ} st. (xyp) = Txqyo) - This of course agrees
with definition 1512 when T is an area-preserving twist map. Note
that to define monotone sets we need not suppose that T is a twist
map. However for arbitrary maps of the cylinder several of the
following results do not hold and a number of technical difficulties
arise. Thus for simplicity of exposition, in this section we shall
always assume tha::f T is a twist map. We also wish to define:

§1.7 Monotone Sets 2

1.7.3 Definition A stationary state y is mwonotone if Yrspq e¢Z,

Ug*+r = ug* P =2 Ugep #T = Ugsy *P

us+r < uq+p = Ugep * T < Uqﬂ*D

If u is a stationary (state then the corresponding orbit of T plus all its
translates under R form an invariant set for (T,R) . 1t is clear that this
set is monotone iff u is a monotone state. In other words the 1ift of the
orbit on the cylinder corresponding to a monotone state is a monotone
set.

We often want to take the closure of a monotone set or the limit of

monotone states.

1.7.4 Lemma If Mis a monotone set for a twist map T then so is» Cl(M) (the

closure of M) .

Proof Suppose that x,x’eCI(M). Using 1.7.2 , since M is monotone and T is

continuous

n(x ¢« 7)Y = w(M) ¢ m(TNK)) , VnezZ . 1.7.5
By twist (recall 1.5.15 and note that it does not depend on T being
area- preserving) if T(T()) = W(T(x)) then m(T2(x))> m(T2(x"))
which contradicts 1.7.5 . Hence

()« Tx) 2 w(T) ¢« m(T)). 176
This also implies that 1], is injective : suppose that T(x) = m(x’)
but x 2 x' . Thenby twist 1{(T¥x)) = w(TYx)) , which contradicts
176 .
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1.7.7 Lemma The limit of monotone states is a monotone state , 1.e. ' 1.7.10 Lemma If M is a monotone set for (TR), then 3 weR , sit.
if u(n) are monotone and u(n); = u; as n - o then u is monotone. ' VnmeZ , Y xeM, if we denote (xpyn) = T(X)
Proof Similar to 1.7.4 . Nw<m = Xy - Xg ¢ m

. .
Nw>m = "Xy = Xg > M
As the next lemma shows the dynamics on monotone sets are '

essentially the same as the dynamics of homeomorphisms of the circle. 1.7.11 Corollary if Mis a monoton:\za set for (TR), JweR , s.t.
In particular appropriate vefsions of the results in §1.4 hold for if lnw] = greatest integer less than nw
monotone sets. There are two approaches to proving these: either we and [nwl = least integer greater than nw
can directly copy the proofs of §1.4 , or apply the results of §1.4 to then ¥V neZ , VxeM
the homeamorphism given by 1.7.9 . lnwl ¢ x;-xp ¢ [nal
i
1.7.8 Remark If M is monotone then since 1 |r1 is injective we can define ' 1.7.12 Corollary If M is a monotone set for (T,R), let w be as above, then
a homeomorphism f: (M) (M) by f = weTem', every orbit in M has rotation number w (recall definition 1.6.8). We

will denote this w as w(M) and call it the rotation number of M.
1.7.9 Lemma [Katok, 19821 If T i; a twist map, f: (M) - m(M)canbe
extended to a homeomorphism f: R- R which satisfies 1.7.13 Remark Although the g: T! - T! givenby 1.7.9 is not uniquely
f(x+1) = f(x) +1 and hence gives a homeomorphism g : T >T!. defined it is clear that the rotation number of such a g is independent
of the choice of extension of f: 71(M) - (M). By comparing the
Proof By .7.4 , CI(M) is monotone, and we can extend f to the closure of M definitions we see that it is precisely w(M).

by continuity , thus wlog we can take M to be closed. Then R\M is a

disjoint union of open intervals. We extend f to these linearly in [0,!) Lemma 1.7.10 applies to monotone states in the obvious way. In fact
and then periodically to R. It is easy to check that this gives a together with the classification of 1.4.11 for rational w, it
homeomorphism of R with the required properties. characterizes monotone orbits:

May 16, 1985 e May 16, 1985
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§1.7 Monotone Sets 5
1.7.14 Lemma yis a monotone state & JweR st VknmeZ

Nw<m 2 Upype ~ U <M

nw>*m = umk~uk>m
and (if w rational) , Vkez

either VmeZ ,neN , st Nw=m, Umpg -~ U =M
or VmeZ ,neN , st nw=m, Upg - U > m
or VmeZ ,neN , st nw=m, Upk - U <M

We will denote this w as w(W) and call it the rotation number of u.

Proof = follows directly from 1.7.10 and 1.4.11
@ exercise.

By 1.7.7 the limit of monotone states is also monotone. Onemight hope
that the rotation number behaves continuously under this limiting
process, and this indeed turns out to be the case. We then use this to
show that the set of rotation numbers of monotone states is closed.
This will be crucial in Chapter 2 in showing the existence of
minirﬁizing states of arbitrary rotation number.

1.7.15 Proposition Let y(n) be a sequence of monotone states with

u(n)j - uj as n= oo Then liMpoe w(u(n)) exists and is equal to w(w).

1.7.16 Lemma Let yv be two monotone states and suppose that for some
MeN and 8> 0 wehave [u;-vil¢ 8§, VOsisM

May 18, 1985 5
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Then
lw(w) - wl ¢ 201 + §)M

Proof L7.11 = Juj-ug - iw(Wl ¢ 1 and similarly for v. Thus
luj = vj = bug - vg) - ilw(w - wIt ¢ 2
luj- vl 2 o) - o] - lug-vgl - 2
2 201 +8) 2 Mo - bW o

Proof of 1.7.15 Givent > 0, choose MeN st. M23/¢ and NelN s.t.
luy-u(n);l < V2, VOsisM , VN . Thenby 1.7.16
fol) ~ ol ¢ 20+ (/2)M ¢ 3IM < ¢ v N
a

1.7.17 Proposition Let y(n) be a sequence of monotone states such that
w = liMpoe w(uln)) exists, Thenthere exists a monotone state y such
that w(u) = w©.

Proof Wiog 0 s u(n)g < | . By17.16 |lu(n)g-un)! § 2+ wluln)).
Since w(u(n)) is bounded so is u(n); . So the sequence
(u(n)g,u(n) | JeR? is bounded, so wiog (take a convergent subsequence)
(utn)gu(n)y ) = (uguy) as n- oo . Now generate a stationary state y
from (ug,uy) using 15.14 . It is easy to see that u(n); » uj as N> oo
define xj(xx’) = M(Tix(~hy (xx))) , thus uj; = x;{uguy ) and
u(n)j = xj(u(n)g,u(n)y ) . But x; is continuous hence
liMpo W) = liMpeo Xj(u(Mgu(n)y)

= %M paes (WN)gu(n)y ))

= xjluguy) = uj
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Soby 1715 uis amonotone state and w(u) =1iMpee w(u(n)).

s}

Lastly we show that monotone sets (for a twist map) satisfy a
Lipschitz condition. In Chapter 5 this is used to develop criteria for the

non-existence of rotational invariant circles. To prove this we need:

1.7.18 Lemma If M is a monotone set and Ty : RZ - R is the projection
Tio(x,y) =y then 1o(M) is bounded. Thus the image of M on the cylinder
T! x R is bounded.

Proof Choose (xg.ygleM ,let (x'gy'g) = T(xgyg) and K=lxg-x'gl+1.
Let X = {(xXx)eRZ : Ix-xgl ¢ 1 and Ix-x1 ¢ K}, then hy(xx) is
bounded on X, say Ihyl ¢ C.

Now if (x,y)eM denote (x’y’) = T(x,y) and choose meZ s.t.

Xg ¢ x-m § Xg+1. ThenMmonotone = x'g ¢ X'-m ¢ X'g+1 .
Solx-m-(x'-m}l ¢ Ixg-xgl+1 = K. Thus (x-mx-m)eX , and
so lyl = lhy(xx’) = Ihy(x-mx’-m)| ¢ C as required.

1.7.19 Proposition ([Birkhoff, 1920}, [Katok, 1982], (Chenciner,1984])
Let T be a twist map and M a monotone set for (TR). Then there exists a

constant L, st. if (xg,yo)(x1,y1) €M, then

lyo-yil ¢ Llxg-xl

Proof By 1.7.18 choose Cst. McRx[-CC] and denote A=Rx[-CCl. As
usual Tet (x'3y’y) = T(xiyi), 1=0,1 , and define (x*y*) = T(x.yq)

May 18, 1985
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Define B

h

max(y y)e A (OX'/3x)
0 = max(xy)ea (3y'/3y)

and let K be the constant in 1.5.1 , thus (3x'/3y)2 K> 0 onRZ.

Wlog xg ¢ xq , then

either yg> ) -
Klyg-yi) ¢ (% -xy) by twist
X'g ¢ X M monotone
(x* -x'g) ¢ B(x; - xg) definition of B

*  Klyg-y1) s Bl -xp)
or  yg<yy inwhich case asimilar calculation using T gives
Kyy - vp) ¢ D(x; = %g)

So take
L =max { D/K, -B/K} o
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8 1.8 The Poincare-Birkhoff Theorem

Poincare [1912] was convinced that the key to understanding the
dynamics of area-preserving maps lies in their periodic orbits. In the
last year of his life he published a conjecture, that for any area-
preserving map of the annulus satifying a twist condition (in fact,
weaker than our 16.1) there exist at least two fixed points. This was
subsequently proved by Birkhoff [1913]. There have followed several
proofs under slightly different conditions. We give the version most
relevant to our purposes. Recall from §1.X that the residue Rof a
periodic orbit of period q of an area-preserving map T is defined by

R = (2-Tr0T4, )/4 , where x is any of the points of the orbit.

Theorem (Poincare-Birkhoff) Let T be an area-preserving twist map
of the cylinder T'x R, with zeronet flux. Then V p/qeQ
(p.q coprime) T has at least two periodic orbits of type p,q ; one of

non-positive residue and one of non-negative residue.

Proof Oneorbit can be found as a minimum of the action Wy,/q which we

defined in 1.6.10 (see §2.3). If there is a2 whole circle of such
minimizing orbits they all have residue zero (see X.X). If not then
another orbit can be found as a "minimax” of Wp /q (see §3.X). It then
onty remains to prove that orbits corresponding to minimizing states
have non-positive residue, and those given by "minimax” states have

non-negative residues. These facts come from the following relation

between. the residue of a periodic orbit and M, the second variation of
Wp/q - It is clear that for a minimizing orbit detM » 0 in §3.X we give

a topological argument to show that for a "minimax” state detM ¢ 0.

7

§1.8 Poincare-Birkhoff 2

1.8.2 Lemma ([MacKay and Meiss, 1984]) Givenxe Xp'q stationary, let M be

the matrix of second variations of wp/q ahout ¥, thus

BQWD/Q(Z.) .
Mij o= (ij=0..g1)
1 Bx; Oxj
Then if Rp/q is the residue of the corresponding periodic orbit
¥

det M

Rprq =~ (b5 = hyp (XjXje N

4 TTiwg..q-1 €D}

Proof Recall that orbits are given by sequences satisfying
ho(xi-1 Xi) * hy (xiXjey ) = 0
Differentiating, we obtain the following equation for tangent
orbits 8x :
Di-18Xj-p * @j8%X{ *+ bjdXjy = 0 1.8.3

where we have set
2
b.

= Noo(Xi-1 Xi) + By (XiXiep)
= hip (xixjs)) < O

Here as usual Xjsg = Xj * P. The eigenvalues A,J/A of DTA are given
by the existence of a tangent orbit 8x satisfying xq = ABxg . For
such an orbit 8Xq+l = A8xy ,and Sxg = (l/}\)axq . Thus §x must
satisfy

M(A)ex = 0
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where M(A) is the cyclic tridiagonal matrix given by: Set
{ ] PR |
k 1; = 0 | = DT
ag by 0 . 0 (/M0 gy i i 1 -
) =1 -b: . e /e (xg.X1)
| g a2 b 0 . 0 | lL i Jl IL bj-1 /05 -3j/b] J o7
o o a2 b |
M(A) = | - l ,
] ‘ Thus Trace DT9 = kq * nq.
l | But kj=mj-; , 1j=nj-; so m; and n; satisfy the following
| o -2 Pg-2 | recurrence relations:
l Abg-1 0 . bg-2  3g-1 J
mi = -@ay/b)miy - (bj-y /bPMi-2 18.4
There is then a non-zero solution for §x iff D(A) = detM(A)=0. ni = -(ai/bp iy - (bjoy /bini-g

Expanding D(A) by the top row and first column we get :

with initial conditions mg=0, my =-bg/by , n.p =0, ng=1 .

D) = D)+ (A=) (DI TTig gt (05)
SO NI Ty g2 (B9)

“Now consider the following matrices:

3 by 0 0
by an 0

[
|
Ai,l:
l
|
{

= () -(A+(/A) - 2) ﬂix:o el ( -bj )

Thus Ry/q = (2 = A = V)= -0() / (4TT (-09)) , 0 2i-1 Bi-1
but D(1) = M, hence giving the required formula. o 0 0 Piet i
Alternative Proof It is possible to give an alternative proof using
recurrence formulae, based on an idea in [MacKay and Percival, 1985]. { ay by . 0 0 }
From 1.8.3 we see that | bp a3 o |
B = | I

roo r 1T 1 l l
lexi |- | o 1 || oxi-g | | o 3.1 bip |
| 8xie | | -0 /0p -aildy | |8 | o o bioy 3|
L J L J L J
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Let Nj = det A; and M; =det Bj, then expanding by the bottom row

we get :
Mg = @y My - (02
Niet = ajor Ni = (092N

with initial conditions N.;y =0, Ng=1 , Mg=0, My =1.

By comparison with 1.8.4 this implies that:

mi = bgMi/ TTjey (05
no= N/ Tl (by)

(c.f. [Aubry, Le Daeron and Andre, 1982, App. H]) Expanding det M by
the bottom row and last column we get:

det™M = agNg- - (bg-1)Ng-2 = 21T}y o(b}) - (0g)?Mg-1
= Ng - OgMgr = 2TTje o (-05)
= ngTTjq(0p) - bgmget TTjer gt (05) = TTjer q(-by)
= (ng + mg-y = 2 TTjep.o(-05) )
= (Trace DFY - 2) (T o(-0j) )
= (-4Rp/q) (TMjay q(-07) ) o

[Mather,1984 b} develops these ideas further to obtain even more

information about DT9, from the Morse Index of X as a critical point of

Wp/q .

May 16, 1985
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Chapter 2 : Minimizing Orbits

§2.1 Introduction ‘

!

In 8.5 we showed that orbits of an area-preserving twist map could be
regarded as stationary states'!bf the action. It turns out that the states
which actually minimize the action have a particularly important role
to play. Firstly, they provide existence proofs of orbits of arbitrary
rotation number, secondly their dynamical behaviour can be completely
understood and we can give a classification of all such states, and
lastly the concept of minimal action turns out to be important in the

study of invariant circles and Converse KAMtheory.

For the whole of this chapter let T: B2 - RZ be a lift of a twist map
of the cylinder with zeronet flux, and let h: R2 - R be the associated

action generating function.

Definition A segment (xi: msis<n} is minimizing if

Wmn(0 s (globally) minimal w.rt. variations fixing Xm , Xp .

2.1.2 Definition A state {xi: i€Z )} is minimizing if every finite

segment (x;: m¢ i¢n} is minimizing .

Clearly every minimizing segment or state is stationary and thus

corresponds to an orbit segment or a complete orbit of T respectively.
we will thus use the terms minimizing orbit and minimizing state

interchangeably. In this chapter we have three aims:



§2.1 Introduction 2

1) Show the existence of a minimizing orbit for every rotation number inimizi
(§2.3 and §2.4).
2.2.1 Lemma VbceR ,mneZ with m<n-1, 3 minimizing segment

2)Discuss the main properties of minimizing states: x = {xjzmgisn} with xp=b and xp=c.
i) Two minimizing states cannot "cross” more than once (Aubry’s !
Fundamental Lemma, 2.2.8 and 2.6.1). Proof Wpn: RM-N*1 5 R is continuous. We will show that Vabc eR,
ii) Minimizing states lie "within a bounded distance of some the set {xe RTM* Wni;i,(x) $a,Xp=b,xy=c) is compact,
straight line” (Hedlund’s Lemma, 2.5.2). A corollary of this is which immediately implies the required result. First we need the
that all minimizing orbits have a rotation number. following: '

iii) Minimizing orbits are all monotone (§2.7).

M; 2.2.2 Lemma [Mather, 1984] 3Jconstant Cs.t. h(xx’) @ C+Ix-xT.
3)Classify the set;fl: of all minimizing states of rotation number w.
There are significant differences between w irrational (§2.8) and Proof Set T(xy) = (x'y’) and define R(x,y) = (x+ly) . Since T commutes
w rational (§2.9). with R, Ix - x'| is defined on the quotient space R/Z x R. Since R/Z
x [-1,1] is compact we see that [x - x’| is bounded on{lyl ¢ 1}, and
The results in this chapter are essentially due to the work of Aubry and similarly it is bounded on {ly’l ¢ 1} . Let K be the maximum of [x - X'|
Mather within the last few years ([Aubry, Le Daeron and Andre, 1982], over {lyl < 1} y{lyl <1} . Thenon{Ix - x| 2 K} we havelyl2 1 and
[Aubry and Le Daeron, 1983] and [Mather, 1982, 1984]). However 1), 2) ly'l 2 1. By twist this gives:
and the rational case of 3) were also done within the framework of : X'-x2 K= y21and y2l
geodesics on surfaces by [Morse, 1924] and [Hedlund, 1932]. We have X'-x ¢-K 2 ys1 and y's1
used a number of their ideas to simplify and clarify the work of Aubry Now y*=ha(xx’) and y=-hy (xx’) and thus:
and Mather. In particular §2.5 is due to Hedlund and §2.9 to Morse. We X'-x 2 K 2 hy(xx) s -1 and hplxx)2 1
also give a slightly stronger version of Aubry's Fundamental Lemma in X'-x ¢ -K 2 h(xx)2 1 and halxx?) < -1
§2.6 , and use this to give a (new) direct proof that minimizing states Since h(x+1x'+1) =h(xx’) and h is continuous, h is bounded on
are always monotone (§2.7) .  See {guwaq‘t} o am attemdtive {Ix-x'] ¢ K}, so3constant Ast h(xx’) 2 Aonthis set. Combining
Wgeﬂt“-h” of the same {—_\,\“r" the above we get h(xx’) > A-K+[x -x’| everywhere. o

2.2.3 Lemma VabceR , {xe RVM! - w0 sa,xy=b,x=clis

compact.
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Proof By 2.2.2

Wi 2 %) 2 (=m)C + S [ = xjay |

in particular Wppn @ (n=m)C , thus it is enough to show that if
Wn(4m, - . ¥p) ¢ (n-m)C + a, for some a>0 , then the x; lie in
some bounded set in RV"M-1  Sg syppose that

Wrnn(Xmy « » Xp) (n—m)Cf a.Then

& [xi=xje |5 a
> [xi-xjn | ¢ @
2 |xm-x; | ¢ (-m)a VYmeicn o

2.2.4 Remark The minimizing segment is not necessarily unique.

The next result is a weak version of Aubry’s Fundamental Lemma. We
shall not be able to prove the strongest form of this until §2.6 .
However for most applications the version we prove here is sufficient,

and indeed its use is crucial throughout this chapter.

2.2.5 Definition We say that two distinct stationary segments Umpn . Ymn
¢ross if uj - vy has a zero or change of sign in [m,n]. Two states v
cross in{mpn} if the corresponding segments Upn . Ymn Cross. In both
cases we say they cross once if there is only one change of sign or
zeroin[m,n] and cross properly if there is a change of sign but no

zero in {mnl.

2.2.6 Proposition Givenm ¢ n-1 , let umpn ., Yy be two minimizing
segments for W with either up, # vy or ug = vy (or both) ; then

Umnn « Ymn Cross at most once { see Fig. 2.2.1 and Fig. 2.2.2).

May 16, 1985 2
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§2.2 Minimizing Segments

Proof of 2.2.6 By contradiction. Suppose we have two distinct minimizing
segments Umn . Ymn Which do not satisfy 2.2.6 . Thenby reversing
time if necessary we can find [k,1] < lm,n] such that one of the
following three cases holds (Fig. 2.2.3)

) ugZVvg ., Up=Vp, Ugep ~'Visey has opposite sign to uy - vy and
uj - vj is non-zero and has constant sign for iefk+1,1-1.

2) uj-vi=0 Viek]] , and'{‘ui - vj has precisely two changes of
sign in (k1] .

3) ugEvg o, Ugsp SVgep , Up=vy o and ug - vy is non-zeroand

has constant sign for iefk+2,1-1] .

We claim that each of these cases leads to a contradiction. Note that
uv are still minimizing segments on[k,Jl. Wlog uy ¢ vy , so define

segments u',v' by (Fig. 2.2.3)

#

v’y
'

)
Thus u and u’ have the same endpoints on {k,1], and similarly for v and

min(u;,vi)
naoe (U\'\ )\I;>

1

'

v,

Case 1)
AW

#

W) + Wy () - Wig W - Wi (W
hugvice1 ) + DViligar) = Dlugligep) = MVgViat)

#

H

[ ngen aar

U T Viet
But hip (BE) < 0 V(LE) ¢ B2 and hence AW < 0. But this implies
that either W) ¢ Wiy
or Wk}(y_') ¢ Wk](_!)
This contradicts the minimality of y or v. *®
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Case 2) is dealt with similarly except that now AW has two terms,

both negative.

Case 3) : now wk](g') + Wi(v) = W(w) + Wi .

Note that by 1.5.14 stationarity determines Gk+2 and vy.o uniquely.
However uy =u'y , Ugs) =Uygey , U is stationary and hence u’ cannot
be stationary. Similarly v' cannot be stationary. In particular neither
u' nor v' are minimizing. He'nce at least one of u or v is not
minimizing . ‘ %

a

2.2.7 Corollary Two distinct minimizing states uyv can cross at most

onceinZ.

2.2.8 Remark We shall see in §2.6 that in fact if they do cross then

uj - v; is bounded away from zero everywhere else, and in particular

u and v cannot be asymptotic to each other either at +o or -co,

May 16, 1985
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§ 2.3 Periodic Minimizing States

In this section we first show the existence of states which minimize
the action Wp/q (defined in 1.6.10) and then prove that such states are
in fact minimizing states. The existence of these periodic states is
crucial to the development of the theory in the rest of this chapter.
Also recall that such a minimiiing state corresponds precisely to a
type p,q periodic orbit of non-positive residue in the Poincare-
Birkhoff Theorem (1.8.1)

2.3.1 Proposition Let T: R2 - R2 be the lift of an area-preserving

twist map of the cylinder T! x R, with zero net flux. Then V p/qeQ,
(pa not necessarily co-prime) there exists a state gexp'q which is a

(global) minimum of Wp/q o0 Xpq -

Proof The proof is very similar to that of 2.2.1 .

Recall that Xpq = { xeRZ : Xpeq = Xn* P VneZ }.

Themap x = (Xq, .. ,xq_1) then naturally identifies Xpq = RA.

Let R*:Xpq = %pq be defined by [R*(x)]j = xj+ 1.

Then Wp/q °R* = Wp/q, S0 Wp/q is a function on Xp q/R* . This
latter space can be identified in the obvious fashion with B/Z x RI,
in other words wlog we cantake 0 ¢ xg < | . We will show that

V aeR, the set {xe¢ Xp'q/R” : Wp/q® ¢ a) is compact, which is
enough to guarantee the existence of the required minimum of Wp/q .
As before, by 2.2.2 , Wp/q(Xg, -+ Xg-1) 2 4C+2 I%i = %5411
and thus Wp/q @ qC . The only difficulty is that xg is no longer
fixed, however by above we may take xq € [0,1) and thus

Wp/q(xo, w i Xg-1) $ qC+a 2 -qa ¢ Xj ¢ qg +1, Vi=0.9-1 .
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2.3.2 Remark If x minimizes Wp,/q then it minimizes Wogq and indeed 2.3.5 Corollary u minimizes Wp/q ¢ U minimizes Wkp/kq -
Wnneq o VNEZ.
Proof By231 3 - . YeXgpkq St - BT
2.3.3 Proposition (fye Xp,q minimizes Wp/q thenu is a monotone state. ¥ minimizes Wyp/kq- By 234 , VeXpq - Toprove the corollary it

is thus sufficient to show that Wp[q(!) = Wplq(y) and

Proof Define the states v(mn) €Xpq by vimn)j = Ujam * 0. I U is not Wkp,kq(g) = Wkp{kq(!) . But: ‘

monotone , thenamneZ st. v(mn) and u are distinct and cross in '

[0,a1 . Wiog ug = v(mn)g (by choice of origin in time). Then by ( YeXpq and v minimizes Wyp/cq

periodicity w(mn) and u must cross again in [0,q] (see Fig. 2.3.1). 2 kWpgply) = Wikpkq® ¢ Wipkq(W = kWpya(w

But uand v(mn) minimize Wqq.This contradicts 2.2.6 .

) and u minimizes Wp/q

2.3.4 Proposition If ue Xpyq minimizes Wyp/q for some kot K * Wipnqlk = Wpr(W ¢ Wya = [Wippa(l/k

then ue Xp’q . le. u is of type pq.

Hence wp,q(g) = wp,q@ and Wkp[kq(l‘) = wkp,,(q(y) as required.

Proof Suppose 3 !Exkp,kq , y_(Xp,q minimizing Wkp/kq . , a
Then ug =ug+ p , s0 wiog Ug> Ug*p. Define y by v;= Ujsg =P - ?m‘_ 2.3.b- ond Cors 2.3.5aud 2.3.6 aye
Thenboth 4 and y minimize Wip/kq and hence both minimize Wy Kq - 2.3.7 Remark in higher dimensions .. - [ .. ho longer true [Hedlund,
But vg = ug-p > up andhence Vkg > Ukq- Thusby 226 19321,

Vi > uj VieZ. Hence
2.3.6 Corollary u minimizes Wp/q * Uis aminimizing state.
Ukg = Yk-Nq *P > Yk-Ng *P = V(k-2)q* 2P U(k-2)q * 2P

Proof

ez

minimizes Wp/q

® U minimizes Wyp/kq VK
> ug+kp % since U€Xgpkgq - 2 4 minimizes Wq xq W kel
a ® U minimizes Wppyq VKo, neZ
| =  yis aminimizing state u
2.3.8 P\'OYOS.\'E'\Qn: Au W\'\r\'\“\'\!iﬂj “‘:“-b“ Sa‘&\?‘*{'\\'\j xz*?-le-k?
AYe wminine of w?/?

Rrodt: Sugpote wet. Then wv.gcem Aittﬂ‘thq by €E>-t "Y ?\

todic pevturbakion, Sugpese it cosTs awne © pus
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§2.4 Existence of Quasi-Periodic Minimizing States

The main aim of this section is to prove the Aubry-Mather theorem
which states that for any irrational w, there is either an invariant
circle or an invariant cantor set of rotation number w. In contrast to
homeomorphisms of the circle (§1.4) the case of a Cantor set is not a
pathology for area—preservipg maps. It can occur even for analytic
area-preserving maps (see 2.4.12). -First we prove the existence of
minimizing orbits with rotation number w as a limit of minimizing
periodic orbits and then show that there is a cantor set's or circle’'s
worth of such orbits. Ourapproach to this is based on [Aubry and Le
Daeron, 1983} and [Katok, 1982, 1983} the underlying philosophy is to
use the monotonicity of periodic minimizing states. indeed the results
and proofs in this section all remain valid if we replace ‘minimizing’
by ‘monotone’. It is precisely this monotonicity which allows us to
take limits of states, and conclude that the limiting states have the
correct rotation number (recall 1.7.15, 1.7.16 and 1.7.17). Mather's
proof {1982] uses a different approach, based on an idea of Percival
(1980]. We outline this in 2.4.13 .

2.4.1 Theorem V weR\Q , 3 minimizing monotone state of rotation

number w .

Proof By 2.3.2, 2.3.6 and 2.3.10 we have the existence of manotone

minimizing states of rotation number p/q for all p/qeQ. So take a
sequence py/qn € Q st. pp/dy = w as n < o . By L7.17 we
conclude that there exists a monotone state of rotation number w. It is

also minimizing as a consequence of the following lemma:

§2.4 Quasi-Periodic States 2

2.4.2 Lemma Let y(k) be a sequence of minimizing states with

u(k)j » uj as 1 - . Then y is aminimizing state.

Proof Take any mneZ with m < n-1 . We wish to show that if

y={vj : m¢ign}isany segment with v, = ur and v = Up, then

Wmnn(W @ WipnW.
. "i
Define (k) = MaXpge IUk)j - ujl
u(k)' i=m » i=n
wy = {7 .
Vi m < 1 <n

Since h is C! there exists aK>0 andNeN st Vk2 N, V msi<n:
Ih(u(k){u(k) o1 ) = hlujujer N ¢ Ke(k)

Thes  IWrnWK) = Wpn@l < K(nem)e(k) Vk2N-
and  IWpn(u(k) = Wpnl < 2Ke(k) VkaN
Hence

wmn(‘l) = wmn(u.) = wmn(!(k)) - wmn(u.(k)) * [wmnm.(k)) - wmn(ﬂ)]
- [wmn(l(k)) - wmn(!)]

So V k2N
wmn(l) = wmn(ﬂ) ) wmn(!(k)) = wmn(!l(k)) - K(n-m+2)e(k)

But Wipn((k)) = Win((k)) 2 0, VkeN and e(k) »0 ,as ke,

thus
Wrmn(W) = W 2 0

2l May 18, 1985



§2.4 Quasi-Periodic States 3

2.4.3 Theorem ([Aubry and Le Daeron, 1983}, {Mather 1982])

YV weR\Q , 3 a monotone set My, of recurrent minimizing states of
rotation number w, whose image M w N T!xR is either an invariant
circle or an invariant cantor set. Furthermore, every orbit inM* , is
dense in M”m (ie. Mxm is minimal in the sense of topolegical

dynamics).

Proof For the proof we follow [Aubry and Le Daeron, 1983] .We shall first

construct M, and then show that it has the properties claimed. So, let

u be a wonstene minimizing state of rotation number w. For p.qeZ

let §=quw -p and define u(f), = Upeq =P -
Since u is monotone, from 1.7.10 we get:
B> = uB)n > uB)y . VneZ. 2.4.4
Thus we candefine f*: R - R by:
o) =inf u(p)
pe 0

f~(8) ='§g% u(B)g

Next define states u*(&), for 8.eRby:

ut (@), = gw)fe By = flhe+e) 2.45

u@) = ?ﬁ% uPp = (hw+8)

Then u*(8)are limits of monotone minimizing states of rotation

number w, hence by 1.7.15 and 2.4.2 they are such states themselves.

May 16, 1985
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Define

Yi(e)n = -hy (U:(e)n- Ui(e)n«v])
y2(0) = y*e)g = -hy(r*e),f*(6e+w))

li

#

Mty = ((U*(O)y, y*(0)y) : O€R , neZ )

((r(6),y%(0)) " 0eR )

My = My o My
Note that the dynamics on M, is given very simply by:
T(f(8).,y*(0)) = (f*(6+w),y(6+w)) 246

To prove the theorem we will show:
i) My is invariant under TandR.
ii) Mg, is aclosed monotone set.
iif) Everyorbit inM# , is recurrent and dense in M# .

v

iv) M is either a circle or a cantor set.
First, some general properties of f*:

2.4.7 Lemma
)] f*(8) are (strictly) increasing.
2)  fHe+) = fE6)+ 1,V oeR.
3 f~ is left continuous.
4) T is right continuous.
5)  £7(6) ¢ *(8) , V 6eR.

May 16, 1985
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Proof Exercise (£9(85).y 9(8;)) = (f7(6),y~(6)) and thus M, is closed.

2.4.8 Lemma 6;\6 = f*8;)\ *(6) and hence y*(6;) - y*(6)

8j s 6 = fX6;) ~7(6) and hence y*(6;) - y7(8)

Proof First we show that V' 8,8'cR , 8¢ 6" = f*(8) ¢« (8 :

choose §=quw -p and B‘fq'm -p' with 8 ¢ B¢ p <o’ then by
245 £*(8) ¢ u(B)g ¢ u(B)g ¢ f7(6'). Now suppose that 8; \ 6;
since f* is right continuous  f*(8;) \ f*(8) , but £*(8;) 2 £7(6;) >
f*(6) and hence f~(6;) \ f*(8). Thus also f2(8;+w) \ f*(6+w) and
since y*(8) is a continuous function of f*(6) and f*(6+w) we have

y*(8) - y*(0) as claimed. If 8; / 6 the proof is similar.

i) That My, is invariant under T follows from 2.4.6 , whilst the

invariance under R is an immediate consequence of fX(6+1) = f2(8)+1 .

ii) First note that both M* ;, and M~ are monotone since f* and f~
are strictly increasing. So by 1.7.4 to show that M, is monotone it is
enough to prove that M, = CI(M*,) = CI(M~,). Now by 2.4.8

My € CI(M*,) and thus M, c CI(M*,) and similarly M., £CI(M™,).
It remains to prove that M, is closed. Suppose we have a sequence
XMy, With %= x = (x,y) , wlog x; = (r9(8;),y 98;)) for some
oef+,-} , and wlog either f9(8;) \ x or 9(8;) ~ x.. In the former
case by 1) and 2) of 24.7 , {o: f*(x)> x } is bounded below so let

8 =inf{ «: f*(«)> x ). Thenf*(6) 2 x , but £*(8;) > x and by 2.4.8
£*(8;) \ x, hence f*(8) = x . Thus (f9(e;),y 9(8;)) - (f*(e),y*(6)) and
hence x = (f*(8),y*(8)) €M, . Similarly if f9(6;) # x then

'May 16, 1985 26

iii) Suppose xeM*,, say x = (f*(«),y*(x)). Given x'eM, , we have
x' = (f9(e),y 9(6)) for some 6cR, ge{+,-} . Choose sequences
minieZ st. (8 +rjw - my)\ «, then 2.4.8 ,
[f9(6 +njw) - mi] ~ f*(cxji and ly9(6 +njw - my)l - y* ()
Thus THRM(x) = (1% +ni$) -mj, y9(e *njw - m; )

- (f*(a),y*(«)) = x as required.

A similar argument works if xeM~, . To show that x is recurrent
simply take 6 = « in the above. As a corollary M, has no isolated

points.

iv) To see that M*  is either a circle or a cantor set we can either
follow the proof of 1.4.12 or consider the homeomorphism g : T! 571!
obtained by extending meTen? : (M) - m(M,) asin17.9 . Wedo
the latter here; the former argument is given in 2.4.10. Let ': T! xR
- T! be the projection 1'(6,y) = 6, note that this is a homeomorphism
of M* , onto 7'(M* ). Thenby i) and ii) w'(M* ) is a closed
g-invariant subset of T!, and by iii) every orbit (under g) in Tr'(M* )
is dense. Hence T’(M#* ) is the unique minimal set for g (in the sense
of topological dynamics). As we proved in 1.4.13, this can either be
the whole of T! or a Cantor set. Thus M# , = '(M* ) is either a

circle or a Cantor set.

2.4.9 Remark Since f* are strictly increasing they are continuous except

possibly for a countable set of jumps. By lemma 2.4.8 these

May 16, 1985
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correspond precisely to those points where f~ = f* ie. A 2.4.11 Remark The original state u, used to construct M., need not he in
f7(e)=1"(8) & f* continuous at ® « [~ continuous at & . Thus M, ‘ M . but does if it is recurrent. To show this, note that by 2.4.5 |
isacircle iff f = ™ =" is continuous. In this case f is actually a
homeomorphism by 1) and 2) of 2.4.7 and f* is precisely the conjugacy uT(B); ¢ u(B)j ¢ ut(B) VieZ,B=qu-p 2.4.12
of TonMy, to the uniform rotation R, . Onthe other hand if == f* ’
the discontinuities of f* correspond precisely to the 'gaps' in the Suppose that for some keZ and § = qw - p we had
cantor set M, , thus if £7(6) < £*(8) we see that {7(6) and £*(8) uT(B) ¢ u(B ¢ ut(B) - T;\en if u (and hence the u(B)) are
correspond respectively to the left and right ends of a gap. In this case recurrent we canfind mneZ st. u(B)g ¢ u(Blyam -0 < u(B)y
f* have a common left inverse h(x) = inf{ 8: f*(8)> x) = ie. uT(B) < u(B+ma-n)y ¢ u*(B). Now if mw-n>0 by
sup{ 61 f7(8) < x} . It is left as an exercise to show that this is a semi definition u™(B)y ¢ u(f + mw -n) whilst if mw ~n< 0, then
-conjugacy of TonM, to Ry, onR. u(B + mw -n) ¢ uT(B) . But w is irrational so mw ~-n=0. %
Thus either u(B)x = u*(B) or u(B)x = u™(B)¢ and hence either
2.4.10 Remark The discontinuities in * come in arbits under 6 - 6+w ie. u(B)=u(B), VB=qu-p or u(B)=u(), Vh= qw-p .

VOeR , {7(8)=1*8) & [ (6+w)=1*(6+w) and hence ‘

Y6eR , I (®)«fte) @& f‘(‘e+m) ¢ f*(B+w) Onthe other hand if u is not recurrent, then by 2.4.3 it cannot belong
To see this note that 17(8) = £*(6) = u™(8)g = u*(8)g . By 2.4.7 : to My, Thus we have strict inequalities in 2.4.12 , M* , is a Cantor
u(8)-y ¢ ut(e)y , ifuT(B)-y < u*(8).; then by twist (15.15) set and the orbit given by y lies in the orbit of some gap of this Cantor
u™(8); > u*(8); which contradicts 2.4.7 . Hence u(e)- = u*(8) set (recall 1.4.12 and see §2.8) .
and u7(0); = u*(8); , in other words f™(6-w) = *(6-w) and
f7(8+w) = *(8+w). This allows us to show that M* , is a Cantor set 2.4.12 Example [Aubry, 1983] When k> 2 all the M” | , weR\Q, for the
when £ are not continuous without appeal ing to the theory of standard map
homeomorphisms of the circle: if f* has a jump at 6, then it has a y' =y - (k/2m)sin(2mx)
jump at 8 +nw +m, VY mneZ . These points are dense in R, hence X' = ox o+ y (mod 1)
there is a gap between any two points of M* w » and thus M# , is are Cantor sets.
totally discomnected. We have already shown that M#  is closed and
has no isolated points, hence it must be a Cantor set. The reader Proof Let y be a stationary state. Consider the segment Uupy 5 the second
should compare this argument to the proof of 1.4.13 . variation of the action with respect to ug and fixed end points is given

by:
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32wy

= 2 - kcos(2muq)
8U02 0

Thus if k> 2 then no minimizing orbit can have a point on x = 0. Thus

M* , cannot be a circle for any irrational w.

In fact by considering longer orbit segments this resuit can be
improved to k> 1.23.. [Aubry, 1983] ([Mather, 1984 c]gets k > 4/3 by
a similar method). By doing rigorous computer estimates [Mackay and
Percival, 1985] are able to show that M"m is a Cantor set for all
irrational w fork : 63/64 (see Chapters 5 and 6).

2.4.13 The Percival-Mather Approach Mather's proof (1982] of 2.4.3 is

based on the following idea of Percival (1980]. Givenm: R » R,

with n{x+1) = 1(x) +1 and weR consider the functional:

1

Fu® = [ hae), nttw))

0

If 7 is continuous and makes F , stationary with respect to variations

in the same class, then one easily sees that the set:
M*y = ((n(t), -h(n®)nlt+w) ) : teR)/R

is arotationa! invariant circle of rotation number w . Thus one might
hope to prove existence of rotational invariant circles by proving
existence of a minimum of F, . Unfortunately F, does not necessarily
have a minimum in the space of continuous T . Percival [1980]
suggested that it might however have a minimum if 1 is only required

to be increasing. If 7 were discontinuous and w irrational then instead

May 16, 1985
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of a circle the closure of M™, would give an invariant Cantor set
which he called a cantorus. These conjectures were subsequentlvy
proved by Mather [1982] . If we require  to be right continuous and w
is irrational then up to a phase difference the minimizing n is

precisely the function * of our proof of 2.4.3 , ie. 38eR st. m(t)

L}

£*(t+§) . This approach also works if w =p/qis rational, in which case
it gives the existence of a per'iodic orbit of type p,g which minimizes
Wp/q (recall 2.3.1) .

May 16, 1985
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§2.5 Hedlund's Lemma then

Having proved the existence of periodic (§2.3) and quasiperiodic (§2.4) Vip = Viptp Lo upt Pl Uy U - ug = oup
minimizing states we go on to derive some useful properties of
minimizing states in general. These will be required in §2.8 and 52.9 thus !
where we will describe and classify the set of all minimizing states. Vi ¢ Up ¢ V"'m
Suppose that ueXy isa minimizx’ng periodic state. By 233 ,itisa Vi ¢ up ¢ V' i
monotone state and hence by L7.11  up Hes within a bounded distance
of some straight line. The slope of this line clearly must be p/q , ie. Hence by Aubry’s Fundamental Lemma (2.2.6)
[uy - ug - np/q| ¢ 1
In this section we will show that in fact any minimizing state is AT T Vmeien
within a bounded distance of some straight line. The basic idea, due to
Hedlund, is to bound an arbitrary minimizing state by nearby pgriodic But by 1.7.17 , both vy~ and y¥* remain within | of the straight line
states using 2.2.6 and 2.2.8 . joining their ends:
25.1 Lemmalf u = (uy; : m¢i¢n) isaminimizing segment then | | vii - vip - (-mp/q | <1

u remains within 3 of the straight line joining um, toup , ie. | v - vy - (-m)pel)/g | ¢t
it A = (up-upm)/(n-m) then:
Thus since | p/q -\ | ¢ ¥/q and | (p+1)/q -"\| ¢ Vq

| uj =ty = Gi=mA | ¢ 3
V=V - G-mN] ¢ |vTj-vq - G-m)p/q]| + |(i - m)p/q -N)]
Proof Let p= [uy-up] = greatest integer less than or equal to up - upy, , ‘ s 2

and fet q=n-m. By 2.3.2 and 2.3.10 3 minimizing periodic states v~

v* of types (p,q) and (p+!,g) respectively and s.t. (Fig. 25.1) : ‘ ‘ and similarly

V' - vt - (F-mA] ¢ 2
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thus
Up 2 VT2 v+ (emA -2 2 um+(i—m))\—3

Vi + GemN ¢ 20 ¢ g ¢ (-m)h ¢+ 3

(=
[N
<
-~

[m}

2.5.2 Corollary If u is a minimizing state then3 w,c ¢ R st. u remains

within 3 of the straight line givenby nw +c , ile.:
fup - (hw + Q)] ¢ 3.

Proof Let wpn = (up-u.p)/2n

¢h = U
Lp = Nwp + Cp
Kn = (o + cp

Then
lug=Ltn] ¢ 3 and Juy -Ky| ¢ 3

Hence (LpKy) is a bounded sequence in R2. Take a convergent
subsequence (Ln(i) » Kn(i) )= (L,K). Thendefine:

K-L

€
[

¢ = L
Thengivenm, ¥ n2 |m|we have:

| Uy = Un+map + cpl] ¢ 3

| um = (e mdKp-Lp) * Ly = WK =Ll| ¢ 3

May 16, 1985 30

§2.5 Hedlund's Lemma
up - [mKp-L)*Lal} ¢ 3
By taking the limit for the convergent subsequence we obtain:
| up = (m(K-L)+L)] ¢ 3
U - (mw+c)| ‘3

§

2.5.3 Corollary Everyminimizing orbit has a rotation number.
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§2.6 Aubry’s Fundamental Lemma

In 2.2.6 we showed that two distinct minimizing states can cross at
most once in Z. We now show that in fact being asymptotic at either
+00 or -0 (or both) counts as a crossing, thus states which are
asymptotic to each other cannot cross even once.

2.6.1 Lemma [Aubry and Le Daeron, 1983] Let yv be distimtminimizing
states. Theny and y cross at most once in Z , and if they do cross, say
in[nn+l]l , then uj - v; is bounded away from zero outside of [nn+1] ,
ie. 380 st Viez\nn+1} , fuj-vil> 8>0 .

Proof We showéd that yy can cross at most once in 2.2.§, So now suppose
that y,v do cross in [nn+1] . Let w(y) and w(y) be the rotation numbers

of Wy respectively. By 252

i = Up - (M-Nw(! ¢ 6 ‘
V= vp = (MW ¢ 6

S0 if w(y) = wly
bupm = Vi = Uy = vy = (m-n){e(W -~ )] ¢ 12
fug = vl 2 Km-n)(ew(W) - oI = Kug - vyl - 12
Hence 3 NeN st

up-vil > 1 V ieZ st fli-nl2 N .

3s required.

3]

§2.6 Aubry's Fundamental Lemma 2

Now suppose that w(y) = w(y). Then
=il s 12+ lup- vy v veZ 262

We proceed by contradiction, so suppose there is no §>0 satisfying the
conclusions of the lemma , thus 1im infg, oy fuj - vil = 0. Asinthe
proof of 2.2.6 we shall construct states y’,y’ which differ from wy
respectively only on a finite segment [k+11-1] ¢ Z. We shall show that
for this finite segment Wi(u') + Wi(¥') < Wi + Wiy (y) which
contradicts y and y both being minimal.

Define
B = hlugviar) + DlVligar) = Mugliga) = MviVier)
o S 3 ,
= 77 ngely e
% T Viet

Hence Ay has the same signas (uy - vi)uge; = Ve ) - 263

Also since hyp (E8) =hyp (E+4,E*+1)  and hyp is continuous, hyp (E,E)
is bounded on € - 81 < 12 + lun- v, say Ity (BE) 1< C . Hence
okl s CHug - vil Hugey = vy I 2.6.4

Now consider two cases:

Case 1)

We have a proper crossing ie. (up - vy (Upsy = Vpey) < O.
Thus Ap ¢ 0 . Since we assume that Hm infg . .y luj=vil =0
ImeZ st

lum = vl ¢ 18 7 C(6 + lup = vy) , wlog take m > n+l.
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§2.6 Aubry's Fundamental Lemma 3

But by 262

lumer = Vmet! € 6+ Jup-vy

hence by 2.6.3
1Al ¢ €6+ lup - vp(AQ / C6 + lup-ve)) = 144 .

Hence Ap+ &p < 0.

Define states y’.v' by (Fig. 2.6.1)

Uj isnorimel
vy o= { .

vj mlsigm

\Z isnorizmel
V" = {

uj nmlsism

Thenif k<n and1> mel
W) + W) - W - W) = Bp+ap < 0

Hence either  Wi(u) < Wi
or Wiy) < Wig(®)'

This contradicts the minimality of either yory.
Case2)
We have a zero in [nn+1] , say up = vy, . Now simply interchanging u

and y at n does not decrease the total action. However, we can find

two nearby states for which the total action is less, as follows:

May 18, 1985
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wlog suppose u; < v for i< n. Define y*.y* by
u*; = miruvi)

v¥; = max(uivy)

Thenas in 2.2.6 ,case 3), y*v* cannot be minimizing segments on
fn-inel] . N

Hence there exist states y .y~ with u7y=u®; , vTy=v¥% |, Vi=zn,

s.t.
Woetnet (W% > Wpogpey (U0)
Wr-tet (¥ > Wyt (¥0)
and thus

A = W W) * Wt ) = Wooine @ - W O
= Wn-1nel W)+ Wn-1 el o) - Wit W) - Wn-1,n¢1 )
« 0

Now proceed as in case 1) using A instead of Apy;
Find meZ st
lum = vl < 117 C(6 + lup-v) ., wlog take m> mwl.

Thus JAl > 1Al 2 A +Ap < O

Now y'y' are defined by

: { uj i<nori:mel
gy =
! U7y ngism
May 18, 1985
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§2.6 Aubry's Fundamental Lemma

{ ¥j i<norimel
vy =

vy nsism
Thenasbefore if k<n and! > m+
W) + Wig(v) - W@ - Wq = A+8p <0

which contradicts the minimality of either yory.

May 18, 1985

§2.7 Minimizing Implies Monotone

2.7.1 Proposition If u is a minimizing state then u is a monotone state.

Proof Suppose that u is'not monotohe. Then3dnrs € Z s.t.

i
Un > Unr * S

Upei & Upeps) * 8 272

Wlog take n=0. Clearly r=Q, so suppose that 0. The argument for
r<0 is parallel, with most of the inequalities reversed.
We claim that for some §0 (in fact the § given by Aubry's

Fundamental Lemma (2.6.1))

i) Ugp - Ug ¢ ks Ykl
i) ug - uyp > k(s+8) Ykl

Then
) = wlu ¢ s/r
ity = ww: (s+8)/r > s/r

giving a contradiction

Proof of i)
Define the states u(k) by: .
. u(k)j = Ujgp * ks
These are all minimizing states.
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§2.7 Minimizing Implies Monotone.

Now by 2.7.2 (Fig. 2.7.1) :
WKlgr = ug*+ks > Up+s+ks = u(k+l) gp VkeZ

and similarly:

Ukt ¢ ukeD) oy

so0 by Aubry’s Fundamental Lemma (2.2.8)

ulk); s ulke) W iakr+! 273

ulk)y 2 ulk+) 4 Y ik 274
Hence Ykt

U(k)kr r ulk-1) kr 2 U(k'2)kr X L2 U(O)kr 275
Thus

Ugr = W0 ¢ ulklgp = ug + ks vkt

Ugp = Up ¢ ks A4 3%

as claimed.

Proof of ii)
Since u(0) and (1) cross in [0,11 , by Aubry’s Fundamental Lemma
(26.1) 380 st. (seeFig. 2.7.1)

u( y < u(0); - 8 v i0
Thus
Ujp + 8 € Uj - 8 V is0
Ujp ¢ Uj = (5+8) v is0
May 16, 1985
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Hence Vkal
Ungp € Uo(k=nr ~(8+8) ¢ U_(k-2)r-2As+8) ¢ .. Cug -Ks+8)

So
Up - U Y K(sHE) Ykl

as claimed

2.7.6 Corollary Using 1.7.11 we can improve the bound in Hedlund's

Lemma 2.5.2 from 3 to L.
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§2.8 Classification of Minimizing Orbits: Irrational Case

Having proved the existence of minimizing states of irrational
rotation number w , we are now ready to classify Min,, , the set of all
such states. It turns out that the set M, defined in §2.4 is unique and
all the recurrent states of rotation number w belong to it (recall that
we showed that all orbits in M, are recurrent). All the other orbits in
Min, are asymptotic to Mw'. Furthermore recall that in §2.4 we
showed that M, is @ monotone set; this aiso turns out to be true of

Miny, .

Recall the construction of My, from a monotone minimizing state of
rotation number o (2.4.3). Since we now know that all minimizing
states of rotation number are monotone we can repeat this 4
construction using any such state v of rotation number w to give
My {¥). Then:

2.8.1 Lemma All minimizing states v of rotation number w give the same
My te VuveMing , M, W= My,

Proof Let uv be two minimizing states of rotation number w . Define f*
from u as in 2.4.3 and define g* for v similarly. We claim that 3 8eR
st. f2(0) = g*(6+8) , V6eR andso Mw(W =M, (v) First we show
that if g*(B) > f*(«) then g*(B+6): f*(x+0) , V 0cR . Suppose not,
so for some 6'eR , g*(8+6") < *(x+8"), hence g*(f+qu) ¢ fotqu)

for some q > 0. Also since w is irrational and f*,g* are right

continuous we can find mneZ ,m> q st g*(B+maw-n) > r*(ct+mw-n).

So consider states u*(«)and v*(B) ; these are given by
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ut (o = (iw+at) and vi(B)i = g*(iw+B) . Then utlady < v (B)g .
u"(o()q < v‘(B)q and u*(aky ¢ V() . Hence u'(«)and v*(B)
cross twice in [0,m] contradicting Aubry’s Fundamental Lemma (2.2.6).
S0 now define 8% = inf{ 8¢R : g"(8+6) 2 r*(6), VOeR }. By right
continuity g*(8*+8) » £*(8), V6eR . But if g*(5*+6") > £*(8") for some
8¢€R , then by right continu{ty g*(87+07) > £7(0'+€) for a sufficiently
small €0 and hence by above ‘g*(8*~£+9) 2 £7(8), VOeR , %. Thus
g*(87+6) = 1*(0), VOeR . Similarly we canfind 5™ st. g (67+6) =
17(8), VeeR . But f* = f~ and g*= g~ everywhere except on a countable

set (2.4.9) , hence §* = § as required. o

2.8.2 Corollary If v is a recurrent minimizing state of rotation number w
then it belongs to M, .

Proof Use 2.4.11

2.8.3 Corollary If v is a non-recurrent minimizing state of rotation
number w , there exists an «eR st

Flrw+a) ¢ vy ¢ MMnw+a) Y nez

Proof Construct v*(8) as usual. By 2.4.11, V(B ¢ V(B ¢ VIR, WneZ .
By 28.1 , v¥(B)p = ginw+B) = *(nw+P+8) , for some SR , so take
oa=g+5. o

2.8.4 Corollary If M’m is a circle then every minimizing state of fotation
number w is recurrent and lies inM” , . If M® , is a Cantor set then

avery minimizing state v of rotation number w is either in M’w or ties

in some gap of M* . and is as mptotic to the orbits of the endpoints
g ® Y :
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§2.8 Irrational Case
defining that gap (recall 1.4.12).

Proof If v is recurrent then v € M, , otherwise u™(ct) < vpy < u*(ax), for

some «eR. But f*(6+1) =f*(6)+ implies that

0 ¢ Fnez Woh-u(a)) = Tnez (M(nw+a) - M (nw+a)) < |

and hence lu*(o)y - u (e}l = O as n- 2eo. Thus v is asymptotic to

both u*(a) €My, .

2.8.5 Remark In §5.X we will see that if there exists a rotational
invariant circle T of rotation number w then all the orbits in T are
minimizing. ‘

2.8.6 Proposition Min,, = {minimizing states of rotation number w} is a

monotone set.

Proof The only case we have to worry about is that of two orbits lying in

the same gap of M, i.e . u™(at)y ¢ vpv'p ¢ u™(at)y , V NeZ . But by

.Aubry’s Fundamental Lemma ( 2.6.1) v,v’ cannot cross since they are

asymptotic at to0 . Hence wlog u™(oth ¢ vp ¢ Vi< u*(at)y , VneZ , as

required. o

May 18, 1985

§ 2.9 Classification of Minimizing Orbits: Rationai Case

In this section we give a description of the set Ming/q of all

minimizing states with a rational rotation number p/q. From 1.7.14

we know that any such state must either be periodic or advancing or
retreating, thus the recurrent grbits are all periodic. Here we shall
show that the rest are heteroél‘inic to a pair of adjacent periodic
orbits. Furthermore for each such neighbouring pair of periodic orbits
there are at least two minimizing heteroclinic orbits, one advancing
and one retreating. The proofs in this section are almost entirely direct

translations of the corresponding results in [Morse, 1924].

2.9.1 Definition

Minp/q = {minimizing states of rotation number p/q}

Mp/q = {minimizing recurrent states of rotation number p/q}
= {minimizing periodic states of rotation number p/q}

M'o/q = {minimizing advancing states of rotation number p/q}

Mp/q = {minimizing retreating states of rotation number p/q}

2.9.2 Definition Let v™,v" € Mp/q be two states s.t. v7p < vin . VneZ .
We say v_,v* are adjacent if there is no other state ve Mp /q s.t.
V¢ Va ¢ V', , Y neZ . Note that by Aubry’s Fundamental Lemma

226 ,if VT ¢ v ¢ V', for some keZ then v ¢ vy ¢ vy, VneZ .

2.9.3 Proposition Every minimizing state u of rotation number p/q is

either periodic.or asymptotic to distinct periodic states as n - oo,

Proof Suppose u is not periodic, then by 1.7.14  either u is advancing i.e.
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§2.9 Rational Case 2

Uneq =P~ Up> 0, VneZ , or retreating: Upeq " P ~Up ¢ 0, VneZ .
Define states y(k) by u(k), = Unekq ~ kP . Suppose that y is advancing,
then VkineZ , u(k), > u(k-1) 5. Onthe other hand by 1.7.11

(k) - upl ¢ 2, hence u(k), converges as k = « and k - -e0 , say

U(k)n / V’n as K = oo

u(k)n N v'n as k = oo

By 1715 and 2.4.2 y* are minimizing states with rotation numberp/q.
But Vg = liMg-ayee UKpeq = NiMyoeo UKD n+p = Vi +p
and thus y* are periodic. Givene > 0, take NeN st. [u(k); - v*jf < ¢
VKN, 0¢isg-1 . Thenif j2Ng , write j =kq + i with kaN , 0gigg-1

S0 luj = vl = lujakg = VViexgl = k)i +kp - (v*j+kp)l < €. Thusy is
asymptotic to y* asn - co, and similarly toy~ asn - -o0 . Finally ¥y~
and y" are distinct since by construction v ¢ vy ¢ v,y , V neZ .

If u is retreating the proof is entirely analogous.

m}

Thus y is trapped between the two states v~ and ¥ . Next we show
that in this situation there is no other state in Mp/q between ¥~ and

¥', in other words that y is asymptotic to two adjacent periodic states.

2.9.4 Proposition ([Morse, 1924], [Aubry and Le Daeron, 1983]) Let

XX €My/q o UeMinpyq be states st v, < up ¢ v, Vnez,
and either y is asymptotic to y* as n- w0 and to y~ asn -+ -0 , or vice
versa. Then ¥~ and ¥* are adjacent. -
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Proof Suppose not, so there is some YeMp/q o S ViR ¢V vty VneZ .
We will show that this contradicts y being minimizing. The technique
we use is essentially that which we used to prove the strong form of
Aubry’s Fundamental Lemma (2.6.1). The reader should refer back to
§2.6 for detailed calculations, which we omit here. So, wlog suppose
that y is advanci:')g. By Aubry’s Fundamental Lemma (2.2.6) there exists

aunique NeZ s.t. 4

Up < Vp forns N
UN+t 2 VN
U > Vp forn> N+l

First suppose that uys) > Vysy , i.e. we have a proper crossing .
Define gy = hlunVnep )+ DOVNUNe ) = DQUpNe ) = DOV VN ) -
Recall from 2.6.3 that A has the same sign as (uy = W)U+t = Vet )
Thus Ay ¢ 0. Since y is asymptotic to y* as n— e« we can find an
M> N+q , st (e.g. recall 2.4.2) ,

IWmn«fq(Ll) = WhpeqQ) ¢ ANI/4
’h(“M+q-UM+qﬂ ) - h(V+n+q:V+M+q+l I s lagl/a 295
(U Pipeqer ) = DOVIM#DY Magey N ¢ 1ANI4

(use V*p = V'1p.g)
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§2.9 Ratlonal Case 4

Now define a state y’ by (see Fig. 2.8.1):

Uj isN
, ¥i N ¢igN+q
Uy o=
: Ujq * P N+q ¢ i § M+q
Uy Mrq < i

Now
AW = Wy ;1+q(u.') - WN,M+q(SD
= NUNYNet) * WinsiNeg (D * DVNeqU' Naget )
* WNeqeipeq W)+ n(U'Maqipeger ) = DlUNUNSY )
= W1 M W@ - WipmeqW - n(upeqiipteqer )

AW = [h(un Vet )+ DOVN#RUNsT *P) = Dup e ) = DOV YNe
+ {WN'Nq»q(.‘l) - wMM+q(ﬂ.)] + [wN+q+lﬁ+q ) - -wNﬂﬂ (.U.)]
+ [h(U'M+q.UM+q+] )- h(UM+q.UM+qq )

So using h{x+1x'+1}) =h(xx") :
AW = Ay IWNNaq(Y) = WiapreqWT + [Wneim (W - Wiy (O +

+ [h(Uﬁ"p.UM+q+] )- h(UM+q»UM+q+] )

But Wi Ne+q(¥) = Wn ,M+q<l+) , since both y and v* are global minima of
Wp /q 50 from 2.9.5 we have:

AW < Ay + lAgiZ4rlagi/da+lagi/e <0 ®
Now if unsp = VNs , then Ay = 0. However if we define y’ as above,

then y' is not stationary, and hence not minimal. Then as in the proof of
26.1 we can decrease the action of y’ by modifying u'y and U'Naq .

May 18, 1985

33

§2.9 Rational Case

[(81]

Then as above if we choose M sufficiently large we obtain a

contradiction to y being a minimizing segment on [NM+g+1].

Finally we show thét if v* and v~ are adjacent periodic states in Mp/q
then there exist states in Minp /q heteroclinic from v* to v and from v~
to v* . This incidentally shows 'that unless Mp/q forms a whole circle

then there are non-recurrent minimizing states of rotation number p/g.

2.9.6 Proposition ([Morse, 1924], [Aubry and Le Daeron, 1983)])

Let vy~ eMp/q be adjacent states. Then 3 u*u ¢ Minp/q s.t.

- , + v
Vg€ Wpti™y ¢ Vg, VneZ |, and

+ + + -
Un"’Vn and U_.n"*V_.n as N

- - - +
Up=Vy and U # Viq 38 n-o

Proof (following [Morse,1924]) We will show how to construct u* ; the

method for u” is entirely analogous. For neN , et u{n) be a minimizing
segment from vT_p to v', (Fig. 2.9.2). This exists by 2.2.1 . Note
that by 226 , v7j < u(n)j <« v¥; , V-ni £n. For any neN we can find
ineZ st -n¢in¢n and

v’in - u(n)in 2 U(“)in‘ v'in

Vit - umir ¢ un)ie - Vi
There must exist a jeZ with 0¢ j¢ g-1 st iq=]j (modq) for
infinitely many i, so wlog suppose in = j (mod q), ¥ neN . Define
kn = (in - /9 and minimizing segments u'(n) on[-n+j~ipn+j-ipl by

u{n); = “(n)i+knq -kpp . Then the sequence (u'(n) j,u'(n) i+ ) is
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bounded as n - e, 50 Jet (u*j,u* .y ) be alimit point, and generate the
state u* by stationarity. Now, either liminf (-n#j-ip) = -co or

lim sup (n+j-iy) = « . Wlog suppose the latter and let

‘N=lim inf (-n#j-i) . We will show below that N = -e0 . Assuming so,
then u* is the limit of minimizing segments and hence is a minimizing
state (see 2.4.2). It is trapped between v* and v~ , thus its rotation

number must be p/q. Since v’j - u“j 2 u‘j - V7 and

+ +

Vi - u"j,,‘ ¢ UMy - Vg, W' cannot be either viory
and hence since ¥* and v~ are adjacent, cannot be periodic. Thus by
293 it is asymptoltic to two distinct periodic states. By 2.9.4 these
must be precisely v’ and v~ . Finally note that

UN)-nag=P 2 Viqug=P = V- = uln)-p

urln=p 2 Vip=p = Vg = uln)pgq
Thus by 2.2.6 , u(n) satisfies u(r\)ﬁq =prun), Y-n¢i<n-q.
Hence u"pq -p u'*i , VieZ |, thus since u* is not periodic, it must
be advancing and thus u*, + v as n—® and u*y = v, as

n- -oo , as claimed.

To show that N = -e¢ suppose that N> -eo . Then by the definition of N,
there are infinitely many neN s.t. u(n)y=v7y. We can take our
convergent subsequence from these and thus wiog assume that

u*y = V7N . Note that u* is minimizing on [N,eo) ie. YN ¢ m ¢ n-1 , the
segment U mn is minimizing. Next we show that 3 YeMp/q sit.
st.u'y = vy as n- . Theproof is essentially the same as that of
2.9.3. By above u(n)i,q -pru(n);, V-n¢i<n-q, hence

“’i’rq -pr Uty , VielNoo) . As in 2.9.3 define uk)y = Ujekg ~ kp . For
fixed {€Z , this is a bounded monotone sequence ink for k > (M-i)/q and

s0 u(k); converges as k = %, say u(k); ~ v; . As before, the limit
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sequence v is in Mp/q and u” is asymptotic to it as n - «. Furthermore
viicuti¢ vy, VielNoo) , and as we remarked above u* =v™ . Thus
v~z v Tosummarize, u* is minimizing on[N,») , asymptotic to v as
n- o and crosses v- at N; with v =y in Mp/q (Fig. 2.9.3) .This
contradicts the following lemma which is just a slightly stronger form
of 2.9.4: ' .
¥

2.9.7 Lemma Let y be a stationary state and suppose 3 NeZ , st. y1s
minimizing on[Nw) , ie. st. YN<¢m<n-1, upqisamimmizing
segment on [m,nl. Suppose that y is asymptotic to some veMy/q as

n= ¢ . Then for any x’eMp/q with v = y', ucannot cross v’ in{Ne) .

Proof Observethat to get the contradiction in the proof of 2.9.4 we do not
actually require u to be a minimizing state, merely for it to be

minimizing on [N,ee) (we also need a suitable modification to 2.6.1).

2.9.8 Summary
: . + -
Minp/q=Mp/q v Mp/q v Mp/q-
Mp/q is a closed invariant non-empty monotone set.
For each gap inMp/q there are points inM"y/q and in M'P /q In that gap.
Mp/q u M*p/q is a monotone set, and so is Mp/q v Mp/q-
Minp/q is not monotone unless Minp/q = Mp/q , or equivalently unless

Mp/q is acircle.
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