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BOUNDS ON THE GROWTH OF HIGH SOBOLEV NORMS OF SOLUTIONS

TO NONLINEAR SCHRÖDINGER EQUATIONS ON R

VEDRAN SOHINGER

Abstract. In this paper, we consider the cubic nonlinear Schrödinger equation, and the Hartree
equation, with sufficiently regular convolution potential, both on the real line. We are interested

in bounding the growth of high Sobolev norms of solutions to these equations. Since the cubic NLS
is completely integrable, it makes sense to bound only the fractional Sobolev norms of solutions,
whose initial data is of restricted smoothness. For the Hartree equation, we consider all Sobolev
norms. For both equations, we derive our results by using an appropriate frequency decomposition.
In the case of the cubic NLS, this method allows us to recover uniform bounds on the integral
Sobolev norms, up to a factor of t0+. For the Hartree equation, we use the same method as in
our previous paper [44], and the improved Strichartz estimate to obtain a better bound than the
one that was obtained in the periodic setting in the mentioned work.

1. Introduction.

1.1. Statement of the problem and of the main results: Given s ≥ 1 real, we study the
defocusing cubic nonlinear Schrödinger initial value problem on R:

(1)

{
iut +∆u = |u|2u, x ∈ R, t ∈ R

u|t=0 = Φ ∈ Hs(R).

The equation (1) arises in the Gross-Pitaevski scaling limit of large systems of bosons, and in
geometric optics [43, 48, 40]. The one-dimensional cubic NLS on R has a specific physical meaning,
and it is used to describe a Bose gas in elongated traps and the so-called cigar-shaped Bose-Einstein
condensates [39]. For a rigorous mathematical derivation of the equation from many-body quantum
dynamics, the reader should consult [1]. A rigorous derivation of the two-dimensional version can
be found in [38].

Furthermore, we study the Hartree initial value problem on R

(2)

{
iut +∆u = (V ∗ |u|2)u, x ∈ R, t ∈ R

u|t=0 = Φ ∈ Hs(R).

The assumptions that we have on V are the following:

(i) V ∈ L1(R)
(ii) V ≥ 0
(iii) V is even.

The Hartree equation appears in the mean-field limit of large systems of bosons [43, 25].

Since the problem (1) is energy-subcritical and defocusing, for fixed s ≥ 1, (1) has a unique
global solution in Hs [50]. In this paper, we are interested in estimating ‖u(t)‖Hs from above.
We recall from [24, 40] that (1) is completely integrable. Therefore, if s = k is a positive integer,
one can deduce, by using a fixed finite number of conserved quantities that there exists a function
Bk : Hk → R such that for all t ∈ R:
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(3) ‖u(t)‖Hk ≤ Bk(Φ).

From the preceding observation, it makes sense to consider only the case when s is not an integer.
One notes that the uniform bounds for Hs norms when s is not an integer don’t follow from the
uniform bounds on the integer Sobolev norms if we are assuming only that Φ ∈ Hs(R).

Given a real number x, we denote by x+ and x− expressions of the form x + ǫ and x − ǫ

respectively, where 0 < ǫ≪ 1. With this notation, the result that we prove for (1) is:

Theorem 1.1. (Bound for the Cubic NLS) Suppose s > 1 is not an integer. Let α := s − ⌊s⌋
denote the fractional part of s. Suppose Φ ∈ Hs(R), and let u denote the global solution to the
corresponding problem (1). Then, there exists a continuous function Fs : Hs → R such that for all
t ∈ R:

‖u(t)‖Hs ≤ Fs(Φ)(1 + |t|)α+.
Theorem 1.1 gives a solution to an open problem that was mentioned on the Dispersive Wiki

Website [21].

Unlike the one-dimensional cubic NLS, the Hartree equation doesn’t have infinitely many con-
served quantities. The following quantities are conserved under the evolution of (2):

M(u(t)) =

∫
|u(x, t)|2dx (Mass)

and

E(u(t)) =
1

2

∫
|∇u(x, t)|2dx+

1

4

∫
(V ∗ |u|2)(x, t)|u(x, t)|2dx (Energy)

We hence deduce that ‖u(t)‖H1 is uniformly bounded whenever u is a solution of (2). The bound
that we prove is:

Theorem 1.2. (Bound for the Hartree equation) Let s ≥ 1, and let u be the global solution of (2).
Then, there exists a function Cs, continuous on H1 such that for all t ∈ R :

(4) ‖u(t)‖Hs ≤ Cs(Φ)(1 + |t|) 1
3
s+‖Φ‖Hs .

The bound in Theorem 1.2 is better than the bound C(1 + |t|) 1
2
s+‖Φ‖Hs , which we obtained in

the periodic setting in [44].

Remark 1.3. As in [44], we can see that the focusing-type analogues of Theorem 1.1 and Theorem
1.2 hold, if we suppose that the initial data is sufficiently small in L2. Namely, if we take ‖Φ‖L2

sufficiently small, Theorem 1.1 holds for the focusing NLS on R. The continuity of the higher
conserved quantities is the same [24]. Furthermore, under the same smallness assumption, Theorem
1.2 still holds for (2) when the convolution potential is not necessarily non-negative, but is still
real-valued.

1.2. Motivation for the problem and previously known results: The growth of Sobolev
norms has a physical interpretation in the context of the Low-to-High frequency cascade. Namely,
we see that ‖u(t)‖Hs weighs the higher frequencies more as s becomes larger, and hence its growth
gives us a quantitative estimate for how much of the support of |û|2 has transferred from the low
to the high frequencies1. This sort of problem also goes under the name weak turbulence [2, 3, 52].

1We observe that, from conservation of energy, not all of the support of û can move to the high frequencies. If a
low-to-high frequency cascade occurs, then a part of û must concentrate near the low frequencies, to counterbalance
a movement of û towards the high frequencies. The growth of high Sobolev norms quantitatively describes the latter
part of the process.
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From local well-posedness theory [7, 14, 50], we know that there exist C, τ0 > 0, depending only
on the initial data Φ such that for all t:

(5) ‖u(t+ τ0)‖Hs ≤ C‖u(t)‖Hs .

Iterating (5) yields the exponential bound:

(6) ‖u(t)‖Hs ≤ C1e
C2t.

Here, C1, C2 > 0 again depend only on Φ.

For a wide class of nonlinear dispersive equations, the bound(6) can be improved to a polynomial
bound, as long as we take s to be an integer, or if we consider sufficiently smooth initial data2.
This observation was first made in the work of Bourgain [5], and continued in the work of Staffilani
[46, 47].

The crucial step in the mentioned works was to improve the iteration bound (5) to:

(7) ‖u(t+ τ0)‖Hs ≤ ‖u(t)‖Hs + C‖u(t)‖1−r
Hs .

As before, C, τ0 > 0 depend only on Φ. In this bound, r ∈ (0, 1) satisfies r ∼ 1
s
. One can show

that (7) implies that for all t ∈ R:

(8) ‖u(t)‖Hs ≤ C(Φ)(1 + |t|) 1
r .

In [5], (7) was obtained by using the Fourier multiplier method. In [46, 47], the iteration bound
was obtained by using multilinear estimates in Xs,b-spaces. Similar estimates were used in [37] in
the study of well-posedness theory. The key was to use a multilinear estimate in an Xs,b-space with
negative first index s. Such a bound was then used as a smoothing estimate. A slightly different
approach, based on the analysis of Burq, Gérard, and Tzvetkov [11] is used to obtain (7) in the
context of compact Riemannian manifolds in [13, 53].

An alternative iteration bound, based on the use of the upside-down I-method, was used in [44],
and it gave better polynomial bounds for solutions of nonlinear Schrödinger equations on S1. The
main idea was to consider the operator D, related to Ds such that ‖Du‖2

L2 is slowly varying. A
similar technique can be applied to the Hartree equation on T2 and on R2. The latter results will
be presented in our forthcoming paper [45].

In the paper [10], improved polynomial bounds were obtained for the defocusing quintic NLS
on S1. The techniques used in this work were based on dynamical systems and Birkhoff normal
forms, by which the nonlinearity was reduced to its “essential part”. The bound given in [10] for
the quintic equation is stronger than the one we obtained in [44], but the proof for the stronger
bound doesn’t seem to work for higher nonlinearities. However, the method given in [44] works for
all nonlinearities.

All the polynomial bounds mentioned so far involve powers which are essentially a multiple of s.
On the other hand, let us consider the linear Schrödinger equation on S1 with a real time-dependent
potential, i.e.

(9) iut +∆u = V u.

Here, V : S1 ×R → R. If V is taken to be smooth in x and t, and we assume that it satisfies the
bounds:

2i.e. if we take Φ ∈ H⌈s⌉; This of course only makes sense for the equations which are not completely integrable.
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(10) |∂αx ∂βt V | ≤ C(α, β), for all non-negative integers α, β.

Under the assumption (10), it is shown in [8] that, for every ǫ > 0, the global solution u of (9)
with initial data Φ ∈ Hs satisfies for all t ∈ R:

(11) ‖u(t)‖Hs ≤ C(Φ, ǫ)(1 + |t|)ǫ

The same bound is also proved on Td, for d ≥ 2. The proof of the latter result relies on more
sophisticated number theoretic arguments. Furthermore, it was noted in [9, 51] that one obtains
an improved logarithmic bound if further regularity assumptions on V are added. Finally, let us
note that recently, a new proof of (11) was given in [22]. The argument given in this paper is based
on an iterative change of variable. In addition to recovering the result (11) on any d-dimensional
torus, the same bound is proved for the linear Schrödinger equation on any Zoll manifold, i.e. on
any compact manifold whose geodesic flow is periodic. It is still an open problem to adapt any of
these techniques to obtain improved bounds for nonlinear equations in the periodic case.

To the best of our knowledge, there are no polynomial bounds not involving powers of s in the
non-periodic case except Theorem 1.1. As we will see, the proof of Theorem 1.1 also works for
integer s. Hence, the obtained bounds allow us to recover the uniform bounds (3) for integer s, up
to a t0+ loss.

Let us finally mention that the problem of Sobolev norm growth was also studied in a recent
paper by Colliander, Keel, Staffilani, Takaoka, and Tao [20], but in the sense of bounding the
growth from below. In this paper, the authors exhibit the existence of smooth solutions of the cubic
defocusing nonlinear Schrödinger equation on T2, whose Hs norm is arbitrarily small at time zero,
and is arbitrarily large at some large finite time. One should note that behavior at infinity is still
an open problem.

1.3. Main ideas of the proofs:

1.3.1. Main ideas of the proof of Theorem 1.1: The main idea of the proof of Theorem 1.1 is to
look at the high and low-frequency part of the solution u as in [8], and to use the bound (3), which
gives us uniform bounds on integral Sobolev norms of u. In particular, we let N be a parameter,
which will be the threshold dividing the “low” and “high” frequencies, and we define Q to be the
projection operator onto the high frequencies. From (3), i.e. from the uniform boundedness of the
H⌊s⌋ of a solution, we can derive that for all times t:

(12) ‖(I −Q)u(t)‖2Hs ≤ B.

Here B = C(Φ)N2α, where α := s−⌋s⌊∈ [0, 1) is the fractional part of s. We note that the
exponent is then in [0, 2) and is not a multiple of s. We use the estimate (12) to bound the
low-frequency part of the solution.

One then has to bound ‖Qu(t)‖Hs . For t1 > 0, we look at the quantity:

‖Qu(t1)‖2Hs − ‖Qu(t0)‖2Hs =

∫ t1

t0

d

dt
‖Qu(t)‖2Hsdt.

Since we are working on the real line, we can use an appropriate dyadic decomposition and the
improved Strichartz estimate (Proposition 2.2) to obtain a decay factor of 1

N1− in the above integral
in time. The exact bounds we obtain are the content of Proposition 3.4. At the end, we deduce
that there exists an increment δ > 0, and C > 0, both depending only on the initial data such that
for all t0 ∈ R, one has:
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(13) ‖Qu(t0 + δ)‖2Hs ≤ (1 +
C

N1−
)‖Qu(t0)‖2Hs +B1.

Here, B1 . 1
N1−B.

The idea now is to iterate (13) for times t0 = 0, δ, . . . , nδ, where n ∈ N is an integer such that
n . N1−.

Multiplying the obtained inequalities by appropriate powers of 1+ C
N1− , and telescoping, we show

that:

(14) ‖Qu(nδ)‖2Hs . (1 +
C

N1−
)n‖Qu(0)‖2Hs +B

Since n . N1−, we know:

(1 +
1

N1−
)n = O(1).

Using the previous bound, (12) and (14), we can show that for all t ∈ [0, nδ]:

‖u(t)‖2Hs . C‖Φ‖2Hs +B.

Optimizing N in terms of the length of time interval [0, T ] on which we are considering the
solution, and noting that then B becomes the leading term, Theorem 1.1 follows.

1.3.2. Main ideas of the proof of Theorem 1.2: The main argument is similar to the one given in
[44]. Given a parameter N > 1, we will use the method of an upside down I-operator, followed by
the method of higher modified energies to define a quantity E2(u(t)), which is linked to ‖u(t)‖2Hs .

As in [44], our goal is to prove an iteration bound of the type:

(15) E2(u(t0 + δ)) ≤ (1 +
C

Nα
)E2(u(t0)).

for all t0 ∈ R, with δ, α > 0, and the implied constant all independent of t0.

Due to the presence of the decay factor 1
Nα , (15) can be iterated ∼ Nα times to obtain that

E2 . 1 on a time interval of size ∼ Nα. One then uses the relation between E2(u(t)) and ‖u(t)‖Hs

to get polynomial bounds for ‖u(t)‖Hs .

The bound (15) is proved in a similar way as the corresponding estimate in [44]. In order to
construct E2, we need to consider the multiplier ψ which is defined by:

ψ :=
(θ(ξ1))

2 − (θ(ξ2))
2 + (θ(ξ3))

2 − (θ(ξ4))
2V̂ (ξ3 + ξ4)

ξ21 − ξ22 + ξ23 − ξ24

when the denominator doesn’t vanish, and ψ := 0 otherwise. Here, θ is an appropriately smoothed
out and rescaled version of the operator Ds. For details, see (65), (77), and (78). The key is then
to obtain pointwise bounds on such a ψ. This is done in Proposition 4.2

We observe that the bound we obtain in Theorem 1.2 is better than the corresponding bound
in the periodic setting. This is a manifestation of stronger dispersion, which is present on the real
line. In this paper, we will prove that on R, (15) holds for α = 3−. We recall from [44] that the
analogous estimate on S1 holds for α = 2−. Heuristically, the improvement is obtained by using
the improved Strichartz estimate, which holds on the real line.

Let us note that Theorem 1.2 would follow trivially if we knew that (2) scattered in Hs, since
then all the Sobolev norms of solutions would be uniformly bounded in time. The currently known
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techniques to prove scattering don’t seem to apply in this context though. Namely, the techniques
from [26, 30] require for us to the have additional assumption that our solutions lie in weighted
Sobolev spaces, and the obtained bounds depend on these weighted Sobolev norms. Hence we can’t
argue by density here. The methods from [27] require the initial data to belong to an appropriate
subset of the Gevrey class. Finally, the techniques used in [41, 42] apply only in dimensions greater
than or equal to 5.

Remark 1.4. The techniques of proof of Theorem 1.2 apply to the derivative nonlinear Schrödinger
equation:

(16)

{
iut +∆u = i∂x(|u|2u),
u(x, 0) = Φ(x), x ∈ R, t ∈ R.

The equation (16) occurs as a model for the propagation of circularly polarized Alfvén waves in
magnetized plasma with a constant magnetic field [48]. In order to obtain global well-posedness in
Hs, we need to have the smallness assumption:

(17) ‖Φ‖L2 <
√
2π,

From [33], we know that (16) is completely integrable. Hence, as for the cubic NLS, it makes
sense to bound only the non-integral Sobolev norms of a solution.

Bound for the Derivative NLS. For s > 1, not an integer, and Φ ∈ Hs(R), satisfying the
smallness assumption (17), there exists C(s, |Φ‖H1) such that the solution u of (16) satisfies:

(18) ‖u(t)‖Hs ≤ C(1 + |t|)2s+‖Φ‖Hs , for all t ∈ R.

The proof of (18) is quite involved. Unlike Theorem 1.1, we are not able to recover uniform
bounds on the integral Sobolev norms of a solution. The techniques that we applied to the cubic NLS
don’t seem to work for the derivative NLS due to the derivative in the nonlinearity. A sketch of the
proof of (18) is given in Appendix C.

Organization of the paper:

In Section 2, we give some notation and recall some known facts from Harmonic Analysis. In
Section 3, we Prove Theorem 1.1. Theorem 1.2 is proved in Section 4. Appendix A contains the
proofs of auxiliary results for the cubic NLS, whereas Appendix B contains proofs of auxiliary results
for the Hartree equation. In Appendix C, we sketch the proof of the bound for the derivative NLS.

Acknowledgements:

The author would like to thank his Advisor, Gigliola Staffilani for suggesting this problem, and
for her help and encouragement. He would also like to thank Hans Christianson and Antti Knowles
for several useful comments and discussions.

2. Notation and known facts.

In our paper, we denote by A . B an estimate of the form A ≤ CB. for some constant C > 0.
If C depends on d, we also write A .d B and C = C(d). Let us denote by ‖f‖Lp the Lp(R) norm,

and we denote by ‖f‖Lq
tL

r
x
the mixed norm:

‖f‖Lq
tL

r
x
:=

( ∫
(

∫
|f(x, t)|rdx) q

r dt
) 1

q .

with the usual modifications when q = ∞. We define the spatial Fourier transform of a function
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f ∈ L2(R) by:

f̂(ξ) :=

∫

R

f(x)e−ixξdx.

The spacetime Fourier transform of a function u ∈ L2
t,x(R× R) we define by:

ũ(ξ, τ) :=

∫

R

∫

R

u(x, t)e−i(xξ+tτ)dxdt.

Let us take the convention for the Japanese bracket to be:

〈ξ〉 :=
√
1 + |ξ|2.

Given s ∈ R, we define the operator Ds by:

D̂sf(ξ) := 〈ξ〉sf̂(ξ).
Furthermore, we define the operator Ḋs by:

˙̂Dsf(ξ) := |ξ|sf̂(ξ).
Also, we define the Sobolev norm of f = f(x):

‖f‖Hs := ‖〈ξ〉sf̂‖L2,

and the corresponding Sobolev space:

Hs(R) := {f : ‖f‖Hs :=<∞}.
Let us also define:

H∞(R) :=
⋂

s∈R

Hs(R).

Furthermore, given s, b ∈ R, we define the Xs,b norm of u = u(x, t):

‖u‖Xs,b := ‖〈ξ〉s〈τ − ξ2〉bũ‖L2
τ,ξ
,

and the corresponding Xs,b space

Xs,b(R× R) := {u : ‖u‖Xs,b <∞}.
We shall usually write the above spaces just asHs and Xs,b. On R, we recall the following Strichartz

estimate (c.f. [7, 50]).

(19) ‖f‖L6
t,x

. ‖f‖
X

0, 1
2
+ .

Interpolating between (19) and ‖f‖L2
t,x

= ‖f‖X0,0 , it follows that:

(20) ‖f‖L4
t,x

. ‖f‖
X

0, 3
8
+ .

From Sobolev embedding, we deduce that:

(21) ‖f‖L∞

t L2
x
. ‖f‖

X
0, 1

2
+ .

and:

(22) ‖f‖L∞

t L∞

x
. ‖f‖

X
1
2
+, 1

2
+ .

Interpolating between (19) and (21), we obtain:

(23) ‖f‖L8
tL

4
x
. ‖f‖

X
0, 1

2
+ .

From [44], we recall the following localization bound for Xs,b spaces.
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Lemma 2.1. If b ∈ (0, 12 ) and s ∈ R, then, for c < d:

(24) ‖χ[c,d](t)f‖Xs,b . ‖f‖Xs,b+

where the implicit constant doesn’t depend on u, c, d.

For the proof of Lemma 2.1, we refer the reader to the proof of Lemma 2.1. in Appendix A of [44].
We remark that the proof of the Lemma given in the periodic case carries over to the non-periodic
case. Let us also note that a similar localization result was also proved in [18], and was stated
without proof in [12].

From [6, 15], we recall that on R, the following improved Strichartz estimate holds:

Proposition 2.2. Suppose N > 0 and suppose f, g ∈ X0, 1
2
+(R× R) are such that for all t ∈ R:

supp f̂(t) ⊆ {|ξ| ∼ N}, supp ĝ(t) ⊆ {|ξ| ≪ N}.
Then, the following bound holds:

‖fg‖L2
t,x

. N− 1
2 ‖f‖

X
0, 1

2
+‖g‖0,1

2
+.

We observe the following consequence of Proposition 2.2:

Corollary 2.3. For f, g as in Proposition 2.2, one has:

‖fg‖L2+
t L2

x
. N (− 1

2
)+‖f‖

X
0, 1

2
+‖g‖

X
0, 1

2
+ .

Let us prove Corollary 2.3

Proof. Let f, g be as in the assumptions of the Lemma. We observe that by Hölder’s inequality:

‖fg‖L4
tL

2
x
≤ ‖f‖L8

tL
4
x
‖g‖L8

tL
4
x
. ‖f‖

X
0, 1

2
+‖g‖

X
0, 1

2
+ .

The last inequality follows from (23).
Given ǫ > 0 small, we take:

θ :=
2− ǫ

2 + ǫ
= 1− .

Then θ ∈ [0, 1] satisfies:

θ · 1
2
+ (1 − θ) · 1

4
=

1

2 + ǫ
.

By using interpolation and Proposition 2.2, we deduce that:

‖fg‖L2+ǫ
t L2

x
≤ (‖fg‖L2

t,x
)θ(‖fg‖L4

tL
2
x
)1−θ .

(N− 1
2 ‖f‖

X
0, 1

2
+‖g‖

X
0, 1

2
+)

θ(‖f‖
X

0, 1
2
+‖g‖

X
0, 1

2
+)

1−θ . N− θ
2 ‖f‖

X
0, 1

2
+‖g‖

X
0, 1

2
+ .

Since θ = 1−, Corollary 2.3 follows. �

In our analysis, we will have to work with χ = χ[t0,t0+δ](t), the characteristic function of the time
interval [t0, t0 + δ]. It is difficult to deal with χ directly, since this function is not smooth, and since
its Fourier transform doesn’t have a sign. Instead, we will decompose χ as a sum of two functions
which are easier to deal with. This goal will be achieved by using an appropriate approximation to
the identity. We will use the following decomposition, which is originally found in [15]:

Given φ ∈ C∞
0 (R), such that: 0 ≤ φ ≤ 1,

∫
R
φ(t) dt = 1 , and λ > 0, we recall that the rescaling

φλ of φ is defined by:
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φλ(t) :=
1

λ
φ(
t

λ
).

We observe that such a rescaling preserves the L1 norm:

‖φλ‖L1
t
= ‖φ‖L1

t
.

Having defined the rescaling, we write, for the scale N > 1:

(25) χ(t) = a(t) + b(t), for a := χ ∗ φN−1 .

In Lemma 8.2. of [15], the authors note the following estimate:

(26) ‖a(t)f‖
X

0, 1
2
+ . N0+‖f‖

X
0, 1

2
+ .

(The implied constant here is independent of N .)

On the other hand, for any M ∈ (1,+∞), one obtains:

‖b‖LM
t

= ‖χ− χ ∗ φN−1‖LM
t

≤ ‖χ‖LM
t
+ ‖χ ∗ φN−1‖LM

t

which is by Young’s inequality:

≤ ‖χ‖LM
t
+ ‖χ‖LM

t
‖φN−1‖L1

t
= 2‖χ‖LM

t
= C(M,χ).

If we now define:

(27) b1(t) :=

∫

R

|b̂(τ)|eitτdτ.

Then the previous bound on ‖b‖LM
t

and the Littlewood-Paley inequality [23] imply:

(28) ‖b1‖LM
t

≤ C(M,χ) = C(M,Φ).

To explain the fact that C(M,χ) = C(M,Φ), we note that χ is defined as the characteristic
function of an interval of size δ, and δ, in turn, depends only on Φ.

We will frequently use the following modification of Proposition 2.2

Proposition 2.4. (Improved Strichartz Estimate with rough cut-off in time) Let u, v ∈ X0, 1
2
+(R×

R) satisfy the assumptions of Proposition 2.2. Suppose also that N1 & N . Let u1, v1 be given by:

ũ1 := |(χu)̃ |, ṽ1 := |ṽ |.
Then one has:

(29) ‖u1v1‖L2
t,x

.
1

N
1
2
−

1

‖u‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

The same bound holds if:
ũ1 := |ũ |, ṽ1 := |(χv)̃ |.

Proof. Let’s consider the case when ũ1 = |(χu)̃ |, ṽ1 = |ṽ |. With notation as earlier, let F1, F2 be
given by:

F̃1 := |(au)̃ |, F̃2 := |(bu)̃ |.
Then, by the triangle inequality, one has:

ũ1 ≤ F̃1 + F̃2.
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Since ũ1, ṽ1 ≥ 0, Plancherel’s Theorem and duality imply that:

‖u1v1‖L2
t,x

∼ sup
‖c‖

L2
τ,ξ

=1

∫

τ1+τ2+τ3=0

∫

ξ1+ξ2+ξ3=0

ũ1(ξ1, τ1)ṽ1(ξ2, τ2)|c(ξ3, τ3)|dξjdτj

≤ sup
‖c‖

L2
τ,ξ

=1

∫

τ1+τ2+τ3=0

∫

ξ1+ξ2+ξ3=0

F̃1(ξ1, τ1)ṽ1(ξ2, τ2)|c(ξ3, τ3)|dξjdτj +

sup
‖c‖

L2
τ,ξ

=1

∫

τ1+τ2+τ3=0

∫

ξ1+ξ2+ξ3=0

F̃2(ξ1, τ1)ṽ1(ξ2, τ2)|c(ξ3, τ3)|dξjdτj

Since F̃1, F̃2, ṽ1 ≥ 0, it follows that the latter expression is ∼ ‖F1v1‖L2
t,x

+ ‖F2v1‖L2
t,x
. Hence, it

follows that:

‖u1v1‖L2
t,x

. ‖F1v1‖L2
t,x

+ ‖F2v1‖L2
t,x

By Proposition 2.2, by the frequency assumptions on F1 and v1, and by the fact that taking
absolute values in the spacetime Fourier transform doesn’t change the Xs,b norms, we know that:

‖F1v1‖L2
t,x

.
1

N
1
2

1

‖au‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

We now use (26) to deduce that this expression is:

.
1

N
1
2

1

(N0+‖u‖
X

0,1
2
+)‖v‖

X
0, 1

2
+

Since N1 & N , this expression is:

(30) .
1

N
1
2
−

1

‖u‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

On the other hand, let us consider c ∈ L2
τ,ξ. With notation as before, one has:

∣∣
∫

τ1+τ2=0

∫

ξ1+ξ2=0

(F2v1 )̃ (ξ1, τ1)c(ξ2, τ2)dξjdτj
∣∣

=
∣∣
∫

τ1+τ2+τ3=0

∫

ξ1+ξ2+ξ3=0

|(bu)̃ (ξ1, τ1)|ṽ1(ξ2, τ2)c(ξ3, τ3)dξjdτj
∣∣

≤
∫

τ0+τ1+τ2+τ3=0

∫

ξ1+ξ2+ξ3=0

|̂b(τ0)||ũ(ξ1, τ1)||ṽ1(ξ2, τ2)||c(ξ3, τ3)|dξjdτj := I

We then define the functions Gj , j = 1, . . . , 3 by:

G̃1 := |ũ|, G̃2 := |ṽ1|, G̃3 := |c|
Recalling (27), and using Parseval’s identity, it follows that:

I .

∫

R×R

b1(t)G1(x, t)G2(x, t)G3(x, t)dxdt

We choose M ∈ (1,∞), and 2+ such that: 1
M

+ 1
2+ = 1. By an LM

t , L
2+
t L2

x, L
2
t,x Hölder inequality,

we deduce that:

I . ‖b1‖LM
t
‖G1G2‖L2+

t L2
x
‖G4‖L2

t,x

We use (28), Corollary 2.3, and Plancherel’s theorem to deduce that:

I .
1

N
1
2
−

1

‖u‖
X

0, 1
2
+‖v‖

X
0, 1

2
+‖c‖L2

τ,ξ
.
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By duality and by Plancherel’s theorem, it follows that:

(31) ‖F2v1‖L2
t,x

.
1

N
1
2
−

1

‖u‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

The case when ũ1 := |ũ |, ṽ1 := |(χv)̃ | is treated analogously. The Proposition now follows from
(30) and (31).

�

Furthermore, given a function v ∈ L2
t,x, and a dyadic integer N , we define the function vN as the

function obtained from v by restricting its spacetime Fourier Transform to the region |ξ| ∼ N . We
refer to this procedure as a dyadic decomposition or Littlewood-Paley decomposition. In particular,
we can write each function as a sum of such dyadically localized components:

v ∼
∑

dyadic N

vN .

Let us give some useful notation for multilinear expressions, which can also be found in [15, 19].
For n ≥ 2, an even integer, we define the hyperplane:

Γn := {(ξ1, . . . , ξn) ∈ R
n : ξ1 + · · ·+ ξn = 0},

endowed with the measure δ(ξ1 + · · · + ξn). Given a function Mn = Mn(ξ1, . . . , ξn) on Γn, i.e. an
n-multiplier, one defines the n-linear functional λn(Mn; f1, . . . , fn) by:

λn(Mn; f1, . . . , fn) :=

∫

Γn

Mn(ξ1, . . . , ξn)

n∏

j=1

f̂j(ξj).

As in [15], we adopt the notation:

(32) λn(Mn; f) := λn(Mn; f, f̄ , . . . , f, f̄).

We will also sometimes write ξij for ξi + ξj ,ξi−j for ξi − ξj , etc.

Finally, let us recall the following Calculus fact, which is often referred to as the Double Mean
Value Theorem:

Proposition 2.5. Let f ∈ C2(R). Suppose that x, η, µ ∈ R are such that |η|, |µ| ≪ |x|. Then, one
has:

(33) |f(x+ η + µ)− f(x+ η)− f(x+ µ) + f(x)| . |η||µ||f ′′(x)|.
The proof of Proposition 2.5 follows from the standard Mean Value Theorem.

3. The cubic nonlinear Schrödinger equation.

3.1. Basic facts about the equation: The equation (1) has the following conserved quantities:

(34) M(u(t)) :=

∫

R

|u(x, t)|2dx (Mass)

(35) E(u(t)) :=
1

2

∫

R

|∇u(x, t)|2dx+
1

4

∫

R

|u(x, t)|4dx (Energy)

We observe that ‖u(t)‖H1 can be bounded by a continuous function of energy and mass. Energy
and mass are in turn continuous on H1 by Sobolev embedding.
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The following local-in-time bound will be useful:

Proposition 3.1. Suppose that u is a global solution of (1). Then, there exist δ = δ(s, Energy,Mass), C =

C(s, Energy,Mass) such that, for all t0 ∈ R, there exists v ∈ Xs, 1
2
+ satisfying the following prop-

erties:

(36) v|[t0,t0+δ] = u|[t0,t0+δ],

(37) ‖v‖
X

s, 1
2
+ ≤ C‖u(t0)‖Hs ,

(38) ‖v‖
X

1, 1
2
+ ≤ C.

Furthermore, δ and C can be chosen to depend continuously on energy and mass.

The proof of Proposition 3.1 proceeds by an appropriate fixed-point method and is analogous to
the proof of Proposition 3.1 in [44]. Furthermore, from the mentioned proof, it follows that δ and
C depend continuously on energy and mass. For the details, we refer the reader to Appendix A in
[44].

In the proof of the fact that Fs, as in the statement of Theorem 1.1, depends continuously on
the initial data, w.r.t. the Hs topology, we will use the following:

Proposition 3.2. (Continuity of conserved quantities) Suppose n is a positive integer. Let En

denote the conserved quantity of (1), which, together with lower-order conserved quantities, we use
to bound the Hn norm of a solution. Then En is continuous on Hn. Moreover, one can construct
a function Bn : Hn → R that satisfies (3) and is continuous on Hn.

The proof of Proposition 3.2 is given in Appendix A.

Although we are starting with initial data Φ, which we are only assuming belongs to Hs, and
hence with solutions of (1), which we only know belong to Hs, our calculations will require us to
work with solutions which have more regularity. Hence, we will have to approximate our solutions to
(1) with smooth ones, and argue by density. The density argument is made precise by the following
result:

Proposition 3.3. Suppose u satisfies (1) with initial data Φ ∈ Hs, and suppose each element of

(u(n)) satisfies (1) with initial data Φn, where Φn ∈ S(R) and Φn
Hs

−→ Φ. Then, one has for all t:

u(n)(t)
Hs

−→ u(t).

The proof of Proposition 3.3 is analogous to the proof of Proposition 3.4. from [44], given in
Appendix B of the mentioned paper. The proof is very similar, so it will be omitted. We refer the
reader to [44] for details.

Proposition 3.3 allows us to work with smooth solutions and pass to the limit in the end. Namely,
we note that if we take initial data Φn as earlier, then, by persistence of regularity, u(n)(t) will belong
to H∞(R) for all t. If we knew that Theorem 1.1 were true for smooth solutions, we would obtain,
for all n ∈ N, and for all t ∈ R:

‖u(n)(t)‖Hs ≤ Fs(Φn)(1 + |t|)α+.

By letting n → ∞, and using Proposition 3.2 and the continuity of Fs on Hs, it would follow
that for all t ∈ R:
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‖u(t)‖Hs ≤ Fs(Φ)(1 + |t|)α+.
We may henceforth work with Φ ∈ S(R), which implies that u(t) ∈ H∞(R) for all t. The claimed

result is then deduced from this special case by the approximation procedure given earlier. We will
make the same assumption in our study of the Hartree equation.

3.2. An Iteration bound and Proof of Theorem 1.1: Let u denote the unique global solution
to (1). From the previous arguments, we know that we can assume WLOG that for all t ∈ R, u(t) ∈
H∞(R). Our aim now is to use uniform bounds on ‖u(t)‖Hk coming from (3) to deduce bounds on
‖u(t)‖Hs . The key is to perform a frequency decomposition, similarly as in [8].

Let N > 1 be a parameter which we will determine later. We define the operator Q by:

(39) Q̂f(ξ) := χ|ξ|≥N f̂(ξ).

We write s = k + α, for k ∈ N, α ∈ (0, 1). Using the definition (39) and (3), it follows that:

‖(I −Q)u(t)‖Hs . Nα‖(I −Q)u(t)‖Hk .

(40) . Nα‖u(t)‖Hk ≤ NαBk(Φ).

We will use (40) to estimate the low-frequency part of the solution.

The key now is to estimate the high-frequency part of the solution. This is done by the following
iteration bound:

Proposition 3.4. Let δ = δ(Φ) > 0 be as in Proposition 3.1. Then, there exists a continuous
function C : H1 → R such that for all t0 ∈ R, one has:

‖Qu(t0 + δ)‖2Hs − ‖Qu(t0)‖2Hs ≤ C(Φ)

N1−
‖u(t0)‖2Hs .

Before we prove Proposition 3.4, let us note how it implies Theorem 1.1.

Proof. (of Theorem 1.1 assuming Proposition 3.4)
Let us fix t0 ∈ R. It follows that:

‖Qu(t0 + δ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu(t0)‖2Hs +

C(Φ)

N1−
‖(I −Q)u(t0)‖2Hs .

By (40), it follows that:

(41)
C(Φ)

N1−
‖(I −Q)u(t0)‖2Hs .

C(Φ)

N1−
N2αB2

k(Φ) =: K(N,Φ).

If we multiply K by an appropriate constant, we can write, for all t0 ∈ R:

(42) ‖Qu(t0 + δ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu(t0)‖2Hs +K(N,Φ).

Given n ∈ N, we take t0 = 0, δ, 2δ, . . . , nδ and apply (42) to deduce the inequalities:
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‖Qu(δ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu(0)‖2Hs +K(N,Φ)

‖Qu(2δ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu(δ)‖2Hs +K(N,Φ)

...

‖Qu((n− 1)δ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu((n− 2)δ)‖2Hs +K(N,Φ)

‖Qu(nδ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)
‖Qu((n− 1)δ)‖2Hs +K(N,Φ)

Let γ := 1+ C(Φ)
N1− . Let us multiply the first inequality by γn−1, the second inequality by γn−2, . . .,

and the (n− 1)-st inequality by γ. We then sum to obtain:

(43) ‖Qu(nδ)‖2Hs ≤
(
1 +

C(Φ)

N1−

)n‖Qu(0)‖2Hs +K(N,Φ)(1 + γ + · · ·+ γn−1).

Let us now consider n such that n . N1−. For such an n, we have:

(44) (1 +
C(Φ)

N1−
)n = O(R1(Φ)).

and hence:

1 + γ + · · ·+ γn−1 =
γn − 1

γ − 1
=

(
1 + C(Φ)

N1−

)n − 1
(
1 + C(Φ)

N1−

)
− 1

=

(45) =

(
1 + C(Φ)

N1−

)n − 1
C(Φ)
N1−

= O(N1−R2(Φ)).

We can take the functions R1, R2 : H1 → R to be continuous. If we then combine (41),(44),(45)

with (43), it follows that:

‖Qu(nδ)‖2Hs . R1(Φ)‖QΦ‖2Hs +R2(Φ)N
2αB2

k(Φ).

Hence, by continuity properties of Bk coming from from Proposition 3.2, and by the construction

of R1, R2, we can find a continuous function R3 : Hs → R such that for all n . N1−:

(46) ‖Qu(nδ)‖Hs ≤ R3(Φ)(1 +Nα).

Combining (40) and (46), we deduce that there exists a continuous function R4 : Hs → R, such

that for all n . N , one has:

‖u(nδ)‖Hs ≤ R4(Φ)(1 +Nα).

Finally, by using appropriate local-in-time bounds on each of the n intervals of size δ, it follows
that there exists a continuous function R : Hs → R such that, for all T . N1−δ, one has:

(47) ‖u(T )‖Hs ≤ R(Φ)(1 +N)α.

Let us now take:
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T ∼ N1−δ.

Then:

N ∼
(T
δ

)
+ .

(This is the step in which we choose the parameter N .)

Consequently, since δ = δ(Φ) > 0 is a continuous function on H1, it follows that there exists a
continuous function Fs on Hs such that for T > 1:

(48) ‖u(T )‖Hs ≤ Fs(Φ)(1 + T )α+.

From local well-posedness, we get the same bound for times in [0, 1]. By time reversibility, we
also get the bound for negative times. Theorem 1.1 now follows.

�

Let us now prove Proposition 3.4

Proof. We know that: ut = i∆u− i|u|2u. Hence, we compute:

d

dt
‖Qu(t)‖2Hs =

d

dt
〈DsQu(t), DsQu(t)〉 = 2Re〈DsQu,DsQut〉 =

= 2Re〈DsQu,Dsut〉 = 2Re〈DsQu, iDs∆u〉 − 2Re〈DsQu, iDs(|u|2u)〉 =

(49) = −2 Im〈DsQu,Ds(|u|2u)〉.

We note that in the third equality, we used Parseval’s identity and the definition of Q to omit
the operator Q in the second factor, and in the fifth equality, we argued similarly and used the fact
that

〈DsQu,Ds∆u〉 = 〈DsQu,Ds∆Qu〉 ∈ R.

It is important to remark that this quantity is indeed finite since u(t) ∈ H∞. This is what allows
us to differentiate in time and use the previous formulae.

Hence, if we fix t0 ∈ R, we obtain:

‖Qu(t0 + δ)‖2Hs − ‖Qu(t0)‖2Hs =

∫ t0+δ

t0

d

dt
‖Qu(t)‖2Hs =

= −
∫ t0+δ

t0

2Im〈DsQu,Ds(|u|2u)〉dt.

Thus, it suffices to estimate:

|
∫ t0+δ

t0

〈DsQu,Ds(|u|2u)〉dt |.

Let v be the function we obtain by Proposition 3.1, if we are considering the time t0 we fixed
earlier. For the δ > 0, which we obtain by Proposition 3.1, we denote:

χ(t) := χ[t0,t0+δ](t).

Then:
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∫ t0+δ

t0

〈DsQu,Ds(|u|2u)〉dt =
∫ t0+δ

t0

〈DsQv,Ds(|v|2v)〉dt =

=

∫

R

∫

R

χ(t)DsQvDs(v̄vv̄)dxdt.

With notation as in Section 2 for dyadic integers N1, N2, N3, N4, we define:

IN1,N2,N3,N4
:=

∫

R

∫

R

χ(t)DsQvN1
Ds(vN2

vN3
vN4

)dxdt.

By definition of Q and the fact that
∑
ξj = 0, |ξj | ∼ Nj, we deduce that IN1,N2,N3,N4

is zero
unless the following conditions hold:

(50) N1 & N.

(51) max {N2, N3, N4} & N1.

By Parseval’s identity, the expression IN1,N2,N3,N4
is:

∼
∫
∑

τj=0

∫
∑

ξj=0

(χ(t)DsQvN1
)˜(ξ1, τ1) 〈ξ2〉s (vN2

vN3
vN4

)˜(ξ2, τ2) dξjdτj =

=

∫
∑

τj=0

∫
∑

ξj=0

(χ(t)DsQvN1
)˜(ξ1, τ1) 〈ξ2+ξ3+ξ4〉s (vN2

)˜(ξ2, τ2) ṽN3
(ξ3, τ3) (vN4

)˜(ξ4, τ4) dξjdτj

So, by the triangle inequality:

|IN1,N2,N3,N4
| .

∫
∑

τj=0

∫
∑

ξj=0

|(χ(t)DsQvN1
)˜(ξ1, τ1)| 〈ξ2+ξ3+ξ4〉s |(vN2

)˜(ξ2, τ2)| |ṽN3
(ξ3, τ3)| |(vN4

)˜(ξ4, τ4)| dξjdτj .

We now use a “Fractional Leibniz Rule”, i.e. we note that:

〈ξ2 + ξ3 + ξ4〉s . 〈ξ2〉s + 〈ξ3〉s + 〈ξ4〉s.
Hence, by symmetry 3, it suffices to estimate:

JN1,N2,N3,N4
:=∫

∑
τj=0

∫
∑

ξj=0

|(χ(t)DsQvN1
)˜(ξ1, τ1)| (〈ξ2〉s|(vN2

)˜(ξ2, τ2)|) |ṽN3
(ξ3, τ3)| |(vN4

)˜(ξ4, τ4)| dξjdτj ∼

∼
∫
∑

τj=0

∫
∑

ξj=0

|(χ(t)DsQvN1
)˜(ξ1, τ1)| |(DsvN2

)˜(ξ2, τ2)| |ṽN3
(ξ3, τ3)| |(vN4

)˜(ξ4, τ4)| dξjdτj .

Let us define:

3From the argument that follows, we see that the two other terms are estimated analogously. The fact that the
Ds falls on a term with or without a complex conjugate doesn’t matter in the argument.
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(52) F1(x, t) :=

∫

R

∫

R

|(χ(t)DsQvN1
)˜(ξ, τ)|ei(xξ+tτ)dξdτ.

(53) F2(x, t) :=

∫

R

∫

R

|(DsvN2
)˜(ξ, τ)|ei(xξ+tτ)dξdτ.

(54) Fj(x, t) :=

∫

R

∫

R

|ṽNj
(ξ, τ)|ei(xξ+tτ)dξdτ, for j = 3, 4.

Hence, by Parseval’s identity, since all the F̃j are real-valued, we obtain:

(55) JN1,N2,N3,N4
∼

∫

R

∫

R

F1F2F3F4dxdt.

We consider the following Cases:

Case 1: max {N2, N3, N4} = N3 or max {N2, N3, N4} = N4.

Let us WLOG suppose that max {N2, N3, N4} = N3, since the case max {N2, N3, N4} = N4 is
analogous. Here:

|JN1,N2,N3,N4
| = JN1,N2,N3,N4

, which is by (55) and by an L4
t,x, L

4
t,x, L

4
t,x, L

4
t,x Hölder’s inequality:

. ‖F1‖L4
t,x
‖F2‖L4

t,x
‖F3‖L4

t,x
‖F4‖L4

t,x
=

= ‖F1‖L4
t,x
‖F2‖L4

t,x
‖F3‖L4

t,x
‖F4‖L4

t,x
,

which by using (20) is:

. ‖F1‖
X

0, 3
8
+‖F2‖

X
0, 3

8
+‖F3‖

X
0, 3

8
+‖F4‖

X
0, 3

8
+

By definition of the functions Fj , and by the fact that taking absolute values in the spacetime

Fourier transform doesn’t change the Xs,b norm, it follows that the previous expression is:

∼ ‖χ(t)DsQvN1
‖
X

0, 3
8
+‖DsvN2

‖
X

0, 3
8
+‖vN3

‖
X

0, 3
8
+‖vN4

‖
X

0, 3
8
+

From Lemma 2.1 and the fact that 3
8+ < 1

2 , this expression is:

. ‖DsQvN1
‖
X

0, 3
8
++‖DsvN2

‖
X

0, 3
8
+‖vN3

‖
X

0, 3
8
+‖vN4

‖
X

0, 3
8
+ .

. ‖DsQvN1
‖
X

0, 3
8
++‖DsvN2

‖
X

0, 3
8
+

1

N3
‖vN3

‖
X

1, 3
8
+‖vN4

‖
X

0, 3
8
+ .

.
1

N3
‖v‖2

X
s, 1

2
+
‖v‖2

X
1, 1

2
+

From Proposition 3.1, we bound this by:

(56) ≤ C(Φ)

N3
‖u(t0)‖2Hs .

Let us observe that in this case, we have:

N3 ≥ N2, N4 and N3 & N1 & N.
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Hence, we have obtained a favorable decay factor of 1
N3

.

Case 2: max{N2, N3, N4} = N2.

Subcase 1: N2 ≫ N3, N4.

Since
∑
ξj = 0 and |ξj | ∼ Nj , it follows that N1 ∼ N2. Hence:

(57) N1 ∼ N2 & N and N1 ∼ N2 ≫ N3, N4.

In this subcase, we will have to argue a little bit harder. The main tools that we will use will be
the improved Strichartz estimate Proposition 2.2, and its modification, Proposition 2.4.

We use (55) and an L2
t,x, L

2
t,x Hölder inequality to deduce that:

|JN1,N2,N3,N4
| . ‖F1F3‖L2

t,x
‖F2F4‖L2

t,x

By the assumption on the frequencies, (52), (53), (54), Proposition 2.4 and Proposition 2.2, this
expression is:

.
( 1

N
1
2
−

1

‖DsQvN1
‖
X

0, 1
2
+‖vN3

‖
X

0, 1
2
+

)( 1

N
1
2

2

‖DsvN2
‖
X

0, 1
2
+‖vN4

‖
X

0, 1
2
+

)

By (57), this expression is:

.
1

N1−
2

‖v‖2
X

s, 1
2
+
‖v‖2

X
1, 1

2
+

We now use Proposition 3.1 to deduce that in Subcase 1, one has:

(58) |JN1,N2,N3,N4
| ≤ C(Φ)

N1−
2

‖u(t0)‖2Hs .

By (57), we notice that in this Subcase 1
N

1−

2

is again a favorable decay factor

Subcase 2: N2 ∼ N3 & N4 or N2 ∼ N4 & N3.

Let us consider WLOG the case when N2 ∼ N3 & N4, since the case N2 ∼ N4 & N3 is analogous.
By the same argument as in Case 1, it follows that:

|JN1,N2,N3,N4| .
1

N3
‖v‖2

X
s, 1

2
+
‖v‖2

X
1, 1

2
+
.

Since N3 ∼ N2, it follows that:

|JN1,N2,N3,N4
| . 1

N2
‖v‖2

X
s, 1

2
+
‖v‖2

X
1, 1

2
+
≤

(59) ≤ C(Φ)

N2
‖u(t0)‖2Hs .

In this Subcase, 1
N2

is an acceptable decay factor.

Combining (58) and (59), it follows that in Case 2, one has the bound:
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(60) |JN1,N2,N3,N4
| ≤ C(Φ)

N1−
2

‖u(t0)‖2Hs .

We now combine (56), (60) and sum in the dyadic integers Nj , keeping in mind the assumptions

(50), (51), and the assumptions of each case. It follows that:

|
∑

Nj

JN1,N2,N3,N4
| ≤ C(Φ)

N1−
‖u(t0)‖2Hs .

Hence, by construction of JN1,N2,N3,N4
, we deduce:

|
∑

Nj

IN1,N2,N3,N4
| ≤ C(Φ)

N1−
‖u(t0)‖2Hs .

The fact that C(Φ) depends continuously on Φ w.r.t the H1 topology follows from Proposition 3.1,

as well as the same continuous dependence of δ, energy, mass, and the uniform bound on the H1

norm of u. Proposition 3.4 now follows. �

4. The Hartree equation.

4.1. Basic facts about the equation and definition of the D operator. As in the case of the
cubic NLS, we will take Φ ∈ S(R) in order to rigorously justify all of our calculations. The general
claim follows by density and the Approximation Lemma, i.e. Proposition 3.3 applied to (2).

The same iteration argument that we used for the cubic equation doesn’t work for (2), since the
only conserved quantities that we have at our disposal are mass and energy. We now adapt to the
non-periodic setting the upside-down I-method approach that we used on S1 in [44].

We first define θ0 : R → R by:

(61) θ0(ξ) :=

{
|ξ|s , if |ξ| ≥ 2

1, if |ξ| ≤ 1.

We extend θ0 for 1 ≤ |ξ| ≤ 2 such that θ0 is even, smooth on R, and such that it is non-decreasing

on [0,+∞). By construction, we then obtain:

(62) |θ′0(ξ)| .
|θ0(ξ)|
|ξ|

(63) |θ′′0 (ξ)| .
|θ0(ξ)|
|ξ|2

(64) θ0(x+ y) . θ0(x) + θ0(y).

Suppose now that N > 1 is given. Then, we define:

θ(ξ) := θ0(
ξ

N
).

Hence:
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(65) θ(ξ) :=

{( |ξ|
N

)s
, if |ξ| ≥ 2N

1, if |ξ| ≤ N.

From (62),(63), and (64), we obtain:

(66) |θ′(ξ)| . |θ(ξ)|
|ξ|

(67) |θ′′(ξ)| . |θ(ξ)|
|ξ|2

(68) θ(x + y) . θ(x) + θ(y).

Having defined θ, we define the D-operator by:

(69) D̂f(ξ) := θ(ξ)f̂ (ξ).

One then has the bound:

(70) ‖Df‖L2 . ‖f‖Hs . Ns‖Df‖L2.

Let u denote the global solution of (2). We then have the following result:

Proposition 4.1. Given t0 ∈ R, there exists a globally defined function v : R × R → C satisfying
the properties:

(71) v|[t0,t0+δ] = u|[t0,t0+δ].

(72) ‖v‖
X

1, 1
2
+ ≤ C(s, E(Φ),M(Φ))

(73) ‖Dv‖
X

0, 1
2
+ ≤ C(s, E(Φ),M(Φ))‖Du(t0)‖L2 .

Moreover, δ and C can be chosen to depend continuously on the energy and mass.

The proof of Proposition 4.1 is analogous to the proof of Proposition 3.1. and Proposition 4.1.
in [44]. The point is that all the intermediate estimates that hold in the periodic setting carry over

to the non-periodic setting. Since V ∈ L1(R), we know that V̂ ∈ L∞(R), so one can directly modify
the proof for the cubic NLS to the Hartree equation as in [44]. We omit the details.

4.2. An Iteration bound and proof of Theorem 1.2. As in the periodic case, let:

E1(u(t)) := ‖Du(t)‖2L2 .

Then, arguing as in [44], we obtain, that for some c ∈ R:

d

dt
E1(u(t)) = ci

∫

ξ1+ξ2+ξ3+ξ4=0

((θ(ξ1))
2 − (θ(ξ2))

2 + (θ(ξ3))
2 − (θ(ξ4))

2)

(74) V̂ (ξ3 + ξ4)û(ξ1)̂̄u(ξ2)û(ξ3)̂̄u(ξ4)dξj .
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Recalling the notation from the Introduction, as in [44], we consider the following higher modified
energy

(75) E2(u) := E1(u) + λ4(M4;u).

The quantity M4 will be determined soon.

The modified energy E2 is obtained by adding a “multilinear correction” to the modified energy
E1 considered earlier. In order to find d

dt
E2(u), we need to find d

dt
λ4(M4;u). Thus, if we fix a

multiplier M4, we obtain:

d

dt
λ4(M4;u) =

= −iλ4(M4(ξ
2
1 − ξ22 + ξ23 − ξ24);u)

−i
∫

ξ1+ξ2+ξ3+ξ4+ξ5+ξ6=0

[
M4(ξ123, ξ4, ξ5, ξ6)V̂ (ξ1 + ξ2)

−M4(ξ1, ξ234, ξ5, ξ6)V̂ (ξ2 + ξ3) +M4(ξ1, ξ2, ξ345, ξ6)V̂ (ξ3 + ξ4)

(76) −M4(ξ1, ξ2, ξ3, ξ456)V̂ (ξ4 + ξ5)
]
û(ξ1)̂̄u(ξ2)û(ξ3)̂̄u(ξ4)û(ξ5)̂̄u(ξ6)dξj

With the setup (74) and (76), we can use higher modified energies as in in the periodic setting.
Namely, it follows that if we take:

(77) M4 := Ψ.

where Ψ is defined by:

Ψ : Γ4 → R

(78) Ψ :=

{
c
(θ(ξ1))

2−(θ(ξ2))
2+(θ(ξ3))

2−(θ(ξ4))
2V̂ (ξ3+ξ4)

ξ2
1
−ξ2

2
+ξ2

3
−ξ2

4

, if ξ21 − ξ22 + ξ23 − ξ24 6= 0

0, otherwise.

for an appropriate real constant c. One then has:

(79)
d

dt
E2(u) = −iλ6(M6;u).

where:

M6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) :=M4(ξ123, ξ4, ξ5, ξ6)V̂ (ξ1 + ξ2)

−M4(ξ1, ξ234, ξ5, ξ6)V̂ (ξ2 + ξ3) +M4(ξ1, ξ2, ξ345, ξ6)V̂ (ξ3 + ξ4)

(80) −M4(ξ1, ξ2, ξ3, ξ456)V̂ (ξ4 + ξ5)
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The key to continue our study of E2(u) is to deduce pointwise bounds on Ψ. We dyadically localize

the frequencies as |ξj | ∼ Nj . We then order the Ns
j in decreasing order to obtain: N∗

1 ≥ N∗
2 ≥

N∗
3 ≥ N∗

4 . Let us show that the following result holds:

Proposition 4.2. (Pointwise bound on the multiplier) Under the previous assumptions, one has:

(81) If N∗
2 ≫ N∗

3 , Ψ = O(
1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 )).

(82) If N∗
2 ∼ N∗

3 , Ψ = O(
1

(N∗
1 )

3
θ(N∗

1 )θ(N
∗
2 )N

∗
3N

∗
4 ).

In the proof of Proposition 4.2, the following bound will be useful:

Lemma 4.3. Suppose that |x| ≥ |y|. Then, one has:

|(θ(x))2 − (θ(y))2| . (|x| − |y|) (θ(x))
2

|x| .

We prove Proposition 4.2 and Lemma 4.3 in Appendix B.

Using Proposition 4.2 and arguing as in [44], we deduce that, whenever u is a global solution of
(2), one has:

(83) E2(u) ∼ E1(u).

Arguing as in [44], the key is to deduce the following bound:

Lemma 4.4. For all t0 ∈ R, one has:

|E2(u(t0 + δ))− E2(u(t0))| .
1

N3−
E2(u(t0)).

We see that Theorem 1.2 follows from Lemma 4.4:

Proof. (of Theorem 1.2 assuming Lemma 4.4)
By Lemma 4.4, there exists C > 0 such that for all t0 ∈ R, one has:

(84) E2(u(t0 + δ)) ≤ (1 +
C

N3−
)E2(u(t0))

Using (84) iteratively, we obtain that 4 ∀T > 1 :

E2(u(T )) ≤ (1 +
C

N3−
)⌈

T
δ
⌉E2(Φ)

Let us take:

(85) T ∼ N3−

For such a choice of T , one has:

(86) E2(u(T )) . E2(Φ)

Using (70), and (83), it follows that:

4 Strictly speaking, we are using (73) to deduce that we can get the bound for all such times, and not just those
which are a multiple of δ.
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‖u(T )‖Hs . NsE2(u(T )) . NsE2(Φ) . Ns‖Φ‖Hs

(87) . T
s
3
+‖Φ‖Hs . (1 + T )

s
3
+‖Φ‖Hs .

Since for times t ∈ [0, 1], we get the bound of Theorem 1.2 just by iterating the local well-posedness
construction, the claim for these times follows immediately. Combining this observation, (87),
recalling the approximation result, and using time-reversibility, Theorem 1.2 follows. �

We now prove Lemma 4.4.

Proof. Let us WLOG consider t0 = 0. The general case follows analogously. By (79), we write:

E2(u(δ))− E2(u(0)) =

∫ δ

0

d

dt
E2(u(t))dt = −i

∫ δ

0

λ6(M6;u)dt

We recall (80), and we use symmetry to deduce that it suffices to bound:

∫ δ

0

∫

ξ1+···+ξ6=0

M4(ξ123, ξ4, ξ5, ξ6)V̂ (ξ1 + ξ2)û(ξ1)̂̄u(ξ2)û(ξ3)̂̄u(ξ4)û(ξ5)̂̄u(ξ6)dξjdt

Let v be as in Proposition 4.1, and let χ = χ(t) = χ[0,δ](t). The above expression is then equal to:

∫ δ

0

∫

ξ1+···+ξ6=0

M4(ξ123, ξ4, ξ5, ξ6)V̂ (ξ1 + ξ2)v̂(ξ1)̂̄v(ξ2)v̂(ξ3)̂̄v(ξ4)v̂(ξ5)(χv̄)̂ (ξ6)dξjdt =

=

∫

τ1+···+τ4=0

∫

ξ1+···+ξ4=0

M4(ξ1, ξ2, ξ3, ξ4)

((V ∗ |v|2)v)̃ (ξ1, τ1)˜̄v(ξ2, τ2)ṽ(ξ3, τ3)(χv̄)̃ (ξ4, τ4)dξjdτj
Let Nj , j = 1, . . . 4, be dyadic integers. We define:

IN1,N2,N3,N4
:=

∫

τ1+···+τ4=0

∫

ξ1+···+ξ4=0

M4(ξ1, ξ2, ξ3, ξ4)

((V ∗ |v|2)v)̃N1
(ξ1, τ1)˜̄vN2

(ξ2, τ2)ṽN3
(ξ3, τ3)(χv̄)̃N4

(ξ4, τ4)dξjdτj .

We want to bound IN1,N2,N3,N4
. Let us define by N∗

j the appropriate reordering of the Nj. We

know:

(88) N∗
1 ∼ N∗

2 , N
∗
1 & N.

We have to consider two Big Cases:

Big Case 1: N∗
2 ≫ N∗

3 .

Big Case 2: N∗
2 ∼ N∗

3 .

Big Case 1:

From Proposition 4.2, in this Big Case, we have the bound:
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(89) M4 = O(
1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 ))

We consider several Cases:

Case 1: N∗
1 ∼ N1 (and hence N∗

2 ∼ N1).

Let us assume WLOG that:

N∗
2 ∼ N2, N

∗
3 ∼ N3, N

∗
4 ∼ N4.

The other cases are analogous.

By using (102), we deduce:

|IN1,N2,N3,N4
| ≤

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
θ(ξ1 + ξ2 + ξ3)θ(N

∗
2 )

|ṽ(ξ1, τ1)||˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)||˜̄vN2
(ξ4, τ4)||ṽN3

(ξ5, τ5)||(χv̄)̃N4
(ξ6, τ6)|dξjdτj .

From (68), we know that:

θ(ξ1 + ξ2 + ξ3) . θ(ξ1) + θ(ξ2) + θ(ξ3).

By symmetry, we need to bound:

I1N1,N2,N3,N4
:=

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
θ(ξ1)θ(N

∗
2 )

|ṽ(ξ1, τ1)||˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)||˜̄vN2
(ξ4, τ4)||ṽN3

(ξ5, τ5)||(χv̄)̃N4
(ξ6, τ6)|dξjdτj .

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
|(Dv)̃ (ξ1, τ1)|

|˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)||(Dv̄)̃N2
(ξ4, τ4)||ṽN3

(ξ5, τ5)||(χv̄)̃N4
(ξ6, τ6)|dξjdτj .

Now, |ξ1 + ξ2 + ξ3| ∼ N1, hence:

max{|ξ1|, |ξ2|, |ξ3|} & N1.

We have to consider several subcases:

Subcase 1: |ξ1| & N1.

The contribution to I1N1,N2,N3,N4
in this subcase is:

.

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0

1

(N∗
1 )

2

(
|(Dv)̃ &N1

(ξ1, τ1)||ṽN3
(ξ5, τ5)|

)

(
|(Dv̄)̃N2

(ξ4, τ4)||(χv̄)̃N4
(ξ6, τ6)|

)
|˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)|dξjdτj =

=

∫

R

∫

R

1

(N∗
1 )

2
F1F2F3F4F5F6dxdt

For the last equality, we used Parseval’s identity for the functions Fj , which are chosen to satisfy:



BOUNDS ON SOBOLEV NORMS FOR NLS ON R 25

F̃1 = |(Dv)̃&N1
|, F̃2 = |ṽN3

|, F̃3 = |(Dv)̃N2
|, F̃4 = |(χv)̃N4

|, F̃5 = |ṽ|, F̃6 = |ṽ|.
We now use an L2

t,x, L
2
t,x, L

∞
t,x, L

∞
t,x Hölder inequality, Proposition 2.2, Proposition 2.4, and (22) to

see that this expression is:

.
1

(N∗
1 )

2

( 1

N
1
2

1

‖Dv‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

)( 1

N
1
2
−

2

‖Dv‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

)
‖v‖2

X
1
2
+, 1

2
+

.
1

(N∗
1 )

3−
‖Dv‖2

X
0, 1

2
+

(90) .
1

(N∗
1 )

3−
E2(u(0)).

Subcase 2: |ξ2| & N1.

The contribution to I1N1,N2,N3,N4
in this subcase is:

.

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0

1

(N∗
1 )

2
|(Dv)̃ (ξ1, τ1)||(v̄)̃ &N1

(ξ2, τ2)|

(
|(Dv̄)̃N2

(ξ4, τ4)||(χv̄)̃N4
(ξ6, τ6)|

)
|ṽ(ξ3, τ3)||ṽN3

(ξ5, τ5)|dξjdτj

We argue similarly as in the previous Subcase, but we now use an L4
t,x, L

4
t,x, L

2
t,x, L

∞
t,x, L

∞
t,x Hölder

inequality and Proposition 2.4 to deduce that the previous expression is:

.
1

(N∗
1 )

2
‖Dv‖

X
0, 3

8
+‖v&N1

‖
X

0, 3
8
+

( 1

N
1
2
−

2

‖Dv‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

)
‖v‖2

X
1
2
+, 1

2
+

.
1

(N∗
1 )

7
2
−
‖Dv‖2

X
0, 1

2
+
‖v‖4

X
1, 1

2
+

(91) .
1

(N∗
1 )

7
2
−
E2(u(0)).

(We note that we used the fact that ‖v&N1
‖
X

0, 3
8
+ . 1

N1
‖v‖

X
1, 1

2
+ .)

Subcase 3: |ξ3| & N1.

Subcase 3 is analogous to Subcase 2, and we get the same bound on the wanted contribution.

Case 2: N∗
3 ∼ N1 or N∗

4 ∼ N1. Let us WLOG consider the case N∗
3 ∼ N1. (the case N∗

4 ∼ N1

is analogous) Let us also WLOG suppose:

N∗
1 ∼ N2, N

∗
2 ∼ N3, N

∗
4 ∼ N4.

Arguing similarly as earlier, we want to estimate:

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
θ(N2)θ(N3)
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|ṽ(ξ1, τ1)||˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)||˜̄vN2
(ξ4, τ4)||ṽN3

(ξ5, τ5)||(χv̄)̃N4
(ξ6, τ6)|dξjdτj

We write:

v = v
≪(N∗

1
)
1
2
+ v

&(N∗

1
)
1
2
.

We consider the following subcases:

Subcase 1: |ξ1|, |ξ2|, |ξ3| ≪ (N∗
1 )

1
2 .

We have to estimate:

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
θ(N2)θ(N3)

|ṽ
≪(N∗

1
)
1
2
(ξ1, τ1)||˜̄v

≪(N∗

1
)
1
2
(ξ2, τ2)||ṽ

≪(N∗

1
)
1
2
(ξ3, τ3)||˜̄vN2

(ξ4, τ4)||ṽN3
(ξ5, τ5)||(χv̄)̃N4

(ξ6, τ6)|dξjdτj

.

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
(|ṽ

≪(N∗

1
)
1
2
(ξ1, τ1)||(Dv̄)̃ N2

(ξ4, τ4)|)

(|(Dv)̃ N3
(ξ5, τ5)||(χv̄)̃N4

(ξ6, τ6)|)|ṽ
≪(N∗

1
)
1
2
(ξ3, τ3)||ṽ

≪(N∗

1
)
1
2
(ξ2, τ2)|dξjdτj

We apply an L2
t,x, L

2
t,x, L

∞
t,x, L

∞
t,x Hölder inequality, Proposition 2.2, and Proposition 2.4 to deduce

that the above expression is:

.
1

(N∗
1 )

2

( 1

N
1
2

2

‖v‖
X

0, 1
2
+‖Dv‖

X
0, 1

2
+

)( 1

N
1
2
−

3

‖Dv‖
X

0, 1
2
+‖v‖

X
0, 1

2
+

)
‖v‖2

X
1
2
+, 1

2
+

.
1

(N∗
1 )

3−
‖Dv‖2

X
0, 1

2
+
‖v‖4

X
1, 1

2
+

(92) .
1

(N∗
1 )

3−
E2(u(0))

Subcase 2: max{|ξ1|, |ξ2|, |ξ3|} & (N∗
1 )

1
2 .

We consider WLOG when |ξ1| & (N∗
1 )

1
2 . The other two cases are analogous. Hence, we have to

estimate:

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
θ(N2)θ(N3)

|ṽ
&(N∗

1
)
1
2
(ξ1, τ1)||˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)||˜̄vN2

(ξ4, τ4)||ṽN3
(ξ5, τ5)||(χv̄)̃N4

(ξ6, τ6)|dξjdτj

.

∫

τ1+···+τ6=0

∫

ξ1+···+ξ6=0,|ξ1+ξ2+ξ3|∼N1

1

(N∗
1 )

2
|ṽ

&(N∗

1
)
1
2
(ξ1, τ1)||(Dv̄)̃ N2

(ξ4, τ4)|

(
|(Dv)̃ N3

(ξ5, τ5)||(χv̄)̃N4
(ξ6, τ6)|

)
|˜̄v(ξ2, τ2)||ṽ(ξ3, τ3)|dξjdτj

We use an L4
t,x, L

4
t,x, L

2
t,x, L

∞
t,x, L

∞
t,x Hölder inequality, and Proposition 2.4 to deduce that this

expression is:
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.
1

(N∗
1 )

2
‖v

&(N∗

1
)
1
2
‖
X

0, 3
8
+‖Dv‖

X
0, 3

8
+

( 1

(N3)
1
2
−
‖Dv‖

X
0, 1

2
+‖v‖

X
0, 1

2
+

)
‖v‖2

X
1
2
+, 1

2
+

.
1

(N∗
1 )

3−
‖Dv‖2

X
0, 1

2
+
‖v‖4

X
1, 1

2
+

Here we used the fact that ‖v
&(N∗

1
)
1
2
‖
X

0, 3
8
+ . 1

(N∗

1
)
1
2

‖v‖
X

1, 1
2
+ .

Hence, the contribution from this Subcase is:

(93) .
1

(N∗
1 )

3−
E2(u(0))

Combining (90), (91), (92), (93), it follows that the contribution to IN1,N2,N3,N4
coming from Big

Case 1 is:

(94) O(
1

(N∗
1 )

3−
E2(u(0))).

Big Case 2: We recall that in this Big Case N∗
2 ∼ N∗

3 .

From Proposition 4.2, we observe that in Big Case 2, one has:

(95) M4(ξ1, ξ2, ξ3, ξ4) = O(
1

(N∗
1 )

3
θ(N∗

1 )θ(N
∗
2 )N

∗
3N

∗
4 )

In Big Case 2, we argue in the same way as we did for the Hartree equation on S1 in [44].
The same argument as in Section 4.1. of the mentioned paper implies that the contribution to
IN1,N2,N3,N4

coming from Big Case 2 is:

(96) O(
1

(N∗
1 )

3
E2(u(0))).

We refer the reader to the proof in [44]. Let us note that in the periodic setting, we could only
get a decay factor of 1

(N∗

1
)2 .

We use (94),(96),(88), and sum in the N∗
j to deduce Lemma 4.4 for t0 = 0. By time-translation,

the general claim follows. �

Remark 4.5. If we use the method of proof of Theorem 1.1 for the Hartree equation (here we just
use mass and energy as conserved quantities), we can obtain the bound ‖u(t)‖Hs ≤ C(1+ |t|)(s−1)+,
which is a weaker result than Theorem 1.2 when s is large.

5. Appendix A: Auxiliary results for the cubic nonlinear Schrödinger equation.

In Appendix A, we prove Proposition 3.2

Proof. By continuity of Energy and Mass on H1, both of the claims clearly hold for n = 1. For
higher n, we will need to work directly with the higher conserved quantities of (1). One can explicitly
compute these quantities by means of a recursive formula. The formula that we use comes from
[24, 40]. Let u be a solution of (1). Let us define a sequence of polynomials (Pk)k≥1 by:
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(97)

{
P1 := |u|2,
Pk+1 := −iū ∂

∂x
(Pk

ū
) +

∑k−1
l=1 PlPk−l, for k ≥ 1.

Then, for all k ≥ 1,
∫
Pk dx is a conserved quantity for (1).

For the details, we refer the reader to [24], more precisely to Page 53, where it is noted that
formulas (4.19),(4.20),(4.34) in the textbook still remain valid for our equation. Let us now explicitly
compute:

P2 = −iū ∂
∂x
u.

P3 = −ū ∂
2

∂x2
u+

1

2
|u|4.

P4 = iū
∂3

∂x3
u− i|u|2ū ∂

∂x
u.

The conserved quantity corresponding to P1 is:

∫
P1 dx =

∫
|u|2dx = Mass .

For the conserved quantities corresponding to P2, P3, we integrate by parts to obtain:

∫
P2 dx = − i

2

∫
(ū

∂

∂x
u− u

∂

∂x
ū)dx ∼ Momentum.

∫
P3 dx =

∫ ∣∣ ∂
∂x
u
∣∣2dx+

1

2

∫
|u|4dx ∼ Energy .

So, we recover the well-known conserved quantities this way.
We argue by induction to deduce that:

Pn = cū
∂n−1

∂xn−1
u+ l.o.t.

Again, by induction, we obtain that each lower-order term contains in total at most n−3 derivatives.
It follows that the conserved quantity we want to study is:

En(u) :=

∫
P2n+1 dx = ±c

∫ ∣∣ ∂
n

∂xn
u
∣∣2dx+ l.o.t.

Here, each lower-order term is the integral of a polynomial in x-derivatives of u, ū containing in total

at most 2n− 2 derivatives. If we integrate by parts, we can arrange so that at most n derivatives
fall on one factor, and that at most n−2 derivatives fall on all the other factors combined. By using
Hölder’s inequality 5 and by Sobolev embedding, there exists a polynomial Qn = Qn(x) s.t.

(98) En(u) ≥ C(‖u‖2
Ḣn −Qn(‖u‖Hn−1)‖u‖Hn).

Similarly, if we also use multilinearity, it follows that there exists a polynomial Rn in (x, y) s.t.

|En(u)− En(v)| . (‖u‖Hn + ‖v‖Hn)‖u− v‖Hn+

(99) Rn(‖u‖Hn−1 , ‖v‖Hn−1)‖u− v‖Hn .

5we estimate the factor with the most derivatives, and an arbitrary other factor in L2; the rest of the factors we
estimate in L∞
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The fact that En is continuous on Hn follows immediately from (99). This proves the first part of

the claim.

Furthermore, if we define:

Ẽn(u) := En(u) + ‖u‖2L2,

then, by (98), it follows that:

Ẽn(u) ≥ Cn(‖u‖2Hn −Qn(‖u‖Hn−1)‖u‖Hn).

This bound in turn implies:

(100) ‖u‖Hn ≤ 1

2

(
Qn(‖u‖Hn−1) +

√
(Qn(‖u‖Hn−1))2 +

4

Cn

Ẽn(u)
)
.

We finally define:

(101) Bn(Φ) :=
1

2

(
Qn(Bn−1(Φ)) +

√
(Qn(Bn−1(Φ)))2 +

4

Cn

Ẽn(Φ)
)
.

We combine the fact that En is continuous on Hn, conservation of mass, (100), and argue by
induction to deduce the second part of the claim if we define Bn as in (101).

�

6. Appendix B: Auxiliary results for the Hartree equation.

We first prove Proposition 4.2 assuming Lemma 4.3.

Proof. Let us first recall that:

(102) V̂ ∈ L∞

As before, we consider |ξj | ∼ Nj for dyadic integers N1, N2, N3, N4. We order the Nj to obtain
N∗

j , for j = 1, . . . , 4, s.t. N∗
1 ≥ N∗

2 ≥ N∗
3 ≥ N∗

4 . Let’s recall the localization (88). By symmetry, let
us also consider WLOG N∗

1 ∼ N1.

We consider the following cases:

Case 1: N∗
2 ≫ N∗

3 .

We must consider several subcases:

Subcase 1: N∗
2 ∼ N2.

Since ξ1 + ξ2 + ξ3 + ξ4 = 0, we obtain:

(103) |ξ21 − ξ22 + ξ23 − ξ24 | = 2|(ξ1 + ξ2)(ξ1 + ξ4)|

In this Subcase, this expression is:

∼ N∗
1 |ξ1 + ξ2|.

By Lemma 4.3, we know:

|(θ(ξ1))2 − (θ(ξ2))
2| . ||ξ1| − |ξ2||

(θ(ξ1))
2

|ξ1|
. |ξ1 + ξ2|

θ(N∗
1 )θ(N

∗
2 )

N∗
1
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Similarly, assuming WLOG that |ξ3| ≥ |ξ4|, we use Lemma 4.3, and the fact that (θ(ξ3))
2

|ξ3|
.

(θ(ξ1))
2

|ξ1|
,

if |ξ3| ≥ N , and (θ(ξ3))
2 − (θ(ξ4))

2 = 0, if |ξ3| ≤ N to deduce that:

|(θ(ξ3))2 − (θ(ξ4))
2| . |ξ3 + ξ4|

θ(N∗
1 )θ(N

∗
2 )

N∗
1

= |ξ1 + ξ2|
θ(N∗

1 )θ(N
∗
2 )

N∗
1

Combining the last three bounds and (102), we obtain:

(104) Ψ = O(
1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 )).

Subcase 2: N∗
2 ∼ N3.

In this subcase, we don’t expect any cancelation in neither the numerator nor the denominator.
So, we just estimate the numerator as O(θ(N∗

1 )θ(N
∗
2 )), and we estimate the denominator as∼ (N∗

1 )
2.

Consequently:

(105) Ψ = O(
1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 )).

Case 2: N∗
2 ∼ N∗

3 .

As before, we consider two subcases:

Subcase 1: N∗
3 ≫ N∗

4 .

It suffices to WLOG consider when N∗
2 ∼ N2, N

∗
3 ∼ N3, N

∗
4 ∼ N4.

We have:

|ξ21 − ξ22 + ξ23 − ξ24 | = 2|(ξ1 + ξ2)(ξ1 + ξ4)| ∼ N∗
1 |ξ1 + ξ2|.

We argue now as in Subcase 1 of Case 1 to obtain:

Ψ = O
( 1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 )
)
.

Since N∗
3 ∼ N∗

1 , in this subcase, we obtain:

(106) Ψ = O
( 1

(N∗
1 )

3
θ(N∗

1 )θ(N
∗
2 )N

∗
3

)
.

Subcase 2: N∗
1 ∼ N∗

2 ∼ N∗
3 ∼ N∗

4 .

We know:

|ξ21 − ξ22 + ξ23 − ξ24 | ∼ |(ξ1 + ξ2)(ξ1 + ξ4)|.
We must consider several sub-subcases.

Sub-subcase 1: |ξ1 + ξ2| ≪ 1, |ξ1 + ξ4| ≪ 1.

Since ξ1 + ξ2 + ξ3 + ξ4 = 0, we get:

ξ3 + (ξ1 + ξ2) = −ξ4

ξ3 + (ξ1 + ξ4) = −ξ2

ξ3 + (ξ1 + ξ2) + (ξ1 + ξ4) = ξ1.



BOUNDS ON SOBOLEV NORMS FOR NLS ON R 31

From the previous identities, the Double Mean Value Theorem (33), and (67), we obtain that:

|(θ(ξ1))2 − (θ(ξ2))
2 + (θ(ξ3))

2 − (θ(ξ4))
2| =

= |(θ(ξ3 + (ξ1 + ξ2) + (ξ1 + ξ4)))
2 − (θ(ξ3 + (ξ1 + ξ4)))

2 + (θ(ξ3 + (ξ1 + ξ2)))
2 − (θ(ξ4))

2|

. |ξ1 + ξ2||ξ1 + ξ4||(θ2)′′(ξ3)| . |ξ1 + ξ2||ξ1 + ξ4|
(θ(ξ3))

2

|ξ3|2

. |ξ1 + ξ2||ξ1 + ξ4|
θ(N∗

1 )θ(N
∗
2 )

(N∗
1 )

2

So, in this sub-subcase, we obtain that:

Ψ = O(
1

(N∗
1 )

2
θ(N∗

1 )θ(N
∗
2 )) =

(107) = O(
1

(N∗
1 )

4
θ(N∗

1 )θ(N
∗
2 )N

∗
3N

∗
4 )

Sub-subcase 2: |ξ1 + ξ4| & 1.

Here:

|ξ21 − ξ22 + ξ23 − ξ24 | = 2|ξ1 + ξ2||ξ1 + ξ4| & |ξ1 + ξ2| = |ξ3 + ξ4|.
Hence, by Lemma 4.3:

Ψ = O
( |(θ(ξ1))2 − (θ(ξ2))

2

|ξ1 + ξ2|
+

|(θ(ξ3))2 − (θ(ξ4))
2|

|ξ3 + ξ4|
)
=

= O(
1

|ξ1|
(θ(ξ1))

2) = O(
1

N∗
1

θ(N∗
1 )θ(N

∗
2 )) =

(108) O(
1

(N∗
1 )

3
θ(N∗

1 )θ(N
∗
2 )N

∗
3N

∗
4 )

Sub-subcase 3: |ξ1 + ξ2| & 1.

We group the terms in the numerator as:

(
(θ(ξ1))

2 − (θ(ξ4))
2
)
+
(
(θ(ξ3))

2 − (θ(ξ2))
2
)

Then, we argue as in the previous sub-subcase to obtain:

(109) O
( 1

(N∗
1 )

3
θ(N∗

1 )θ(N
∗
2 )N

∗
3N

∗
4

)

�

Let us now prove Lemma 4.3.

Proof. We have to consider five cases:

(1) N ≤ |y|, 2N ≤ |x|
(2) N ≤ |y| ≤ |x| ≤ 2N
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(3) |y| ≤ |x| ≤ N

(4) |y| ≤ N, 2N ≤ |x|
(5) |y| ≤ N ≤ |x| ≤ 2N

We consider each case separately:

(1) |(θ(x)2 − (θ(y))2| ≤ (|x| − |y|) sup[|y|,|x|] |(θ2)′(z)| ≤ (|x| − |y|) sup[N,|x|] |(θ2)′(z)|
By using (66), this expression is:

. (|x| − |y|) sup
[N,|x|]

( (θ(z))2
|z|

)
. (|x| − |y|) sup

[2N,|x|]

( (θ(z))2
|z|

)
=

= (|x| − |y|) sup
[2N,|x|]

|z|2s−1

N2s
= (|x| − |y|) |x|

2s−1

N2s
= (|x| − |y|) (θ(x))

2

|x| .

(2) |(θ(x))2 − (θ(y))2| ≤ (|x| − |y|) sup[|y|,|x|] |(θ2)′(z)| . (|x| − |y|) sup[|y|,|x|]
( (θ(z))2

|z|

)

For z ∈ [|y|, |x|], one has:

(θ(z))2

|z| ∼ (θ(N))2

|N | ∼ (θ(x))2

|x| .

Hence, we get the wanted bound in this case.

(3) In this case: (θ(x))2 − (θ(y))2 = 0.

(4) |(θ(x))2 − (θ(y))2| = | |x|
2s

N2s − (θ(N))2|, and we argue as in the first case.

(5) |(θ(x))2 − (θ(y))2| = |(θ(x))2 − (θ(N))2|, and we argue as in the second case.

Lemma 4.3 now follows.
�

7. Appendix C: The derivative nonlinear Schrödinger equation:

In this Appendix, we give a brief sketch of the proof of (18).

We don’t consider derivative nonlinear Schrödinger equation directly. Rather, we argue as in
[29, 31, 32], and we apply to (16) the following gauge transform:

(110) Gf(x) := e−i
∫

x

−∞
|f(y)|2dyf(x).

For u a solution of (16),we take w := Gu. Then, it can be shown that w solves:

(111)

{
iwt +∆w = −iw2w̄x − 1

2 |w|4w
w(x, 0) = w0(x) = GΦ(x), x ∈ R, t ∈ R.

The equation (111) has as a corresponding Hamiltonian:

(112) E(f) :=

∫
∂xf∂xf̄dx− 1

2
Im

∫
f f̄f∂xf̄dx.

Although the problem is not defocusing a priori, in [15],[19], it is noted that the smallness condition

(17) guarantees that the energy E(w(t)) is positive and that it gives us a priori bounds on ‖w(t)‖H1 .
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It can be shown that the gauge transform satisfies the following boundedness property:

Gauge transform bound. For s ≥ 1, there exists a polynomial Ps = Ps(x) such that:

‖Gf‖Hs ≤ Ps(‖f‖H1)‖f‖Hs ,

‖G−1f‖Hs ≤ Ps(‖f‖H1)‖f‖Hs .

From the bi-continuity of gauge transform, and the uniform bounds on ‖w(t)‖H1 , it suffices to
prove for solutions of (111) the bounds that we want to hold for solutions of the derivative NLS.

One can show that a local-in-time estimate, analogous to Proposition 4.1, holds for (111). The
key is to use the following:

Trilinear Estimate. Let s ≥ 1, b ∈ (12 ,
5
8 ], b

′ > 1
2 , then for v1, v2, v3 : R × R → C, the following

estimate holds:

‖v1v2(v3)x‖Xs,b−1 . ‖v1‖X1,b′ ‖v2‖X1,b′ ‖v3‖Xs,b′

(113) + ‖v1‖X1,b′ ‖v2‖Xs,b′‖v3‖X1,b′ + ‖v1‖Xs,b′‖v2‖X1,b′ ‖v3‖X1,b′ .

This estimate is the analogue of Proposition 2.4. in [49], where the identical statement is proved
in the context of low regularities. The proof for s ≥ 1 is similar, with minor modifications.

We now argue as in Theorem 1.2, by using the technique of higher modified energies. We define
E1 as before. We consider the higher modified energy E2 given by:

(114) E2(w) := E1(w) + λ4(M4;w).

Using the equation (111), it follows that a good choice for the multiplier M4 on the set Γ4 is:

(115) M4 ∼ (θ(ξ1))
2ξ3 + (θ(ξ2))

2ξ4 + (θ(ξ3))
2ξ1 + (θ(ξ4))

2ξ2

ξ21 − ξ22 + ξ23 − ξ24

We define the ordered dyadic localizations N∗
j as before. With this notation, one can show the

following:

Multiplier bound. On Γ4, one has the pointwise bound:

(116) |M4| .
1

N∗
1

θ(N∗
1 )θ(N

∗
2 ).

By construction of M4, we obtain:

d

dt
E2(w(t)) =

d

dt
E1(w) +

d

dt
λ4(M4;w)

(117) = λ6(σ6;w) + λ6(M6;w) + λ8(M8;w).

Here:

(118) σ6 = (θ(ξ1))
2 − (θ(ξ2))

2 + (θ(ξ3))
2 − (θ(ξ4))

2 + (θ(ξ5))
2 − (θ(ξ6))

2.

M6 ∼M4(ξ123, ξ4, ξ5, ξ6)ξ2 +M4(ξ1, ξ234, ξ5, ξ6)ξ3

(119) +M4(ξ1, ξ2, ξ345, ξ6)ξ4 +M4(ξ1, ξ2, ξ3, ξ456)ξ5.
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M8 ∼M4(ξ12345, ξ6, ξ7, ξ8)−M4(ξ1, ξ23456, ξ7, ξ8)

(120) +M4(ξ1, ξ2, ξ34567, ξ8)−M4(ξ1, ξ2, ξ3, ξ45678).

Using (117) and (116), we can argue similarly as in the proof of Theorem 1.2 to deduce that:

(121) |E2(w(t0 + δ))− E2(w(t0))| .
1

N
1
2
−
E2(w(t0)).

The bound for the derivative NLS follows from (121). �
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Séminaire É.D.P. (2003-2004), Exposé XVIII, 26 p.
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