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Outline

e Velocity (Hamiltonian) symmetries of FGCM

e Approximate (Hamiltonian) symmetries of FGCM



Velocity symmetries

First-order guiding-center motion (FGCM) - Exact treatment

For a given magnetic field B on a 3-dimensional manifold M, the
Hamiltonian structure of FGCM is

w=—p—d(p) (1)
2

b
H =]+ u|B| 2)

on the 4-dimensional GC bundle N over M, where
o 3 = ipf) = magnetic flux form,
e b= B/|B| and V’ = ig,
@ g = metric tensor on M
e () = associated volume form on M
@ 4 = magnetic moment

and normalised units m = e = 1.



Velocity symmetries

FGCM - Exact treatment (continued)

In terms of the modified magnetic field,
B=B+ p|c (3)
where ¢ = curl b, the symplectic form can be written as
w=—pB—d(p)p’) = —ipQ—dp AV — pjdb’

=—igQ)— pHZ'CQ — dp” AY

:—/3)—CZ}QH/\bb (4)
where 3 = i3 is the modified flux.
Note that div B = 0. This means that B is closed on M. But it’s not

closed on N. To see these, write § = 8 —i-p”dbb to derive dj3 = dp| Adb°
and therefrom dB Adp) = 0.



Velocity symmetries

FGCM - Exact treatment (continued)
The GC 2-form w is nondegenerate if and only if BII = 0, where
By=b-B.

Proof. w is nondegenerate if and only if igw = 0 < U = 0, where
U = (u,w) is a vector field on N. Now, using (4)

iUw = — iuiBQ - wbb + (u : b)de = — (B X ’LL)b - wbb + (ub)de
So igw = 0 splits to u-b = 0 and B x u + wb = 0, which in turn
splits to
(Bxu)xb=0 _ (B-b)u— (u-b)B =0 _ Bju=0
wb-B=0 B”w:O BHUJ:O

i.e. U =0 is the only solution if-f B” # 0. Ol



Velocity symmetries

Velocity symmetries of FGCM - Exact treatment

Consider a symmetry generated by a vector field
U = (u,w)

on the guiding-centre phase space N, where

(]

u is the 3D part on the physical space M
e wis 1D in the p-direction
u,w depend on both (Q,p)

e u,w are considered independent of 1 (at least for now)

Recall that the conditions for a Hamiltonian symmetry are
LUw =0
LyH =0



Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)

1. From Ly H = 0, we have wp| + pL,|B| = 0. For all values of
u, this splits to

w =0 (5)

2. For w =0, Lyw reduces to L,w and

Lyw=—-L,8- Lud(prb) = —iydf — d(iuB) — dLu(prb)
= —d(iyipQ) — d(p| Lyb) = — d(iyipQ + pyL,b’)

since dff = 0. Thus, Lyw = 0 if and only if

iuipQ+p L = dy (7)

for some function v (defined at least locally) on N.



Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)
3. This condition is in turn equivalent to:

iyt + ;D||Z'udbb + P\\d(iubb) =dy
i B+ pyiaicQ + d(pyind’) — (@b’ )dp) = dip

and can be written as

iuig — (u-b)dp) = —dK (8)

where

K=—¢+ (ubp (9)

Equation (8) splits to B
ux B=VEK (10)
u-b=0p K (11)



Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)

4. K is the invariant associated to the symmetry generator U:

ipw = iyw = iy(— B — dp AV) = —iyigQ + (i,0°)dpy = dK

5. The compatibility condition between (10)-(11) yields
V(u-b) = 0p, (ux B) (12)
while the compatibility condition of (10) is curl (u x B) = 0 and

curl (u x B) = (div B)u — (divu)B + (B - V)u — (u- V)B
= — (divu)B + B, u),

hence reads

[u, B] + (divu)B =0 (13)




Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)
6a. Writing Luw = Ly(— B —dp| AV) = — Ly —dpy A Lub’, note
first that yet another way of expressing L,w = 0 is

LuB+dpy ALy’ =0 (14)

This implies, in particular,

LB Adp; =0 (15)

6b. Secondly, iBLuB = (LuiBz - Z[u B})B = LuiB,B + divuiéﬁ,
using (13), and since iBB =ipzigld =0, we have

igLyB=0 (16)

6c. Thirdly, applying iz to (14) and using (16), we also deduce
igLyt’ =0 (17)




Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)
7. Using this,
i,z = (Luig — igLa)b = LuB

hence the b-component of the compatibility (13) reads

LB+ (divu)Bj =0 (18)

8. Finally, for b = B/B”

[u,b] = L ( H )B+B [U,B]

I
and so we deduce from (13),(18) that

[u,b] =0 (19)




Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U = (u, w) on N gener-
ates a Hamiltonian symmetry of FGCM if-f L, +dp ALyb =0,
Lu|B| =0, w=0.

Theorem 2

If a pj-dependent vector field u on M generates a Hamiltonian
symmetry of FGCM, then

o [u, B] + (divu)B =0

o [u,b] =0
° V(u-b)zf)p“(uxé)
° ’iBLubeO

(]

igLuB =0, LyBAdp =0



Velocity symmetries

Velocity symmetries of FGCM - Exact treatment (continued)

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U = (u,w) on N gener-
ates a Ham. symmetry of FGCM if-f u x B= VK, u-b= 8p”K,
u-V|B| =0, w=0, where K is the associated invariant.

Theorem 2

If a pj-dependent vector field u on M generates a Hamiltonian
symmetry of FGCM, then

o [u, B] + (divu)B =0

o [u,b] =0
° V(u-b)zf)p“(uxé)
° ’iBLubeO

igLuB =0, LyBAdp =0

(]



Approximate symmetries

FGCM & Symmetries - Approximate treatment

o FGCM is the 1st-order approximation of GCM wrt
e=mje<k1

w=-0-— Ed(p”bb)
H = (/2 + plB))

So, natural to consider:
e Approximate vector fields of 1st-order
U=Uy+el
o Approximate symmetries of 1st-order
Lyw = O(£?)
LyH = 0(?)



Approximate symmetries

FGCM & Symmetries - Approximate treatment

o FGCM is the lst-order approximation of GCM wrt
e=mlek1
w=-—pF-— ad(p”bb)
H = e (pf/2 + pu|B])

So, natural to consider:
o Approximate vector fields of 1st-order
U=Uyp+el)h

e Approximate symmetries of 1st-order
Lyw=0
LyH =0

From now on, we write A = B + O(¢") as A ~ B for any two tensors
of the same type. For FGCM, we take n = 2.



Approximate symmetries

FGCM & Symmetries - Approximate treatment (continued)

Approximate version of Noether’s theorem

A vector field U generates an approximate symmetry of an approximate
Hamiltonian system (w, H) if-f there exists an approximate constant of
motion K such that igpw ~ dK.

Proof. For any K = Ko +¢eKj + -+, a vector field U s.t. iyw ~ dK is
well-defined for w = wy + ew; + - - -, since wy is nondegenerate,
iUowo = dKo

iy, wo + ty,wi = dK;

. | . (20)
1y,wWo + 1y, w1 + ty,ws = dK,
Thus, Lyw ~ 0 and, if Ly K ~ 0, Ly H ~ 0 too, because
LUw = diUUJ (21)
LUH = ZUdH = iUin = —ide = —LxK. (22)

In the other direction, if U generates an approximate Hamiltonian sym-
metry, then (21) gives iyw = dK for some (suppose global) function
K, and (22) gives Lx K ~ 0. O



Approximate symmetries

FGCM & Symmetries - Approximate treatment (continued)

Complication:

For € = 0 the GC 2-form, wy = — 3, is degenerate of rank 2 (i.e.,
presymplectic of constant rank) for B # 0

because iy = iyipQ = (B x u)’ for any vector field U = (u, w)
on N, and therefore setting ii78 = 0, we see that

The kernel of  (naturally pullbacked) on N consists of all the
vector fields (fb, g) for arbitrary functions f, g

hence is two-dimensional.

This produces

Trivial symmetries

A trivial approximate symmetry is generated by any vector field
S s.t. igw =~ 0. For the GC 2-form w, S = &S5 with S; € ker 5.



Approximate symmetries

Approximate Symmetries of FGCM (Burby, K, MacKay)

Theorem 3

Given a magnetic field B, a v.f. U = (u,w) = (up + euy,wp + wy) on
N generates an approximate Ham. symmetry of FGCM if-f L, 5 = 0,
P Lueh” + iy ipQ = dip1, Lyy|B| = 0, wo = 0 for a function ; on N.

Proof. Take LyH =~ 0, Lyw ~ 0 and split up by different powers of ¢,
dropping any 2nd-order terms. The first condition gives

pwo + pLy, | Bl =0

thus wg = 0, Ly, |B| = 0 for all u. For wg = 0, Lyw ~ 0 reduces to
L,w =~ 0, so from the second condition, we have
L'LL(JIB = 0
Luod(pl\bb) + Ly, f=0
from the Oth- and 1st-order terms, respectively. Same as in the exact

treatment (see eq. (7)), the latter gives pj| Ly, b’ +iy,i5Q = dip; for some
function ¥; on N. Straightforwardly, the converse is also true. O



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Flux surfaces. From L, 3 = 0, we have 7,8 = di for some function
to on N, because f3 is closed. The p|-component gives apH 1o = 0, and

Since Gy, 8 = tu, i) = (B x uo)b, we deduce then

B x ug = V’(/Jo (23)

Theorem 4

If a vector field U = (ug + euj,ew;) on N generates an approximate
Hamiltonian symmetry of FGCM, then:

divug =0, [ug, B] =0,b-Vy = 0;

B -V = 0;

B -V (b-ug) = c- Vy;

puo - V(b-ug) = uo - Vib1 +uy - Vibo;
p|[uo, c] + [u1, B] + (divu;) B =0

where ¢ = curlb and Vy = ¢ X ug + V(b-up).

®© 6 6 o



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Theorem 5

Given a magnetic field B, a v.f. U = (u,w) = (ug + euy,wo + ewy)
on N generates an approximate Ham. symmetry of FGCM up to trivial
symmetries if-f L, 8 = 0, L,,|B| =0, w = 0, and

ur =bx (p Vo — V¢1)/|B| (24)
b- Vi =pjb-Vo (25)
Opyth1 = p) b Tpyuo (26)
Proof. From L, 0" = iy, db® + diy,b® = iy, i + d(b-ug), note that
Lyt = V5 + (b 0 uo)dp) (27)
Thus, the condition pj Ly, b+ iy, 1382 = dip1 of Thm 3 splits to
B xuy +p Vo = Vi (28)

and (26). Dotting (28) with b gives (25), while crossing with b we find
Uy = b x (pHVO — Vu)l)/|B\ + (bul)b
Dropping the trivial symmetry e((b-u)b, w;) completes the proof. [J




Approximate symmetries

Approximate Symmetries of FGCM (continued)

Approximate invariant

The corresponding approximate constant of motion is now given by
K = =0 —e(¢1 — pj b-uo) (29)

Proposition 1
Assume the p-dependent vector field ug + cu; on M generates an
approximate Ham. symmetry of FGCM.

@ uo is spatial if and only if v; is.

@ If up is spatial, then Vo = 0, u1 x B.

Proof. From B x ug = Vg (23) we have B x 0, ug = 0 and together
with py b+ 9p,uo = 9p, 1 (26) we deduce Jp 11 = 0 if-f 9, ug = 0.

The second one follows from B x uy + p; Vo = Vb1 (28), since if g is
spatial then so are 11, Vj. O



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Corollary

Given a magnetic field B, a vector field u = ug+eu; on M generates an
approximate quasisymmetry if-f ug is a quasisymmetry and L., 8 = 0.

Proof. From (27) we have L,,b° = V°, and from Prop1 we have in
turn LuObb = 0 and 3PH 11 = 0. Therefore the symmetry condition
Py Luoh’ +iu,ipQ = dipy of Thm 3 reduces to i,,i5Q = dip1, which says
Ly, 8 = 0. The rest of the symmetry conditions, L,,5 = 0, L,,|B| =0,
together with L, B> = 0 prove that ug is a quasisymmetry. O

Weak quasisymmetry (Rodriguez, Helander & Bhattacharjee)

is an approximate Hamiltonian symmetry of FGCM on M which is
spatial to leading order and nontrivially linear in p; to first order.



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Theorem 6

Let ug be a vector field on M with Vj # 0. The vector field u = ug+euq
generates a weak quasisymmetry up to trivial symmetries if and only if
Ly,B=0,divug =0, Ly, |B| = 0 and u; = b x (p Vo — Ve1)/|B| with
11 a flux function on M.

Proof. If u generates a weak quasisymmetry then from Thms 4-5 we
see that the conditions hold.

In the opposite direction, note first from (27) that L, b = V{ since ug
is spatial. Now, divug = 0 is equivalent to b - Vo = 0, when L,,8 =0
and L,,|B| = 0. To see this, apply L., to the relation 1" A 8 = |B|Q
to find L,,b° A B = |B|Ly,Q, where Ly, Q = diy,Q = (divug)Q, and
then i, in turn to arrive at (ipLy,0°)3 = |B|(divug)ip©Q and hence
1Ly b = divug since B # 0. Thus, all the conditions of Thm 5 are
met, with (26) trivially satisfied. Therefore u generates an approximate
Hamiltonian symmetry of FGCM, and since Vj and v; are independent
of py|, it is a weak quasisymmetry. O




Approximate symmetries

Approximate Symmetries of FGCM (continued)

Remarks

@ For general approximate symmetries, given ug and 1, we can
construct up, as we can see from Thm 5.

@ This becomes an advantage, in particular, for weak quasisymme-
try, because in this case ug and 11 decouple. Thus, as we see from
Thm 6, the conditions for weak quasisymmetry to zeroth-order
are completely uncoupled from the first-order ones. Moreover, the
latter amount to simply building u; once ug is known.

@ On this ground, the existence of weak quasisymmetry (but not
weak quasisymmetry itself) is rightfully identified with a v.f. wug
such that L, 8 =0, divug = 0, L,,|B| = 0, as the last condition
of Thm 6 is merely a construction (assuming flux function 7).

@ This allows to compare the part ug of weak quasisymmetry with
quasisymmetry u, despite their different nature. From their con-
ditions respectively, we see then that divug = 0 relaxes L,b* = 0.



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Theorem 7 (Rodriguez, Helander & Bhattacharjee)

Let f = B-V|B| # 0. A weak quasisymmetry exists if and only if
Vipo X V|B| - Vf =0 and 9 + €1 is a flux function.

Proof. From Thm 6, if u = ug + eu; generates a weak quasisymmetry,
then L., =0, divug = 0, L,,|B| = 0, and there’s a flux function ;.
Repeating (23), the first condition gives B X ug = V1o, where g is a
flux function. Crossing with V|B| and using the third condition we get

Uug = vwo X V|B|/f (30)

Applying then the second condition, we find Vipg x V|B| -V f =0, as
any Vi x V|B| has zero divergence.

In the other direction, given flux function 4, define uy from (30).
Then L,,|B| = 0. Also divug = 0, because Vijg x V|B|-Vf = 0.
Thirdly, crossing (30) with B gives B X ug = Vi, since B - Vijg = 0.
Finally, take uy = b x (p Vo — V1) /|B| given flux function ;. Thus,
u = ug + uy generates a weak quasisymmetry from Thm 6. O



Approximate symmetries

Approximate Symmetries of FGCM (continued)

Theorem &

For an MHS magnetic field with dp # 0 almost everywhere on M and
density of irrational surfaces, an approximate symmetry of FGCM on
N implies an approximate quasisymmetry.
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Approximate symmetries

Food for thought

@ How does MHS (or at least vacuum) combine with (exact) velocity
symmetries?

@ Does circle action of quasisymmetry extend to an analogue for
velocity symmetries?

@ Need to impose boundedness. What’s the role of magnetic curva-
ture for approximate symmetries?

@ Are there special p-dependent symmetries? Need to study GCM
as a Hamiltonian reduction of charged particle motion.

@ How far is weak QS from isometries compared to QS? Note that
tryA = 0 but det A # 0, where A = L,,,g for weak QS u = up+ecuy
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