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Kinetic theory

e Kinetic theory: was originally developed to describe the statistical evolution of a
non-equilibrium many-particle system in phase space.

e Ludwig Boltzmann made significant contributions in kinetic theory by
investigating the properties of dilute gases.
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The Boltzmann equation

The classic Boltzmann equation describes the evolution of the one-particle distribution
function of a rarefied monatomic gas.

Let f = f(x, v, t) denote the probability to find a particle at position x € R® with
velocity v € R3 at time t > 0. Then the equation reads as:

%(x,v,t):— v Vif(x,v,t) + O(f, f)(x, v, t)
—_—— —_——

free particle transport  effects of binary collisions

The original Boltzmann equation was derived under the following assumptions:

e Binary interactions: such as in dilute gases, where interactions of more than two
particles can be neglected.

e FElastic collisions = conservation of mass and momentum.

o Collisions involve only uncorrelated particles.




Collisions

Elastic binary collision: Given two particles with velocity v and w the post-collisional
velocities v* and w* we have

(v+w+|v—wln)

(v+w—|v—wln),

NI NI~

where n is the unit normal vector.
Conservation of momentum and kinetic energy:

v4+w=v*+w*

VI w2 = v P+ w

Collision operator in the case of hard spheres:

o(f,g)(v) = / B((v—w)-n)(f(v*)g(w™) — f(v)g(v))dwdn.

R3x 2

where B is the collision kernel.



Fundamental properties of the collision operator

e Conservation of mass, momentum and energy
/ Q(f, F(v)dv =0 for p = 1, v, |v[%
R3

e H-Theorem: The entropy — fR3 f log fdv is non-decreasing in time. That is

—i/ flogfdv:—/ Q(f, f)log(f)dv > 0.
dt Jg3 R3

Any equilibrium distribution, which is a maximum of the entropy, has to be of
Maxwellian form

|u—v[?

M(p, u, T)(v) = —~ o7

- (@rT)8

exp( )s

where p, uand T are the density, mean velocity and temperature of the gas

p:/ f(v)dv, u:l/ vi(v)dv, T:i/ |u— v]?f(v)dv.
R3 p JRr3 3p Jr3



From molecules to agents

Wealth distribution in
simple markets

e large number of
trading agents

e each characterised

Classic kinetic theory by its wealth
e large number of e goods are exchanged
molecules in 'collisions’

v

o described by their

position and velocity Opinion formation in a

o velocity is changed society
in collision

4 e large networks or
people or a society

e each person has a
opinion on a certain
topic

e opinion is changed

due to interactions
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Knowledge diffusion and growth!

Lucas and Moll’'s model setup:
o Consider a continuum of individuals, which are characterised by their knowledge
level z € RY.
o Let s = s(z,t) denote the time that an individual with knowledge level z spends
on learning.

o Each individual has one unit of time, which he/she can split between producing
goods with the knowledge already obtained or meeting others to enhance their
knowledge level.

~ If two individuals with knowledge level z
and z’ meet, they exchange ideas.

knowledge level 2/

knouledge level z

IR. E. Lucas Jr and B. Moll. Knowledge growth and the allocation of time. Journal of Political Economics, 2014



Knowledge diffusion and growth!

Lucas and Moll’'s model setup:

o Consider a continuum of individuals, which are characterised by their knowledge
level z € RT.

o Let s = s(z,t) denote the time that an individual with knowledge level z spends
on learning.

e Each individual has one unit of time, which he/she can split between producing
goods with the knowledge already obtained or meeting others to enhance their
knowledge level.

Knowledge level z* = max(z,z’)

e @\_ g = their post-collision knowledge
= corresponds to

z* = max(z, 2').

1R. E. Lucas Jr and B. Moll. Knowledge growth and the allocation of time. Journal of Political Economics, 2014



Knowledge diffusion and growth

Evolution of the distribution of agents f = f(z, t) with respect to their knowledge
level z:

0tf(z,t) = —a(s(z, t))f(z,t) /00 f(y,t)dy + f(z,t) /OZ a(s(y, t))f(y, t)dy.

e The function o = «(s) is the interaction probability of an individual, which
spends an s-th fraction of its time on learning (also called the learning function).
Possible choices:

a(s) = aps”, ne€(0,1).

o Individual productivity:

y(t) =1 -s(z 1)z

e Total earnings in an economy:

Y(t) = /000(1 ~ s(z, ) 2F (2, ) dz.




How much time should one spend on learning 7

Each individual wants to maximise its earnings by choosing the optimal fraction of
learning time s = s(z, t):

T o] ,
V(x,t') = max[/ / e "7t (1 — s(z, t))zp(z, t)dzdt],
se€S "y 0
subject to
oo Z
0epu(z.t) = —a(s)p(z0) [ Fr )y + £z0) [ttty oy

with px(z,t') = 6x.

Hamilton-Jacobi Bellman (HJB) equation for the value function V = V/(z, t):
OtV (z,t) — rV(z,t)

max((1 = s(z )z +a(s) [ V() = Vi 0l O)dy) =0

where S denotes the set of admissible controls S = {s : Z x [0, T] — [0, 1]} and
I=R*torZ=10,z].



The BMFG system

0tf(z,t) = —a(S(z, t))f(z, t) /oo f(y,t)dy + f(z,t) /OZ a(S(y,t))f(y, t)dy.
OtV(z,t) — rV(z,t) =

-~ ma [(1 ~ stz )z - als(z.0) [ V00 - Vi, t)dy}

sE z

S(z,t) = arg max [(1 —s(z,t))z + a(s(z, t)) /OO[V(y, t) — V(z,t)]f(y, t)dy} ,

f(z,0) = fo(z2),
V(z, T)=0.

Highly nonlinear problem: Boltzmann type equation describing the evolution of
individuals forward in time and a HJB equation for their optimal strategy backward in
time.



Special case @ = ayg

In this case the equations decouple and the maximum of

(= sz )z+a(e) [ V1) = Vi Ol )y

is S(z,t) = 0.
The Boltzmann equation can be written in terms of the cdf F(z,t) = [; f(y,t)dy:
OtF(z,t) = —ao(1l — F(z,t))F(z,t).

Then the function G(z,t) = 1 — F(z, t) satisfies the Fisher KPP equation.




Analysis of the Boltzmann equation 2

First we consider the Boltzmann type equation for a given learning function
o= afz, t):

0ef(z,t) = —a(z, )f(z, t) / F(y,t) dy + (2, 1) /O aly, t)F(y, t)dy,

f(z,0) = fo(2),

on the interval T = [0, Z], where fy € L°°(Z) is a given probability density.

Theorem

Let o = a(z,t) € LY(Z) x L*([0, T]). Then the Boltzmann equation has a global in
time solution f = f(z,t) € LY(Z) x L>([0, T]).

2M. Burger, A. Lorz and MTW, On a Boltzmann mean-field model for knowledge growth, SIAM Appl Math
76(5), 2016



But if fy has compact support....

Theorem

Let a(z,t) > a > 0 and z € supp(f), then

f(,t) =™ d5.

Distribution of agents f fom (<0 to t=4




The Hamilton-Jacobi-Bellman equation

Consider the HJB equation for a given f € C(0, T, L) on T = R*:
0:tV(z,t) —rV(z,t) = — max [(1—s(z,t))z — a(s(z,t))V(z, t)((1 — H) = f)
+a(s(z, ))((1 = H) * (Vf))]

V(z, T)=0.

Assumptions:
(A1) Let the final data V(-, T) be non-negative and non-decreasing.
(A2) Let the interaction function satisfy:

a:[0,1] = R, a € €*([0,1]), a(0) =0, a/(0) = 0o, o’ < 0 and @ monotone.



The full BMFG system

Theorem

Let f € C(0, T,L') be given and « satisfies assumption (A2). Then there exists a
unique solution V € C(0, T, L) of the HJB equation with V/(z, T) = 0. Moreover,
let V be a solution of the HJB equation with f. Then there exist constants m and D
(independent of V and f) such that

[V = Voo < De™|If = Fllc(o, 7,0y V-

Theorem

Let fo(z) € L°°(Z) be a probability density and (A1) and (A2) be satisfied. If

3
lims_o (z,,z < 00, then the fully coupled Boltzmann mean field game system on
Z = R* has a unique local in time solution.




Endogenous growth theory

o Economic growth describes the increase of the inflation-adjusted market value of
the goods and services produced in an economy over time - commonly measured
in the gross domestic product (GDP).

e The GDP of most developed countries has grown about two percent since World
War I1.

Long-term real growth in US GDP
i

GDP adjusted o i

i 2005 dollrs) 1871-2009

e Economists are interested in solutions which correspond to sustained growth - so
called balanced growth path (BGP) solutions.
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e Economists are interested in solutions which correspond to sustained growth - so
called balanced growth path (BGP) solutions.

Can we find BGP solutions for the BMFG system ?




Balanced growth path solutions

Let us assume there exists a growth parameter v € Rt and consider the re-scaling:

f(z,t) = e Tp(ze™ "), V(z,t) = e"v(ze™ ") and s(z,t) = o(ze™ ")

Rescaled BMFG system in (v, ¢,0) = (v(x), ¢(x),o(x)) with x = e~z reads as:
~200) =36 ()x = 6() [ (o)) dy — alo()ot) [ oly)dy
(=) + v (x = max { (1= o+ a(o) [ ) = vkl oy |

where = = {0 : R* — [0, 1]} denotes the set of admissible controls.

Re-scaling results in exponential growth of the overall production:

Y(t) = e /000[1 — o(x)]x¢(x)dx.




Existence of BGP solutions

Does such a growth parameter ~ exist ?



Existence of BGP solutions

The initial commutative distribution function F(z,0) = [ fo(z)dz has a Pareto tail, if
there exist constants k,0 € Rt such that

im L= F(20)

z—00 z—1/6

— k. (P)

v

Lemma

Let (P) be satisfied. Then F = F(z,t) has a Pareto tail with the same decay rate 0
for all times t € [0, T].

Theorem

Let (P) be satisfied and a = «g. then there exists a unique BGP solution (¥, v,0) and
a scaling constant ~y given by

= with &(x) = /0 ) #(y)dy.

1
=apf | f d. P(x) = ———M—
v =ap /I h(2) dz, (x) T ol




Existence of BGP solutions

Degenerate solution:
v =0, v="= and S=0= ®d(x) =1 forx >0
r
= ¢(x) = do

Challenge for the analysis and numerics: construct a solution ® with a strictly positive
Pareto tail k > 0.

Variable transformation:
1— d(x)
SO

where 6 and k denote the Pareto indices. We solve the correspondingly transformed
equation with an initial condition at { = 0 (determined by the Pareto tail condition).

¢:=x"Y% and K(¢) :==



Existence of BGP solutions

Theorem

Let r > fa(1) and k > 0, then the BGP system has a non-trivial solution satisfying
the Pareto-tail condition with k = 7 k.

Idea of proof: Fixed point argument
e Solve equations for ($,v) given (v, S).
e Solve equations for (v, S) and given (®,7).



Diffusion and knowledge growth3

Achdou et al. postulate that diffusion
e enhances growth in the case of a Pareto tail

e and leads to exponential growth also for compactly supported initial values.

Special case a = ap:

o The Fisher KPP equation (with diffusion) admits travelling wave solutions
G(z,t) = ®(z — vt)

with a minimal wave speed v = 2,/vag.

o Travelling waves correspond to BGP solutions (in logarithmic variables).

3y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, PDE models in macroeconomics, Phil. Trans.
Roy. Soc. A, 372, 2014.



Diffusion and knowledge growth

Let the knowledge of each agent evolve by a geometric Brownian motion (independent
of the time spent on learning), that is

Zt = exp(v 2VWt)

where W, is a Wiener process, independently for each agent.
Then the corresponding Boltzmann mean field game system with diffusion reads as:
z
0eF(2, t) — vO(22F(2, 1)) + vO:(2F (2, 1)) = F(2. 1) / o(S(y, ))F(y, t)dy
0

~a(Sz 00 [ . 0d,
BV (z,t) + 1220, V(z,t) +v28,V(z,t) — rV(z,t) =

~ max {(1 — 92+ als) /ZOO[V(y, £) = V(z, O]f(y, t)dy | -

v




Knowledge diffusion

Assuming the existence of the scaling parameter ~ for a balanced growth path we
rewrite the system in the known BGP variables (¢, 0, V)

() — 4x (x) — (D))" + r(xd(x)) =
6(x) / $(0)dy — a(o(x))d(x) / o(y)dy

(r — v(x) + 73/ (x) — vx?v"(x) — vxv/(x) =

~max (1= ox+ao) [ ) = vCle )|

Achdou et al. # postulated the existence of BGP solutions to this system with a

rescaling parameter « given by

)= 2\/ v /O " a(o())é(y)dy

4Y. Achdou, F.J. Buera, J.-M. Lasry, P.-L. Lions and B. Moll, PDE models in macroeconomics, Phil. Trans.
Roy. Soc. A, 372, 2014.




This model is quite simplistic....

. since meetings between individuals are completely asymmetric. Individuals can only
increase their knowledge through active search, the 'smarter’ individual gains nothing
in the meeting.

Symmetric meetings: if an individual with knowledge level y initiated the meeting, the
one with the higher knowledge level z may learn with a probability 3. This gives:

Ge = flz.0) [ la(s(z, 1) + Bas(y. O1F(y. )y

+aanéiaq%ﬂrHM@@¢mﬂnww.




Limits to learning

If two individuals meet, the one with the lower knowledge level z adopts the higher
knowledge level y with a certain probability k(%). Then

Oif(z,t) =f(z,t) /02 a(s(y, t))f(y, t)k(;)dy
~als(z (2. 0) [y k(D )dy.

Possible choice for k:

k(x) =04+ (1—06)x"" where k > 0.

Alternative interpretation of k: interaction probability depends on the distance
between knowledge levels.




Exogenous knowledge shocks

In the case of a constant interaction rate o = ag the CDF F = F(z,t) evolves
according to

0tF(z,t) = —a(l — F(z,t)F(z,t).
Then
1
T

lim F(z,t) = ———
t— o0 1 + kx~ 8

Exogenous knowledge shock: undiscovered ideas modelled by a CDF G = G(z)

OtF(z,t) = —a(1 — F(z,t))F(z,t) — B(1 — G(2))F(z,t)




Asymptotic behaviour

Depends on the 'tails’ of F and G:

If neither F(z,0) nor G(z) has a Pareto tail there will be no growth in the long
run.

If F(z,0) has a fatter tail than G(z) then the BGP has a growth rate of v = a0
(external ideas do not influence the asymptotic behaviour).

If G(z) has a fatter tail (denoted by %) the BGP path grows at a rate v = of
and the asymptotic distribution satisfies

1
lim F(z,t) = T
t—300 14 gmx—g

where m > 0.

If they have the same Pareto tail then the asymptotic distribution satisfies
1

lim F(z,t)= ——

o0 1+[k+Emlx—@

with m > 0.




The time-dependent solver

The solver is based on a fixed point scheme:
® Given fy and S* solve
1o ki1 k Vo2 cktl 2 2 k+1 2 k+1
U v LA e G A DL A L 48

v k+1
+ ;(Zi+%fi %1

f;k_ﬁl) = gl(fk7 Sk)7

for every time tk = kt, k > 1, using a trapezoidal rule to approximate the
integrals in gy.

@® Update the maximizer S¥.

® Given the evolution of the density fX and the maximizer S* solve the HJB
equation

1 v v
;(V,-Hl -V + ﬁziz(viil —2VF+ Vi) + Ez,-(\/,." - Vi)
- r\/ik = g2(sk+1’ fk+17 Vk+1)’

backward in time using a trapezoidal rule to approximate g».

© Go to step (1) until convergence.




The BGP solver

The BGP solver is also based on a fixed point scheme:

® Given ¢"t1, 4" and 0" solve

1_ 1 i 1 1 1
n+ n+ )_ Xi ( :I:rl _2Vin+ + In+1)

n_y
n+1+ (’Y - )X,(V

(r— ’Yn)V;
= —q2(¢nt1,v",0")

using the trapezoidal rule to approximate the right hand side qg».
@ Compute the maximum o"*t! and update the growth parameter v"+1 via

17 =2 [ (e ()e ()dy)

® Given v",0" and ~" solve

(" =v) -
T A O B R G )
v
e X,»2+1 ,nill (X+1 +X 1)¢n+1+x 1¢n+1)_0,
subject to the constraint (¢"+1 + qﬁ"ﬂ 1(;S"Jrl)h =1 (normalisation

J5 #(y)dy =1 plus g5+ = 0).
© Go to (1) until convergence.




Simulations
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Figure: Evolution of the production function Y = Y(t) in time for different choices of n and 6



Numerical simulations

Simulations of the time-dependent problem as well as the BGP system are
performed iteratively.

We solve the systems on a bounded domain with no-flux boundary conditions.

To exclude degenerate BGP solutions we set
¢o = 0.

We use a finite difference discretization in space and approximate the integrals
using the trapezoidal rule.




BGP simulations with knowledge diffusion
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This model is quite simplistic....

. since meetings between individuals are completely asymmetric. Individuals can only
increase their knowledge through active search, the 'smarter’ individual gains nothing
in the meeting.

Symmetric meetings: if an individual with knowledge level y initiated the meeting, the
one with the higher knowledge level z may learn with a probability 3. This gives:

Ge = flz.0) [ la(s(z, 1) + Bas(y. O1F(y. )y

+aanéiaq%ﬂrHM@@¢mﬂnww.




Limits to learning

If two individuals meet, the one with the lower knowledge level z adopts the higher
knowledge level y with a certain probability k(%). Then

Oif(z,t) =f(z,t) /02 a(s(y, t))f(y, t)k(;)dy
~als(z (2. 0) [y k(D )dy.

Possible choice for k:

k(x) =04+ (1—06)x"" where k > 0.

Alternative interpretation of k: interaction probability depends on the distance
between knowledge levels.




To finish....
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Thanks for the attention and have a great time at rest of the school !
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