Optimal Transport in a Nutshell (3h!)

Marie-Therese Wolfram

Doomed to fail
Part 1

ICMS workshop on
'Connections between interacting particle dynamics and data science'

Mange's problem (1781):
How to move a pile of sand to a hole (both having the same volume) at minimal cost?

More mathematical: given two positive densities f and g, with $\int_{\mathbb{R}^{d}} f(x) d x=\int_{\mathbb{R}^{d}} g(y) d y=1$, find a map $T: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ minimising the cost displacement of particle

$$
M(T):=\int_{\mathbb{R}^{d}}|T(x)-x| f(x) d x, \quad \text { located } \text { at } x
$$

subject to the constraint
moss token from pre-imoge of A

$$
\int_{A} g(y) d y=\int_{T^{-1}(A)} f(x) d x \text { for any Bore subset } A \subset \mathbb{R}^{d}
$$

mess dumped in A

Timeline

Notation

- More general, let's replace f and g by measures

$$
\mu \in X \text { and } \nu \in Y, \quad C(x, y)=|x-y|
$$

where X and Y are Polish spaces.

- Consider a general cost function $c: X \times Y \rightarrow \mathbb{R}$Spaces: $\mathcal{M}(X)$ space of finite measures on X

$$
\begin{aligned}
& c(x, y)=|x-y|^{p} \quad p=2 \\
& c \mid x, y)=h(x-y) \quad h \text { convex }
\end{aligned}
$$

$$
\begin{aligned}
\mathscr{M}^{+}(X) & :=\{\mu \in \mathscr{M}(X): \mu \geq 0\}, \\
\mathscr{P}(X) & :=\left\{\mu \in \mathscr{M}^{+}(X): \mu(X)=1\right\} . \Leftrightarrow \text { probabilidy measures }
\end{aligned}
$$

- Push forward operator: Let $\mu, \nu \in \mathscr{P}(X)$ and $T: X \rightarrow Y$ be a measurable map. The push-forward $T_{\#} \mu$ is defined as

$$
\nu(A)=\mu\left(T^{-1}(A)\right)
$$

for all measureable sets $A \subseteq Y$.

$$
\begin{array}{ll}
\text { Equiv volant: } \quad d \mu=f d x \quad d r=g d r \\
& \int_{y} \varphi(y) d r(y)=\int_{x} \varphi(T(x)) d \mu(x) \quad 4: y \rightarrow \mathbb{R} \\
& \text { measure } a b l e
\end{array}
$$

The Mange Problem
Given two probability measures $\mu \in \mathscr{P}(X)$ and $\nu \in \mathscr{P}(Y)$ and a cost function $c: X \times Y \rightarrow[0, \infty]$ find

$$
\begin{equation*}
\inf \left(M(T):=\left(\int c(x, T(x)) d \mu(x)\right)\right) \tag{MP}
\end{equation*}
$$

over all measureable maps $T: X \rightarrow Y$ such that $T_{\#} \mu=\nu$;

Mange is hard * highly nonlinear

$$
\begin{gathered}
d \mu=f d x \quad d r=g d x, T \in c^{\prime} \text { diffeomorphisms } \\
T_{n} \mu=v \quad \begin{array}{c}
\Rightarrow \quad \\
\\
\\
\text { change } \\
\text { of variable }
\end{array}
\end{gathered}
$$

If $T=\nabla \varphi$

$$
\text { dee } \nabla^{2} \varphi=\frac{f(x)}{g(\nabla \varphi)} \Leftarrow \frac{\text { Monge-Ampers }}{\begin{array}{l}
\text { equation } \\
\text { Kigali, Cofforrelli,... }
\end{array}}
$$

Example [Non-uniqueness] Let $X=[0,2], Y=[1,3], \mu=\frac{1}{2} \mathbf{1}_{[0,2]}, \nu=\frac{1}{2} \mathbf{1}_{[1,3]}$ and $c(x, y)=|x-y|$. Let T_{1} and T_{2} denote two transportation maps, given by $T_{1}(x)=x+1$ and

$$
T_{2}(x)= \begin{cases}x+2 & \text { if } x \in[0,1] \\ x & \text { if } x \in(1,2]\end{cases}
$$

$T_{1} \ldots$ Linear trouslotion
$T_{2} \ldots$ only move moss from $(0,1]$ to $[2,3]$

$$
\left.\begin{array}{rl}
M\left(T_{1}\right)=\frac{1}{2} \int_{0}^{2}|x \rightarrow 1-x| d x & =1 \\
M\left(T_{2}\right)=1
\end{array}\right\} \quad \begin{aligned}
y_{1}
\end{aligned} \quad \Rightarrow(T)=1 \text { the } \quad \text { best possible } ~ T \text { might not be UNIQUE }
$$

Ex d.

Example [Non-existence] Let $X=[0,1]$ and $Y=[0,2]$ and $\mu=\mathbf{1}_{[0,1]}$ and $\nu=\frac{1}{2} \mathbf{1}_{[0,2]}$ and cost $c(x, y)=|x-y|^{\frac{1}{2}}$.

\Rightarrow moss con't be split

Why is (MP) difficult?

- Class of admissible transportation maps might be empty.
- Solution may not be unique.
- There's no notion of convergence, which makes the class of admissible transportation maps sequentially closed and compact.

The Kantorovich problem:
Given two probability measures $\mu \in \mathscr{P}(X)$ and $\nu \in \mathscr{P}(Y)$ and a cost $c: X \times Y \rightarrow[0, \infty]$ find

$$
\begin{equation*}
\inf \left(K(\pi):=\int_{X \times Y} c(x, y) d \pi(x, y)\right) \tag{KP}
\end{equation*}
$$

among all admissible transportation plans $\pi \in \Pi(\mu, \nu)$, where

$$
\Pi(\mu, \nu):=\left\{\pi \in \mathscr{P}(X \times Y):\left(P_{X}\right)_{\#} \pi=\mu,\left(P_{Y}\right)_{\#} \pi=\nu\right\}
$$

and P_{X} and P_{Y} are the projections of $X \times Y$ onto X and Y, respectively.
Trouspordotion plonk $\pi(x, y)$ how much moss hos moved from x to y,
 ad miscible π

Why is (KP) easier?

$$
\pi=\mu \otimes r
$$

- The set $\Pi(\mu, \nu)$ is not empty, and compact and convex wry to the narrow topology.
- The mapping $\pi \rightarrow \int c(x, y) d \pi(x, y)$ is linear.Transportation plans π 'include' transportation maps T.
Problem is symmetric.

Example Let $X=[0,1]$ and $Y=[0,2]$ and $\mu=\mathbf{1}_{[0,1]}$ and $\nu=\frac{1}{2} \mathbf{1}_{[0,2]}$ and cost $c(x, y)=|x-y|^{\frac{1}{2}}$.

$$
\pi=1 / 211[0,1] \times[0,2] \quad \text { admissible }
$$

A Scottish example [Discrete measures] Consider two discrete measures, where all x_{i} and y_{j} are different

$$
\mu=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}} \text { and } \nu=\frac{1}{n} \sum_{j=1}^{n} \delta_{y_{j}} .
$$

For example, x_{i} may denote the locations of distilleries on Skye while y_{j} are the location of pubs.

\Rightarrow Lineal
assignment problem

Ronge

$$
\begin{array}{ll}
\min \frac{1}{n} \sum_{1} c\left(x_{i}, T\left(x_{i}\right)\right) \\
& \Downarrow \\
\min \frac{1}{n} \sum_{i} c\left(x_{i}, y z(i)\right) \quad 2 \ldots \text { permutotion }
\end{array}
$$

Koutorovich $\quad \min \frac{1}{n} \sum c_{i j} \pi_{i j}$

$$
\Pi_{(\mu, v)}=\left\{\pi \in \mathbb{R}^{n \times n}: \prod_{i} \pi_{i j}=\prod_{j} \pi_{i j}=\frac{1}{n}\right\}
$$

\Rightarrow Birkhoff's theorem? extremol points of the set of bistodnostic motrices ore induced by permutation

Konge and Koutororich ogree

Relax, Monge!
Every transportation map T (in the sense of Monge) induces a transportation plan π :

$$
\pi_{T}:=(\operatorname{ld}, T)_{\#} \mu . \quad \Leftrightarrow \quad d \pi_{T}=\int_{y=T(x)} d \mu
$$

If T^{+}is optimal $\Rightarrow \pi_{T^{+}}$

Since

$$
\underbrace{}_{X_{x y} c(x, y) d \bar{x}(x, y)}=\int_{x}^{K(\pi)} c(x, y) \delta_{y=T(x)} d y d \mu
$$

Therefore

$$
\inf K(\pi) \leq \inf \Pi(\pi)
$$

\Rightarrow Trousport mop induces trousport plan π

Converse? If on pion π con be written

$$
d \pi(x, y)=\delta_{y=T_{(x)}} d \mu(x)
$$

$\Rightarrow T$ is on $O T$ mop

Theorem (Existence of transportation plans)
Let X and Y be compact metric spaces, $\mu \in \mathscr{P}(X)$ and $\nu \in \mathscr{P}(Y)$ and $c: X \times Y \rightarrow \mathbb{R}$ be a lower semi-continuous function. Then (KP) admits a unique solution.

Direct method of calculus of variations
Kontorprich

$$
\min _{v \in V} F(v) \quad \min _{\pi \in \pi} K(\pi)
$$

- Check that $\{v \in V: F(v)<\infty\} \neq 0$.
- Consider a minimising sequence $\left\{v_{n}\right\}$ in V with $F\left(v_{n}\right) \rightarrow \inf F(v)$.
- Show that V is compact in a suitable topology. \leftarrow the woke the dopology
- F is lower semicontinuous wry this topology. the cosier conn.
the strange the of cesseque.
cosies the sect-
Put together

$$
\begin{aligned}
& n \rightarrow \infty \\
& \bar{F}\left(v^{+}\right)=\inf \{F(v) \mid r \in v\}
\end{aligned} \geqslant \inf \{F(v) \mid v \in V\}
$$

Example

- We wish to transport bottles of whiskey from a given number of distilleries and a given number of pubs.
- Let $c(x, y)$ denote the cost of transporting one unit of whiskey from distillery x to pub y.

(c) Distilleries

(d) Pubs

Outsourcing to controctor
-) $\psi(x)$ price to pick up whiskey of x
0) $\varphi(y) \quad-x$ drop off -r y

$$
\psi(x)+\varphi(y) \leqslant c(x, y) \quad \forall x, y
$$

The Dual Problem
Given two probability densities $\mu \in \mathscr{P}(X)$ and $\nu \in \mathscr{P}(Y)$ and a cost function $c: X \times Y \rightarrow[0, \infty)$ consider

$$
\begin{equation*}
\max _{\varphi, \psi \in \Phi_{c}}\left(\int_{X} \varphi(x) d \mu(x)+\int_{Y} \psi(y) d \nu(y) d: \varphi \in C_{b}\left((X), \psi \in C_{b}(Y)\right)\right. \tag{DP}
\end{equation*}
$$

where $\Phi_{c}=\left\{(\varphi, \psi) \in C_{b}(X) \times C_{b}(Y): \varphi(x)+\psi(y) \leq c(x, y)\right\}$.
Since $\varphi(x)+\psi(y) \leqslant c(x, y)$
$4(4) \psi \cdot \varphi(x)+\psi(y)$

$$
\begin{aligned}
\int_{x} \varphi(x) d \mu, \int \psi(y) d \mu & \left.=\int_{x \times y} 14+\psi\right) d \pi \\
& \leq \int_{x \times y}(x, y) d \pi
\end{aligned}
$$

$$
\text { sup } D P \leq \min K P
$$

If $\sup D^{P}=\min \mathbb{R}^{P} \Leftarrow$ strong dualidy

Optimelidy \& Monodovicidy
$\exists \pi=\pi_{i}$ amount of whiskey going to x_{i} to y_{j}

Assume my Cost is doc high
0) $x_{1} \rightarrow y_{1}$ decide $x_{1} \rightarrow y_{2}$
0) $x_{2} \rightarrow y_{2}$ decide $x_{2} \rightarrow y_{3}$

Benefit

$$
\begin{aligned}
& c\left(x_{1}, y_{1}\right)-c\left(x_{1}, y_{2}\right) \\
& c\left(x_{2}, y_{2}\right)-c\left(x_{2}, y_{3}\right)
\end{aligned}
$$

$$
\begin{array}{cl}
c\left(x_{1}, y_{2}\right)+\ldots & +c\left(x_{N}, y_{1}\right) \leq c\left(x_{1}, y_{1}\right)+\ldots .+c\left(x_{N}, y_{N}\right) \\
& \Rightarrow \Pi \text { CANT BS OPTIMAL }
\end{array}
$$

Definition (C-Cyclical monotonicity)
Let X, Y be a arbitrary sets and $c: X \times Y \rightarrow(-\infty, \infty]$ be a function. A subset $\Gamma \subset X \times Y$ is called c-cyclically monotone if for any $m \in \mathbb{N}$ and any family $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots,\left(x_{N}, y_{N}\right)$ of points in 「

$$
\sum_{i=1}^{N} c\left(x_{i}, y_{i}\right) \leq \sum_{i=1}^{N} c\left(x_{i}, y_{i+1}\right)
$$

with $y_{N+1}=y_{1}$. A transportation plan is c-cyclically monotone if its concentrated on a c-cyclically monotone set.

Definition (C-Transforms)
Let $\varphi: X \rightarrow \mathbb{R} \cup\{\infty\}$, then its c-transform $\varphi^{c}: Y \rightarrow \mathbb{R} \cup\{\infty\}$ is defined as

$$
\left.\varphi^{c}(y)=\inf _{x \in X} c(x, y)-\varphi(x) \quad \varphi(x)+\psi \mid y\right) \leq C(x, y)
$$

The \bar{c}-transform of $\psi: Y \rightarrow \mathbb{R} \cup\{\infty\}$ is given by $\psi^{\bar{c}}(x)=\inf _{y \in Y} c(x, y)-\psi(y)$.
Theorem
Let X and Y be Polish spaces and assume that $c: X \times Y \rightarrow \mathbb{R}$ is uniformly continuous and bounded. The $(D P)$ admits a solution $\left(\varphi, \varphi^{c}\right)$ and $\max (D P)=\min (K P)$.
$(\varphi, 4)<$ Kondorovich potenial

Theorem
Let μ and ν be two probability measures on a compact domain $\Omega \subset \mathbb{R}^{d}$ and the cost $c(x, y)=h(x-y)$ with h strictly convex.

Then there exists a unique transportation plan π of the form $(i d, T)_{\#} \mu$ if μ is absolutely continuous and $\partial \Omega$ negligible. The corresponding Kantorovich potential φ is linked via

$$
\left.T(x)=x-(\nabla h)^{-1}(\nabla \varphi(x))\right)
$$

Dualidy: Assume thee exist J OT plan π \& Conteronich plow φ

$$
\begin{aligned}
& \varphi(x)+\varphi^{c}(y) \varepsilon c(x, y) \quad \text { on } \Omega \times \Omega \\
& \varphi(x)+\varphi^{c}(y)=c(x, y) \quad \text { on } s \rho^{+}(\pi)
\end{aligned}
$$

Consider $\left(x_{0}, y_{0}\right)$ on $\operatorname{spt}(\pi)$
x t $\varphi(x)-c\left(x, y_{0}\right)$ is \min of x_{0} If $\varphi \& c$ diff.

$$
\nabla \varphi\left(x_{0}\right)=\nabla_{x} c\left(x_{0}, y_{0}\right)=\nabla_{x} h\left(x_{0}-y_{0}\right)
$$

If h is stricily Couva

$$
\begin{array}{r}
x_{0}-y_{0}=(\nabla h)^{-1}\left(\nabla \varphi\left(x_{0}\right)\right) \\
\left.T(x)=x-(\nabla h)^{-1}(\nabla \varphi \mid x)\right)
\end{array}
$$

NOT working $c(x, y)=|x-y|$

Theorem (Brenier's Theorem)
Let $\mu \in \mathscr{P}(X), \nu \in \mathscr{P}(Y)$ with $X, Y \subset \mathbb{R}^{d}$, assume that both have finite second moments and that μ does not give mass to small sets, and let $c(x, y)=|x-y|^{2}$.

Then there exists a unique solution π to the Kantorovich problem (KP). This plan is uniquely supported on the graph $(x, T(x))$, that is $\pi=(I d, T)_{\#} \mu$. Furthermore there exists an $L^{1}(\mu)$, convex, lower-semicontinuous function $\bar{\varphi}$ such that $\pi=(I d \times \nabla \bar{\varphi})_{\#} \mu$.

Quadratic cost.

$$
J(x)=x-\nabla \varphi(x)=\nabla(\underbrace{\frac{x^{2}}{2}-\varphi}_{i=u}) \quad u \text { convex } \quad \text { Lsc. }
$$

\Rightarrow Tronsportation mop is the grodient of a Couvade \& ls
 function

References:

- Alfred Galichon, Optimal transport in economics, Princeton University Press, 2016
- Gabriel Peyre and Macro Cuturi, Computational optimal transport, Foundations and Trends in Machine Learning, 2019
- Fillipo Santambrogio, Optimal transport for applied mathematicians, Springer, 2015.
- Cedric Villani, Topics in optimal transport, AMS 2003.
- Cedric Villani, Optimal transport: old and new, Springer, 2008.

Python libraries

- CVPXY

Stephan Diamon and Steve Boyd CVXPY: A Python-embedded modeling language for convex optimization, Journal of Machine Learning Research, 2016
URL: https://www.cvxpy.org/index.html

- POT Python Optimal Transport
R. Flamary et al. POT Python Optimal Transport library, Journal of Machine Learning Research, 22(78):18, 2021.
URL: https://pythonot.github.io/
- OTT Optimal Transport Toolbox
M. Cuturi et al. Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein, arXiv:2201.12324, 2022
URL: https://github.com/ott-jax/ott

