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Integrable magnetic fields

Adiabatic theory for First-order Guiding-centre motion

Omnigenity



Integrable magnetic fields
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>

>

Relax from desire to make FGCM integrable to just requiring
time-averaged rate of change of a flux function be zero.

Needs B to have a flux function: a function ¢ such that igdy =0
and dv # 0 a.e. Say B is integrable.

Automatic for non-degenerate MHS, i.e. igdB” = dp with dp # 0
a.e. (in plasma), and AS or QS fields (i,ig€2 = di) with u, B indpt
a.e. Also for ideal equilibria with flow v indpt of B (i,igQ2 = d®).
Equivalent (modulo v global) to 3 continuous symmetry u of 3,
inpdt of B a.e.: L, =0& dS =0 imply i,ig€ is closed so locally
dip, some 1. Conversely, if ¢ is a flux function let u = £ + 7B for
€= b x Vi & fn f, LB = diyigQ = dig({; A dip) = d*p = 0.
Note we suppose B nowhere zero in domain of interest.

The bounded regular level sets of ¥ (flux surfaces) are oriented by
area-form A = i,Q, where n = V)/|V1|2, and carry a nowhere-
zero vector field B so by Poincaré index have Euler characteristic 0,
so by classification of compact surfaces are tori.

On a flux surface S, B preserves A: i,dy) =1 implies Q = i,Q A d®),
so 0= LgQ = Lgi, QA dvy. Applying i, 0 = i,LginQ A dv) — LginQ.
So Lgi,£2 = 0 on pairs of tangents to 1) = constant.



continued

» Implies B is a Poincaré vector field on S, i.e. has a cross-section (a
transverse circle such that every trajectory crosses it forwards and
backwards in time), because only other option for a nowhere-zero
field has a Reeb component (an annulus bounded by periodic orbits
in opposite directions), incompatible with a preserved area-form.

P> C Baesens, J Guckenheimer, S Kim, RS MacKay, Three coupled
oscillators: Mode-locking, global bifurcations and toroidal chaos,
Physica D 49 (1991) 387-475

P In particular, B has a winding ratio ¢ on S, relative to a choice of
poloidal and toroidal generators of H;(S).

> fn igA along an arc 7 in S from a reference point makes a local
coordinate that is preserved by the flow of B (Lg.A = 0 implies
isdig A =0, so fn igA is path-indpt on S). So the return map to a
cross-section is conjugate to a rigid translation.

P> Consequently, B on S is conjugate to AC for some constant vector
field C on R?/Z? & time-change function A : S — R™.

» In particular, for ¢ rational, every fieldline is closed.
» For Diophantine winding ratio, if B is smooth enough then it is
conjugate to a constant (KAM theory).



more

Note that we don't get LA coordinates in general. To get from
L, =0, dB =0 to [u, B] =0 requires divu = 0 too:

’.[u,B]Q = I'ULBQ — LBqu = IBdIuQ = (diVU)I'BQ.

div€ = (iydy — igd|B]?)/|BI*.

e.g. in non-degenerate MHS (meaning dp # 0 a.e.), or weaker just
B integrable with p a function of 1, then i;dv = 0, so div¢ = 0 iff
ied|B| =0, i.e. divE = 0 iff £ is a weak QS.

Can rearrange: for integrable B, £ weak QS implies i;di) = 0.

For n =&+ 1B, divy = div€ + igdf. To achieve divy = 0 need f
s.t. igdf = —div&. Requires f7 divf% = 0 V closed field- lines 7.
Sufficient for a solution f € C! if B € C3 and j—; # 0. Newcomb
WA, Magnetic differential equations, Phys Fluids 2 (1959) 362-5
Automatic in non-degenerate MHS, because it is solvability
condition for Jj. Thus f = Jj/p" (plus any flux function).
|B2div 7 + ipd|B[? = iydi + igdf with f = f|B|%. So 1 weak QS
implies i;dy + inf = 0. Conversely, under this condition,

divy = 0iff L,|B| = 0.

For non-degenerate MHS & f = J”%F,(w), 7 weak QS iff

ind((J) + F)|B|?) = 0.



Zeroth-order Guiding-Centre Motion

» To define time-averaged v, compute ixdy due to FGCM, and
average along trajectories of zeroth-order GCM.

» ZGCM is lim._,o of FGCM: s = p—n!, p| = —nipd|B| along single
fieldlines, with arclength parameter s.

P It has Hamiltonian formulation H = ﬁpﬁ + u|B(s)], w = ds A dp.
In particular, it conserves H = E. Suppose p > 0.

| V)

P If h = E/u is larger than the maximum of |B| along the fieldline
then the motion is unidirectional.

» If the GC approaches a point where |B| = h with |B|’ # 0 (where
"= <) then the GC reverses direction there.

P If it approaches a point where |B| = h with |B|’ = 0 then the GC
takes infinite time to reach it (marginal case).

» For a fieldline on a flux surface, most of the ZGCM is either
circulating (unidirectional) or periodically bouncing.




Scaled FGCM

» For 1 > 0, use new time 7 = /£ t, parallel velocity

u = \/%v and write § = @ to make FGCM into
Q _ g byspxvp) M- B g
dr 1A Todr BH

with B = B+ ujcurlband By = B-b=|B|+ 4 ub-curl b.
> Equivalent to H = % = %uﬁ +[B|, & = \/Lm—u = g + d(u”bb).
» Limit of w as 6 — 0 is singular and [ is degenerate, but

dynamics still well-defined for 6 = 0 and is (scaled) ZGCM.

» This scaling absorbs all of e, m, 14 into one parameter § and
makes FGCM a regular perturbation of ZGCM. Will use later.



Perpendicular drifts

>

v

Instead of the Hamiltonian FGCM, it turns out better to use
an alternative set of equations agreeing to first order:
Q= ﬂb—i— va, p| = —p(b+ |B|CJ_) V|B|, where

2
Vd:em|B|Cl+ |B|b><V]B\ ¢ = curl b (¢ can be written

as b x k with x” = L,b"). Still preserves H. [& some w?]
Then the rate of change of ¢ is w = iy, d?.

Say B is omnigenous if for all bouncing orbits of ZGCM, the
time-average (1) of i,,dv over one period is 0.

Thus bouncing GCs have O(e?) long-term rate of change of 1)
(from vy = O(e) and evaluating on FGCM instead of ZGCM).

We'll show that (¢} for circulating orbits is also 0.
And that QS implies omnigenous, so it is a generalisation.

JW Burby, RS MacKay, S Naik, Isodrastic magnetic fields for
suppressing transitions in guiding-centre motion, Nonlinearity
36 (2023) 5884-5954.



Stronger options

| 2

>

Could ask for no bouncing trajectories, i.e. Lg|B| = 0. If DIS
then |B| constant on 1 constant.

Impossible in “normal” MHS if the flux surfaces accumulate
on a closed curve (“magnetic axis”), because

dp = |BI2" — |Bld.|B| (¥)

More generally, writing ' = %, (*) requires (p + 3|B|?)' < 0
(assuming enclosed volume V has V’ > 0), because take
smallest sphere surrounding a flux surface T: at contact
points k is into the solid torus bounded by T.

At contact points the Gauss curvature K > 0. By Gauss-
Bonnet, d region R of each flux surface with K < 0. Then &
inwards implies that B has to avoid a cone at each point of R.
So there is an interval of winding ratios that is excluded.

For “skinny” tori T (those near a magnetic axis), x tends to
that for the magnetic axis -, so taking a closed curve n on T
around a point of v where x # 0 we see that x can not be
inwards the whole way round 7. Thus constant-strength flux
surfaces is not possible for skinny tori either.



Isodynamic

>

>
>

Or ask for isodynamic: i,,dy = 0, rather than (i, dv) = 0.

2
Can write as —é/’g(%ibdbb + pd|BJ) (see Thm 1 to follow).
But in MHS, dp = igdB® = igd(|B|b’) = |B|(ipdb’ — d.|B]),
so for normal MHS 0 = i¢dp = |B|(i¢ipdb® — d1|B]). Thus

iy dip = — (m‘B‘ + w)igd|B| is 0 iff icd|B| = 0 iff ick’ = 0.
Says B-lines form a geodesic foliation for g on each flux sur-
face. Gauss-Bonnet fS k dS = 2wy = 0 for T? implies Gauss-
curvature k > 0 somewhere. Imposes restrictions on geodesic
foliations (Converse KAM), e.g. # for “big bump” tori.
igd|B| = 0 implies div{ = 0 in MHS, so DIS for £ is typical.
If add DIS for & then get |B| constant on flux surfaces and we
are back to the no bouncing case.

Helander P, Theory of plasma confinement in non-axisymm-
etric magnetic fields, Rep Prog Phys 77 (2014) 087001
Palumbo D, Some considerations on closed configurations of
magnetohydrostatic equilibrium, Nuovo Cim B 53 (1967) 507



Longitudinal adiabatic invariant

> If vy is slow on scale of the period T = [dt =2 [ Pﬂu ds of

bouncing along a segment ~ of fieldline, there is a second
adiabatic invariant L = [ pj ds = f,y p||bb for FGCM.

> Note that from p; = \/2m(E — p|B|), can write T = 24L.

» Can obtain L by defining phase of bouncing oscillation
(e.g. time from lefthand end divided by T) and showing
approximate symmetry of FGCM wrt phase-shift.

» Or use conservation of Poincaré invariant for loop-dynamics:
L= fqthw for disk D moving with the Hamiltonian flow ¢.
w=—ef —d(pb’) = —d(eA’ + pb’). So for disk bounded
by slowly moving “periodic” orbit =y, L = f% eA” + prb is
conserved. For bouncing orbit of ZGCM, the contributions of
opposite directions cancel for A’ and are equal for prb, so
can redefine invariant L = fv p”bb in just one direction.



continued
» Theorem 1: (B,%)) omnigenous iff L locally constant, given E, ).
2 2

> Proofs i dv = oy (ic + i) = ~LieCLish + B ()
with f = b x V|B|, £ = & 187 X V¥, since (i) icQ =2 |B‘ A di, so
Iglbdb = lplcicQ = ‘B‘chiﬂ, and (i) irQ = b* A d|B| so
ipigirQ = —icd|B|, but can also be written as iripicQ = |é|ifd’¢).
Thus T(4) = [ iy, ddt = =1 [ ie( "n w idb” + pd|BJ) 5 ds. Now

I'[B@]Q = LBI';EQ — i&LBQ = LB(W Ady) = (LBT‘B\) A di/) Apply ig
to get (Lgl)dy =0, so [¢, B] = fB for some function f. Thus
&-flow takes B-lines to B—llines; also preserves . Let n = £ 4 gB for
a function g with g = —;;Z\g\ at ends of 7 (so i,d|B| = 0 there)
and ¢y its flow. For L= [, __pyb’. & = [, Ly(pyb’). To fix E,
use p = \/2m(E — p|B]). L,(p b°) = /nd(p”bb) +d(p)inb°).
Second term integrates to 0 since pj = 0 at the ends. So

d/\ : f"b"n pr dS flblg de A b —|—p|‘dbb) dS o
[(—icdp| + pyibicdb®) ds. But dp = m"d|B| so &k = el(y). [




Length function

>

>

For segments ~ of fieldline between points of equal |B| with
smaller |B| between, let h = |B| at ends and ¢ = length of ~.
The space of segments of fieldline on a flux surface is a
complex of 2D surfaces bounded by set ¥ where i,d|B| = 0.

Theorem 2: (B, 1)) is omnigenous iff for each flux surface, ¢
is constant along h constant.

Proof: Convenient to write E = hy and L = /muj. Then L
constant for E constant iff j = [ /2(h — |B|) ds constant for
h constant. Decompose integral according to value A’ of |B]

and let E(h,) = fXG')/ |B(x)|<H dS SO dg( ) Z | B(x)|=H ds.

Then j(h  V2(h—H)di(h") (so j is the Abel

transform of E) So if 6 constant along h" constant for all
h" < h then j constant along h constant. Conversely, if j is
constant anng h' constant for all h" < h, then Abel inversion

gives ((h) = 2 [" —dh)_ s constant for h constant.  [J
o0 h h/)



Abel inversion

» Lemma: If j(h  V2(h—H)di(h") then

™ J—00 \/W'
» Proof: dj(H) = fh, \/Z(e,(ji),,,,dh,

_dih) _ rh 1 W de(h") /
So 7. \/W oo (\/2(h—h’) Fso \/2(h’—h”)> dh’.

Interchange order of integration to obtain
h h dh’ " Ty
f—oo(f”Q(h_h,)(h/_h,,)>d£(h)_2() O

» In particular, for an omnigenous field, every fieldline has to
have the same sequence of local minima and maxima of |B|,
so get non-generic case of curves of local maxima and minima.



Rational circulating trajectories

» Fieldlines v on a rational torus S are closed. Particles with
E/u = h above the maximum of |B| on ~y keep going in their
original direction. Have adiabatic invariant L = f,y eA’ + p||bb.

A contributes just a function of 1, because f,y A = [igQ
for a disk D spanning -, which is the same for all ~.

» By the same proof as for Theorem 2 in the bouncing case, if
(B, 1)) is omnigenous then L is the same for all circulating
particles of the same energy on the same flux surface, because
it is determined by the length function.

> And by the same proof as for Theorem 1, this implies that
(1) = 0 for them.

» Thus, omnigenity for bouncing particles implies omnigenity for
rational circulating ones.



Relation to JH in MHS

» The Newcomb solvability condition for J; in normal MHS is
N icd|B| & {51 = 0 for all closed fieldlines .

» Compare omnigenity for circulating ZGCM:
mu|B|y -
0= —e(iy,d¥) = [ (p) + ’,;'l )icd|B| & . Now
P = 2m(E — p|BY), so factor is £v2mE(1 + O((%£)?)),

thus omnigenity for the limit of rapidly circulating GCs
(E/p — o0) is automatic in normal MHS.




Irrational circulating trajectories

> Finally, (¢)) = 0 for circulating particles on irrational flux
surfaces S.
> Proof:

1. ZGCM preserves ‘l A (speed factor |B| compared to B-flow,

normalisation Z = fs ‘B‘A) and for h > |B|max is uniquely

ergodic on irrational surfaces So time-average of any contin-
uous function along any trajectory equals its space-average. In

particular, (1] = Js \Z“il\ iy, di A.
2. Now.A/\dz/) Q so /vd.A/\dz/J—i—Aivddw:ide. diy =0 on
tangents to S, so (1] = /s lzﬁ‘l‘ iv,

B
3. Compare l—H‘/VdQ = ﬂICJ_Q—F oy 2 bb A d|B| to

d(p|b’) = dpy A b + pjdb® = —22d|B| A b + pyicQ. On
pairs of tangents to S, i = ic, §Q, because i} gives the same.
So () = L [c d(pyb’) = 0. O[USE in Thm 1 TOO]

» Question about speed of convergence?



More consequences of omnigenity

» For omnigenous B, on each flux surface S the regular
contours of |B| (i.e. with d(|B||s) # 0) are transverse to B.

2

> Proof: By (¥), i, dv) = —Lic(2Lipdb’ + ud|B)). If ipd|B| = 0
at a point x on a regular contour of |B| then i¢d|B| # 0 there.
So for u > 0 and E = p|B|(x), iy, d # 0 there. If x is a local
minimum of |B| along B then for slightly larger E get short
bouncers and <1/)) = 0 for them, contradicting omnigenity. If
|B| has a downhill direction from x along B then using that
the fieldlines are recurrent and i¢cd|B| # 0, every ZGCM with
an end near to x has a second end. If the second end is a
normal point (ipd|B| # 0) then the period is dominated by
the time near x, so (@b) # 0 again. Argue that not possible for
all segments to have abnormal second end [?7]. O

» So they are all non-contractible closed curves with the same
winding ratio.



continued

» For B € C2 most contours are regular, by Sard’s theorem (set

v

of critical values of a CX map f from n to m dimensions with
k > 1,n— m+ 1 has measure zero): the set of values of |B|
for which there is a non-regular contour on a given flux
surface has measure zero. Ignore the case of |B| constant on
the flux surface. [Is it impossible anyway?] |B| is continuous,
so its image is an interval. So contours are regular for all but
a set of measure zero in this interval.

In particular, omnigenity has a rational type, meaning the
ratio of poloidal to toroidal turns for curves of constant |B|.
So distinguish OT, OP, OH(N, M) (toroidal, poloidal, helical).

e.g. W7-X is approximately OP.
Not aware of constraints on M (unlike for QS).

Note that the sets where |B| is max or min are not regular
contours, but may still be smooth curves.



Relations between omnigenity & QS

» QS u implies a flux function ¥ (i,igQ = dv) and L,b> =0.
Let ¢) be the flow of u. For ~ fieldline segment with ends at
|B|=h, & Joron @5 =1, L,b> = 0. So (B,v) omnigenous.

» Same argument shows that weak QS implies omnigenous:
weak QS implies ipL,b° = 0, which suffices.

» Analyticity & omnigenity (with MHS) implies QS [Cary &
Shasharina, Phys Plasma 4 (1997) 3323].

» [t is claimed that can make many non-QS fields that are
omnigenous (& MHS), e.g. Dudt et al, Magnetic fields with
general omnigenity, arxiv:2305.08026, but constructions
depend on realising |B|-profiles on flux surfaces by a 3D
divergence-free field in Euclidean space, and I'm not
convinced this is feasible. Do the numerical procedures
converge? If so, it would provide construction of smooth
non-AS MHS examples, suspected not to exist by Grad H,
Toroidal containment of a plasma, Phys Fluids 10 (1967) 137.



Omnigenity & MHS

>

>

>

Say an MHS field is normal if it has a flux function ¢ and p is
constant on v constant, e.g. non-degenerate (dp # 0 a.e.).
Lemma: For a normal MHS field, a = %,5 =ax Vi are
commuting fields on each flux surface.

Proof of Lemma: j,dvy) = j¢dy) = 0 (f), so a,§ are tangent
to 1) = constant. Apply i, ¢ = Laic — icLa to basis dv, B”, ¢,
and use L; = |B|_2LB + d(‘B|_2) A ig. I'[a’ﬂchﬁ =0 by (1).
Using LgB®* = d(p + |B|?) and icdp = 0,

2B’ = —icLaB’ = —i¢(|B|72d|BJ*> + |B|?d|B|~2) = 0. Can
show i[aé]fb = ]B\_zi[&g]ﬁb. Using icQ2 = a’ A di, show
igiig,g2 =0, so [B,{] is parallel to B, hence i[a@]ﬁb =0 too.
So [a,£] = 0. [SIMPLIFY?] O
Call LA coordinates for [a,£] = 0 Boozer angles. Extend to
Boozer coordinates by adding .



continued

» Theorem: A normal MHS field B is omnigenous iff the
differences of Boozer angles along B between contours of
constant |B| are locally constant on each flux surface.

» Proof of Theorem: In Boozer angles 6 = (6*,62), a = p(v),
some p: R — R2. Thus, df' = p/'|B| ds and for a segment
with \B| = h at the ends,

AGI(h) = [dO' = p' [|B|ds=p f HWde(H).
If Bis omnlgenous then ¢(h’) does not depend on the fieldline
on the given flux surface, so neither does AQi(h). Conversely,
if for each value h of |B| at the ends of a segment, A#'(h) is
indpt of the fieldline on the given flux surface, then ¢(h") must
be indpt of the fieldline too. O

» A consequence on irrational surfaces: |B|max contour is
straight in Boozer angles, else the Boozer angle between
successive intersections is not constant.



[[lustration

Figure: |B| contours for an OP field in Boozer coordinates on a flux
surface, from Landreman



Notes

A normal MHS field is QS iff 3N, M s.t. |B| is constant along
straight lines of slope % in Boozer angles on each flux surface.
The QS is a constant field of slope N/M in Boozer coord-
inates and produces same ) up to an affine transformation.
QS u with associated 1) implies [u, a] =0, [u,&] = 0. So MHS
adds that [a,£] = 0, which implies simultaneous LA
coordinates for all 3 on each flux surface.

Similar theorem for non-degenerate MHS and Hamada angles.

Current in omnigenous fields?
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