Velocity symmetries Approximate symmetries

Mathematics for Fusion Power part 4

N. Kallinikos

February 14, 2024

Outline

1 Velocity (Hamiltonian) symmetries of FGCM

2 Approximate (Hamiltonian) symmetries of FGCM

First-order guiding-center motion (FGCM) - Exact treatment

For a given magnetic field B on a 3-dimensional manifold M, the Hamiltonian structure of FGCM is

$$\omega = -\beta - d(p_{\parallel}b^{\flat}) \tag{1}$$

$$H = \frac{p_{\parallel}^2}{2} + \mu |B| \tag{2}$$

on the 4-dimensional GC bundle N over M, where

- $\beta = i_B \Omega = \text{magnetic flux form},$
- b = B/|B| and $b^{\flat} = i_b g$,
- g = metric tensor on M
- Ω = associated volume form on M
- $\mu = \text{magnetic moment}$

and normalised units m = e = 1.

FGCM - Exact treatment (continued)

In terms of the *modified* magnetic field,

$$\tilde{B} = B + p_{\parallel}c \tag{3}$$

where $c = \operatorname{curl} b$, the symplectic form can be written as

$$\omega = -\beta - d(p_{\parallel}b^{\flat}) = -i_{B}\Omega - dp_{\parallel} \wedge b^{\flat} - p_{\parallel}db^{\flat}$$

$$= -i_{B}\Omega - p_{\parallel}i_{c}\Omega - dp_{\parallel} \wedge b^{\flat}$$

$$= -\tilde{\beta} - dp_{\parallel} \wedge b^{\flat}$$
(4)

where $\tilde{\beta} = i_{\tilde{B}}\Omega$ is the modified flux.

Note that div $\tilde{B}=0$. This means that $\tilde{\beta}$ is closed on M. But it's not closed on N. To see these, write $\tilde{\beta}=\beta+p_{\parallel}db^{\flat}$ to derive $d\tilde{\beta}=dp_{\parallel}\wedge db^{\flat}$ and therefrom $d\tilde{\beta}\wedge dp_{\parallel}=0$.

FGCM - Exact treatment (continued)

The GC 2-form ω is nondegenerate if and only if $\tilde{B}_{\parallel} \neq 0$, where $\tilde{B}_{\parallel} = b \cdot \tilde{B}$.

Proof. ω is nondegenerate if and only if $i_U\omega = 0 \Leftrightarrow U = 0$, where U = (u, w) is a vector field on N. Now, using (4)

$$i_U \omega = -i_u i_{\tilde{B}} \Omega - w b^{\flat} + (u \cdot b) dp_{\parallel} = -(\tilde{B} \times u)^{\flat} - w b^{\flat} + (u \cdot b) dp_{\parallel}$$

So $i_U \omega = 0$ splits to $u \cdot b = 0$ and $\tilde{B} \times u + wb = 0$, which in turn splits to

$$\left\{ \begin{array}{ll} (\tilde{B}\times u)\times b=0 \\ w\,b\cdot\tilde{B}=0 \end{array} \right. \ \Rightarrow \ \left\{ \begin{array}{ll} (\tilde{B}\cdot b)u-(u\cdot b)\tilde{B}=0 \\ \tilde{B}_{\parallel}\,w=0 \end{array} \right. \ \Rightarrow \ \left\{ \begin{array}{ll} \tilde{B}_{\parallel}\,u=0 \\ \tilde{B}_{\parallel}\,w=0 \end{array} \right.$$

i.e.
$$U=0$$
 is the only solution if-f $\tilde{B}_{\parallel} \neq 0$.

Velocity symmetries of FGCM - Exact treatment

Consider a symmetry generated by a vector field

$$U = (u, w)$$

on the guiding-centre phase space N, where

- u is the 3D part on the physical space M
- ullet w is 1D in the p_{\parallel} -direction
- u, w depend on both (Q, p_{\parallel})
- u, w are considered independent of μ (at least for now)

Recall that the conditions for a Hamiltonian symmetry are

$$L_U \omega = 0$$
$$L_U H = 0$$

1. From $L_U H = 0$, we have $wp_{\parallel} + \mu L_u |B| = 0$. For all values of μ , this splits to

$$w = 0 (5)$$

$$L_u|B| = 0 (6)$$

2. For w = 0, $L_U \omega$ reduces to $L_u \omega$ and

$$L_{u}\omega = -L_{u}\beta - L_{u}d(p_{\parallel}b^{\flat}) = -i_{u}d\beta - d(i_{u}\beta) - dL_{u}(p_{\parallel}b^{\flat})$$

= $-d(i_{u}i_{B}\Omega) - d(p_{\parallel}L_{u}b^{\flat}) = -d(i_{u}i_{B}\Omega + p_{\parallel}L_{u}b^{\flat})$

since $d\beta = 0$. Thus, $L_U \omega = 0$ if and only if

$$i_u i_B \Omega + p_{\parallel} L_u b^{\flat} = d\psi$$
 (7)

for some function ψ (defined at least locally) on N.

3. This condition is in turn equivalent to:

$$i_u i_B \Omega + p_{\parallel} i_u db^{\flat} + p_{\parallel} d(i_u b^{\flat}) = d\psi$$
$$i_u i_B \Omega + p_{\parallel} i_u i_c \Omega + d(p_{\parallel} i_u b^{\flat}) - (i_u b^{\flat}) dp_{\parallel} = d\psi$$

and can be written as

$$i_u i_{\tilde{B}} \Omega - (u \cdot b) dp_{\parallel} = -dK$$
 (8)

where

$$K = -\psi + (u \cdot b)p_{\parallel}$$
 (9)

Equation (8) splits to

$$u \times \tilde{B} = \nabla K \tag{10}$$

$$u \cdot b = \partial_{p_{\parallel}} K \tag{11}$$

4. K is the invariant associated to the symmetry generator U:

$$i_U \omega = i_u \omega = i_u (-\tilde{\beta} - dp_{\parallel} \wedge b^{\flat}) = -i_u i_{\tilde{B}} \Omega + (i_u b^{\flat}) dp_{\parallel} = dK$$

5. The compatibility condition between (10)-(11) yields

$$\nabla(u \cdot b) = \partial_{p_{\parallel}}(u \times \tilde{B}) \tag{12}$$

while the compatibility condition of (10) is $\operatorname{curl}(u \times \tilde{B}) = 0$ and

$$\operatorname{curl}(u \times \tilde{B}) = (\operatorname{div} \tilde{B})u - (\operatorname{div} u)\tilde{B} + (\tilde{B} \cdot \nabla)u - (u \cdot \nabla)\tilde{B}$$
$$= -(\operatorname{div} u)\tilde{B} + [\tilde{B}, u],$$

hence reads

$$[u, \tilde{B}] + (\operatorname{div} u)\tilde{B} = 0$$
(13)

6a. Writing $L_u\omega = L_u(-\tilde{\beta} - dp_{\parallel} \wedge b^{\flat}) = -L_u\tilde{\beta} - dp_{\parallel} \wedge L_ub^{\flat}$, note first that yet another way of expressing $L_u\omega = 0$ is

$$L_u\tilde{\beta} + dp_{\parallel} \wedge L_u b^{\flat} = 0 \tag{14}$$

This implies, in particular,

$$L_u \tilde{\beta} \wedge dp_{\parallel} = 0 \tag{15}$$

6b. Secondly, $i_{\tilde{B}}L_u\tilde{\beta} = (L_u i_{\tilde{B}} - i_{[u,\tilde{B}]})\tilde{\beta} = L_u i_{\tilde{B}}\tilde{\beta} + \operatorname{div} u i_{\tilde{B}}\tilde{\beta}$, using (13), and since $i_{\tilde{B}}\tilde{\beta} = i_{\tilde{B}}i_{\tilde{B}}\Omega = 0$, we have

$$i_{\tilde{B}}L_u\tilde{\beta} = 0$$
 (16)

6c. Thirdly, applying $i_{\tilde{R}}$ to (14) and using (16), we also deduce

$$i_{\tilde{B}}L_u b^{\flat} = 0 \tag{17}$$

7. Using this,

$$i_{[u,\tilde{B}]}b^{\flat} = (L_u i_{\tilde{B}} - i_{\tilde{B}}L_u)b^{\flat} = L_u \tilde{B}_{\parallel}$$

hence the b-component of the compatibility (13) reads

$$L_u \tilde{B}_{\parallel} + (\operatorname{div} u) \tilde{B}_{\parallel} = 0$$
(18)

8. Finally, for $\bar{b} = \tilde{B}/\tilde{B}_{\parallel}$

$$[u, \bar{b}] = L_u(\tilde{B}_{\parallel}^{-1})\tilde{B} + \tilde{B}_{\parallel}^{-1}[u, \tilde{B}] = -\tilde{B}_{\parallel}^{-2}L_u(\tilde{B}_{\parallel})\tilde{B} + \tilde{B}_{\parallel}^{-1}[u, \tilde{B}]$$

and so we deduce from (13),(18) that

$$[u, \bar{b}] = 0 \tag{19}$$

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U=(u,w) on N generates a Hamiltonian symmetry of FGCM if-f $L_u\tilde{\beta}+dp_\parallel\wedge L_ub^\flat=0$, $L_u|B|=0,\ w=0$.

Theorem 2

If a p_{\parallel} -dependent vector field u on M generates a Hamiltonian symmetry of FGCM, then

•
$$[u, \tilde{B}] + (\operatorname{div} u)\tilde{B} = 0$$

•
$$[u, \bar{b}] = 0$$

•
$$\nabla(u \cdot b) = \partial_{p_{\parallel}}(u \times \tilde{B})$$

•
$$i_{\tilde{R}}L_ub^{\flat}=0$$

•
$$i_{\tilde{B}}L_u\tilde{\beta} = 0, L_u\tilde{\beta} \wedge dp_{\parallel} = 0$$

In summary, what we can say so far are

Theorem 1

Given a magnetic field B, a vector field U=(u,w) on N generates a Ham. symmetry of FGCM if-f $u \times \tilde{B} = \nabla K$, $u \cdot b = \partial_{p_{\parallel}} K$, $u \cdot \nabla |B| = 0$, w=0, where K is the associated invariant.

Theorem 2

If a p_{\parallel} -dependent vector field u on M generates a Hamiltonian symmetry of FGCM, then

•
$$[u, \tilde{B}] + (\operatorname{div} u)\tilde{B} = 0$$

•
$$[u, \bar{b}] = 0$$

•
$$\nabla(u \cdot b) = \partial_{p_{\parallel}}(u \times \tilde{B})$$

•
$$i_{\tilde{R}}L_ub^{\flat}=0$$

•
$$i_{\tilde{B}}L_u\tilde{\beta} = 0, L_u\tilde{\beta} \wedge dp_{\parallel} = 0$$

FGCM & Symmetries - Approximate treatment

• FGCM is the 1st-order approximation of GCM wrt $\varepsilon = m/e \ll 1$

$$\omega = -\beta - \varepsilon d(p_{\parallel}b^{\flat})$$

$$H = \varepsilon (p_{\parallel}^2/2 + \mu|B|)$$

So, natural to consider:

• Approximate vector fields of 1st-order

$$U = U_0 + \varepsilon U_1$$

• Approximate symmetries of 1st-order

$$L_U\omega = O(\varepsilon^2)$$

$$L_UH = O(\varepsilon^2)$$

$$L_U H = O(\varepsilon^2)$$

FGCM & Symmetries - Approximate treatment

• FGCM is the 1st-order approximation of GCM wrt $\varepsilon = m/e \ll 1$

$$\omega = -\beta - \varepsilon d(p_{\parallel}b^{\flat})$$

$$H = \varepsilon (p_{\parallel}^{2}/2 + \mu|B|)$$

So, natural to consider:

• Approximate vector fields of 1st-order

$$U = U_0 + \varepsilon U_1$$

• Approximate symmetries of 1st-order

$$L_U \omega \approx 0$$
$$L_U H \approx 0$$

From now on, we write $A = B + O(\varepsilon^n)$ as $A \approx B$ for any two tensors of the same type. For FGCM, we take n = 2.

FGCM & Symmetries - Approximate treatment (continued)

Approximate version of Noether's theorem

A vector field U generates an approximate symmetry of an approximate Hamiltonian system (ω, H) if-f there exists an approximate constant of motion K such that $i_U \omega \approx dK$.

Proof. For any $K = K_0 + \varepsilon K_1 + \cdots$, a vector field U s.t. $i_U \omega \approx dK$ is well-defined for $\omega = \omega_0 + \varepsilon \omega_1 + \cdots$, since ω_0 is nondegenerate,

$$i_{U_0}\omega_0 = dK_0$$

$$i_{U_1}\omega_0 + i_{U_0}\omega_1 = dK_1$$

$$i_{U_2}\omega_0 + i_{U_1}\omega_1 + i_{U_0}\omega_2 = dK_2$$
(20)

...

Thus, $L_U\omega \approx 0$ and, if $L_XK \approx 0$, $L_UH \approx 0$ too, because

$$L_U\omega = di_U\omega \tag{21}$$

$$L_U H = i_U dH = i_U i_X \omega = -i_X dK = -L_X K. \tag{22}$$

In the other direction, if U generates an approximate Hamiltonian symmetry, then (21) gives $i_U\omega \approx dK$ for some (suppose global) function K, and (22) gives $L_XK \approx 0$.

FGCM & Symmetries - Approximate treatment (continued)

Complication:

For $\varepsilon = 0$ the GC 2-form, $\omega_0 = -\beta$, is degenerate of rank 2 (i.e., presymplectic of constant rank) for $B \neq 0$

because $i_U\beta = i_u i_B \Omega = (B \times u)^{\flat}$ for any vector field U = (u, w) on N, and therefore setting $i_U\beta = 0$, we see that

The kernel of β (naturally pullbacked) on N consists of all the vector fields (fb,g) for arbitrary functions f,g

hence is two-dimensional.

This produces

Trivial symmetries

A trivial approximate symmetry is generated by any vector field S s.t. $i_S \omega \approx 0$. For the GC 2-form ω , $S = \varepsilon S_1$ with $S_1 \in \ker \beta$.

Approximate Symmetries of FGCM (Burby, K, MacKay)

Theorem 3

Given a magnetic field B, a v.f. $U = (u, w) = (u_0 + \varepsilon u_1, w_0 + \varepsilon w_1)$ on N generates an approximate Ham. symmetry of FGCM if-f $L_{u_0}\beta = 0$, $p_{\parallel}L_{u_0}b^{\flat} + i_{u_1}i_B\Omega = d\psi_1$, $L_{u_0}|B| = 0$, $w_0 = 0$ for a function ψ_1 on N.

Proof. Take $L_U H \approx 0$, $L_U \omega \approx 0$ and split up by different powers of ε , dropping any 2nd-order terms. The first condition gives

$$p_{\parallel}w_0 + \mu L_{u_0}|B| = 0$$

thus $w_0 = 0$, $L_{u_0}|B| = 0$ for all μ . For $w_0 = 0$, $L_U\omega \approx 0$ reduces to $L_u\omega \approx 0$, so from the second condition, we have

$$L_{u_0}\beta = 0$$
$$L_{u_0}d(p_{\parallel}b^{\flat}) + L_{u_1}\beta = 0$$

from the 0th- and 1st-order terms, respectively. Same as in the exact treatment (see eq. (7)), the latter gives $p_{\parallel}L_{u_0}b^{\flat}+i_{u_1}i_B\Omega=d\psi_1$ for some function ψ_1 on N. Straightforwardly, the converse is also true.

Flux surfaces. From $L_{u_0}\beta=0$, we have $i_{u_0}\beta=d\psi_0$ for some function ψ_0 on N, because β is closed. The p_{\parallel} -component gives $\partial_{p_{\parallel}}\psi_0=0$, and since $i_{u_0}\beta=i_{u_0}i_B\Omega=(B\times u_0)^{\flat}$, we deduce then

$$B \times u_0 = \nabla \psi_0 \tag{23}$$

Theorem 4

If a vector field $U = (u_0 + \varepsilon u_1, \varepsilon w_1)$ on N generates an approximate Hamiltonian symmetry of FGCM, then:

- $\operatorname{div} u_0 = 0$, $[u_0, B] = 0$, $b \cdot V_0 = 0$;
- $B \cdot \nabla \psi_1 = 0$;
- $B \cdot \nabla (b \cdot u_0) = c \cdot \nabla \psi_0$;
- $p_{\parallel}u_0 \cdot \nabla(b \cdot u_0) = u_0 \cdot \nabla \psi_1 + u_1 \cdot \nabla \psi_0;$
- $p_{\parallel}[u_0, c] + [u_1, B] + (\operatorname{div} u_1)B = 0$

where $c = \operatorname{curl} b$ and $V_0 = c \times u_0 + \nabla(b \cdot u_0)$.

Theorem 5

Given a magnetic field B, a v.f. $U = (u, w) = (u_0 + \varepsilon u_1, w_0 + \varepsilon w_1)$ on N generates an approximate Ham. symmetry of FGCM up to trivial symmetries if-f $L_{u_0}\beta = 0$, $L_{u_0}|B| = 0$, w = 0, and

$$u_1 = b \times (p_{\parallel} V_0 - \nabla \psi_1)/|B| \tag{24}$$

$$b \cdot \nabla \psi_1 = p_{\parallel} b \cdot V_0 \tag{25}$$

$$\partial_{p_{\parallel}}\psi_1 = p_{\parallel} \, b \cdot \partial_{p_{\parallel}} u_0 \tag{26}$$

Proof. From
$$L_{u_0}b^{\flat} = i_{u_0}db^{\flat} + di_{u_0}b^{\flat} = i_{u_0}i_c\Omega + d(b\cdot u_0)$$
, note that

$$L_{u_0}b^{\flat} = V_0^{\flat} + (b \cdot \partial_{p_{\parallel}}u_0)dp_{\parallel}$$
 (27)

Thus, the condition $p_{\parallel}L_{u_0}b^{\flat} + i_{u_1}i_B\Omega = d\psi_1$ of Thm 3 splits to

$$B \times u_1 + p_{\parallel} V_0 = \nabla \psi_1 \tag{28}$$

and (26). Dotting (28) with b gives (25), while crossing with b we find

$$u_1 = b \times (p_{\parallel}V_0 - \nabla\psi_1)/|B| + (b \cdot u_1)b$$

Dropping the trivial symmetry $\varepsilon((b \cdot u_1)b, w_1)$ completes the proof.

Approximate invariant

The corresponding approximate constant of motion is now given by

$$K = -\psi_0 - \varepsilon(\psi_1 - p_{\parallel} b \cdot u_0) \tag{29}$$

Proposition 1

Assume the p_{\parallel} -dependent vector field $u_0 + \varepsilon u_1$ on M generates an approximate Ham. symmetry of FGCM.

- \bullet u_0 is spatial if and only if ψ_1 is.
- ② If u_0 is spatial, then $V_0 = \partial_{p_{\parallel}} u_1 \times B$.

Proof. From $B \times u_0 = \nabla \psi_0$ (23) we have $B \times \partial_{p_{\parallel}} u_0 = 0$ and together with $p_{\parallel} b \cdot \partial_{p_{\parallel}} u_0 = \partial_{p_{\parallel}} \psi_1$ (26) we deduce $\partial_{p_{\parallel}} \psi_1 = 0$ if-f $\partial_{p_{\parallel}} u_0 = 0$.

The second one follows from $B \times u_1 + p_{\parallel} V_0 = \nabla \psi_1$ (28), since if u_0 is spatial then so are ψ_1 , V_0 .

Corollary

Given a magnetic field B, a vector field $u = u_0 + \varepsilon u_1$ on M generates an approximate quasisymmetry if-f u_0 is a quasisymmetry and $L_{u_1}\beta = 0$.

Proof. From (27) we have $L_{u_0}b^{\flat}=V^{\flat}$, and from Prop 1 we have in turn $L_{u_0}b^{\flat}=0$ and $\partial_{p_{\parallel}}\psi_1=0$. Therefore the symmetry condition $p_{\parallel}L_{u_0}b^{\flat}+i_{u_1}i_B\Omega=d\psi_1$ of Thm 3 reduces to $i_{u_1}i_B\Omega=d\psi_1$, which says $L_{u_1}\beta=0$. The rest of the symmetry conditions, $L_{u_0}\beta=0$, $L_{u_0}|B|=0$, together with $L_{u_0}b^{\flat}=0$ prove that u_0 is a quasisymmetry.

Weak quasisymmetry (Rodríguez, Helander & Bhattacharjee)

is an approximate Hamiltonian symmetry of FGCM on M which is spatial to leading order and nontrivially linear in p_{\parallel} to first order.

Theorem 6

Let u_0 be a vector field on M with $V_0 \neq 0$. The vector field $u = u_0 + \varepsilon u_1$ generates a weak quasisymmetry up to trivial symmetries if and only if $L_{u_0}\beta = 0$, div $u_0 = 0$, $L_{u_0}|B| = 0$ and $u_1 = b \times (p_{\parallel}V_0 - \nabla \psi_1)/|B|$ with ψ_1 a flux function on M.

Proof. If u generates a weak quasisymmetry then from Thms 4-5 we see that the conditions hold.

In the opposite direction, note first from (27) that $L_{u_0}b^{\flat} = V_0^{\flat}$ since u_0 is spatial. Now, $\operatorname{div} u_0 = 0$ is equivalent to $b \cdot V_0 = 0$, when $L_{u_0}\beta = 0$ and $L_{u_0}|B| = 0$. To see this, apply L_{u_0} to the relation $b^{\flat} \wedge \beta = |B|\Omega$ to find $L_{u_0}b^{\flat} \wedge \beta = |B|L_{u_0}\Omega$, where $L_{u_0}\Omega = \operatorname{di}_{u_0}\Omega = (\operatorname{div} u_0)\Omega$, and then i_b in turn to arrive at $(i_bL_{u_0}b^{\flat})\beta = |B|(\operatorname{div} u_0)i_b\Omega$ and hence $i_bL_{u_0}b^{\flat} = \operatorname{div} u_0$ since $B \neq 0$. Thus, all the conditions of Thm 5 are met, with (26) trivially satisfied. Therefore u generates an approximate Hamiltonian symmetry of FGCM, and since V_0 and ψ_1 are independent of p_{\parallel} , it is a weak quasisymmetry.

Remarks

- For general approximate symmetries, given u_0 and ψ_1 , we can construct u_1 , as we can see from Thm 5.
- This becomes an advantage, in particular, for weak quasisymmetry, because in this case u_0 and ψ_1 decouple. Thus, as we see from Thm 6, the conditions for weak quasisymmetry to zeroth-order are completely uncoupled from the first-order ones. Moreover, the latter amount to simply building u_1 once u_0 is known.
- On this ground, the *existence* of weak quasisymmetry (but not weak quasisymmetry itself) is rightfully identified with a v.f. u_0 such that $L_{u_0}\beta = 0$, div $u_0 = 0$, $L_{u_0}|B| = 0$, as the last condition of Thm 6 is merely a construction (assuming flux function ψ_1).
- This allows to compare the part u_0 of weak quasisymmetry with quasisymmetry u, despite their different nature. From their conditions respectively, we see then that div $u_0 = 0$ relaxes $L_u b^{\flat} = 0$.

Theorem 7 (Rodríguez, Helander & Bhattacharjee)

Let $f = B \cdot \nabla |B| \neq 0$. A weak quasisymmetry exists if and only if $\nabla \psi_0 \times \nabla |B| \cdot \nabla f = 0$ and $\psi_0 + \varepsilon \psi_1$ is a flux function.

Proof. From Thm 6, if $u = u_0 + \varepsilon u_1$ generates a weak quasisymmetry, then $L_{u_0}\beta = 0$, div $u_0 = 0$, $L_{u_0}|B| = 0$, and there's a flux function ψ_1 . Repeating (23), the first condition gives $B \times u_0 = \nabla \psi_0$, where ψ_0 is a flux function. Crossing with $\nabla |B|$ and using the third condition we get

$$u_0 = \nabla \psi_0 \times \nabla |B|/f \tag{30}$$

Applying then the second condition, we find $\nabla \psi_0 \times \nabla |B| \cdot \nabla f = 0$, as any $\nabla \psi_0 \times \nabla |B|$ has zero divergence.

In the other direction, given flux function ψ_0 , define u_0 from (30). Then $L_{u_0}|B|=0$. Also div $u_0=0$, because $\nabla \psi_0 \times \nabla |B| \cdot \nabla f=0$. Thirdly, crossing (30) with B gives $B \times u_0 = \nabla \psi_0$, since $B \cdot \nabla \psi_0 = 0$. Finally, take $u_1 = b \times (p_{\parallel} V_0 - \nabla \psi_1)/|B|$ given flux function ψ_1 . Thus, $u = u_0 + \varepsilon u_1$ generates a weak quasisymmetry from Thm 6.

Theorem 8

For an MHS magnetic field with $dp \neq 0$ almost everywhere on M and density of irrational surfaces, an approximate symmetry of FGCM on N implies an approximate quasisymmetry.

References

Rodríguez E., Helander P. & Bhattacharjee A., Necessary and sufficient conditions for quasisymmetry, $Phys.\ Plasmas\ 27\ (2020),\ 062501.$

Burby J.W., Kallinikos N. & MacKay R.S., Approximate symmetries of guiding-centre motion, *J. Phys. A: Math. Theor.* **54** (2021), 125202.

Food for thought

- How does MHS (or at least vacuum) combine with (exact) velocity symmetries?
- Does circle action of quasisymmetry extend to an analogue for velocity symmetries?
- Need to impose boundedness. What's the role of magnetic curvature for approximate symmetries?
- Are there special μ -dependent symmetries? Need to study GCM as a Hamiltonian reduction of charged particle motion.
- How far is weak QS from isometries compared to QS? Note that $\operatorname{tr}_q A = 0$ but $\det A \neq 0$, where $A = L_{u_0} g$ for weak QS $u = u_0 + \varepsilon u_1$