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Monge’s problem (1781):

How to move a pile of sand to a hole (both having the same volume) at minimial cost?

More mathematical: given two positive densities f and g , with
R
Rd f (x)dx =

R
Rd g(y)dy = 1, find

a map T : Rd ! Rd minimising the cost

M(T ) :=

Z

Rd

|T (x)� x |f (x)dx ,

subject to the constraint
Z

A

g(y)dy =

Z

T�1(A)
f (x)dx for any Borel subset A ⇢ Rd .
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Notation

More general, let’s replace f and g by measures

µ 2 X and ⌫ 2 Y ,

where X and Y are Polish spaces.

Consider a general cost function c : X ⇥ Y ! R
Spaces: M(X ) space of finite measures on X

M+(X ) := {µ 2 M (X ) : µ � 0},
P(X ) := {µ 2 M+(X ) : µ(X ) = 1}.

Push forward operator: Let µ, ⌫ 2 P(X ) and T : X ! Y be a measureable map. The
push-forward T#µ is defined as

⌫(A) = µ(T�1(A))

for all measureable sets A ✓ Y .
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The Monge Problem

Given two probability measures µ 2 P(X ) and ⌫ 2 P(Y ) and a cost function c : X ⇥ Y ! [0,1]
find

inf

✓
M(T ) :=

✓Z
c(x ,T (x))dµ(x)

◆◆
(MP)

over all measureable maps T : X ! Y such that T#µ = ⌫.
-

⊕

Monge is hard ⊕ highly nonlinear

dµ= f- DX dr -_ gdx ,
T c- C

' diffeomorphisms
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change
of variable

If 1-=P 4
det Phe = gf,Y÷, ⇐

Range- Ampere

equation
Figalli , Caffarelli , . . -.



Example [Non-uniqueness] Let X = [0, 2], Y = [1, 3], µ = 1
21[0,2], ⌫ = 1

21[1,3] and
c(x , y) = |x � y |. Let T1 and T2 denote two transportation maps, given by T1(x) = x + 1 and

T2(x) =

(
x + 2 if x 2 [0, 1]

x if x 2 (1, 2].
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Example [Non-existence] Let X = [0, 1] and Y = [0, 2] and µ = 1[0,1] and ⌫ = 1
21[0,2] and cost

c(x , y) = |x � y |
1
2 .
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Why is (MP) di�cult?

Class of admissible transportation maps might be empty.

Solution may not be unique.

There’s no notion of convergence, which makes the class of admissible transportation
maps sequentially closed and compact.



The Kantorovich problem:

Given two probability measures µ 2 P(X ) and ⌫ 2 P(Y ) and a cost c : X ⇥ Y ! [0,1] find

inf

✓
K(⇡) :=

Z

X⇥Y

c(x , y)d⇡(x , y)

◆
(KP)

among all admissible transportation plans ⇡ 2 ⇧(µ, ⌫), where

⇧(µ, ⌫) := {⇡ 2 P(X ⇥ Y ) : (PX )#⇡ = µ, (PY )#⇡ = ⌫}

and PX and PY are the projections of X ⇥ Y onto X and Y , respectively.
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Why is (KP) easier?

The set ⇧(µ, ⌫) is not empty, and compact and convex wrt to the narrow topology.

The mapping ⇡ !
R
c(x , y)d⇡(x , y) is linear.

Transportation plans ⇡ ’include’ transportation maps T .

Problem is symmetric.

Example Let X = [0, 1] and Y = [0, 2] and µ = 1[0,1] and ⌫ = 1
21[0,2] and cost c(x , y) = |x � y |

1
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A Scottish example [Discrete measures] Consider two discrete measures, where all xi and yj are
di↵erent

µ =
1

n

nX

i=1

�xi and ⌫ =
1

n

nX

j=1

�yj .

For example, xi may denote the locations of distilleries on Skye while yj are the location of pubs.

(a) Distilleries (b) Pubs

⇒ Linear

assignment
problem
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Relax, Monge!

Every transportation map T (in the sense of Monge) induces a transportation plan ⇡:

⇡T := (Id,T )#µ. ⇐ dirty - Sy=Te✗)ᵈM

If Tt is optimal ⇒ Ttt
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Therefore

inf Riñ) ≤ inf MIT)

⇒ Transport mop induces transport plant

Converse ? If on pion is con be written
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Theorem (Existence of transportation plans)

Let X and Y be compact metric spaces, µ 2 P(X ) and ⌫ 2 P(Y ) and c : X ⇥Y ! R be a

lower semi-continuous function. Then (KP) admits a unique solution.

Direct method of calculus of variations

min
v2V

F (v)

Check that {v 2 V : F (v) < 1} 6= 0.

Consider a minimising sequence {vn} in V with F (vn) ! inf F (v).

Show that V is compact in a suitable topology.

F is lower semicontinuous wrt this topology.
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Example

We wish to transport bottles of whiskey

from a given number of distilleries and a

given number of pubs.

Let c(x , y) denote the cost of

transporting one unit of whiskey from

distillery x to pub y. (c) Distilleries (d) Pubs

Outsourcing to contractor
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The Dual Problem

Given two probability densities µ 2 P(X ) and ⌫ 2 P(Y ) and a cost function c : X ⇥ Y ! [0,1)
consider

max
', 2�c

✓Z

X

'(x)dµ(x) +

Z

Y

 (y)d⌫(y)d : ' 2 Cb((X ),  2 Cb(Y )

◆
, (DP)

where �c = {(', ) 2 Cb(X )⇥ Cb(Y ) : '(x) +  (y)  c(x , y)}.

Since 41×1 + 414) ≤ Ctx ,y) 4 ④ 4--61×1*4 /y)

/ 41×1 dnt 14141dm = / 14+04)dñ
✗ y xxy

≤ / Ctx,y)dñ
✗✗Y

Sup DP E min KP

If sup DP
= min RP ⇐ strong duality



Optimality & Monotonicity

Fñ : ñij amount of whiskey going to xitoyj

Assume my Cost is doo high BENEFIT
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Definition (C-Cyclical monotonicity)

Let X , Y be a arbitrary sets and c : X ⇥ Y ! (�1,1] be a function. A subset � ⇢ X ⇥ Y

is called c-cyclically monotone if for any m 2 N and any family (x1, y1), (x2, y2) . . . , (xN , yN)
of points in �

NX

i=1

c(xi , yi ) 
NX

i=1

c(xi , yi+1)

with yN+1 = y1. A transportation plan is c-cyclically monotone if its concentrated on a

c-cyclically monotone set.

Definition (C-Transforms)

Let ' : X ! R [ {1}, then its c-transform 'c : Y ! R [ {1} is defined as

'c (y) = inf
x2X

c(x , y)� '(x)

The c̄-transform of  : Y ! R [ {1} is given by  c̄ (x) = infy2Y c(x , y)�  (y).

Theorem

Let X and Y be Polish spaces and assume that c : X ⇥ Y ! R is uniformly continuous and

bounded. The (DP) admits a solution (','c ) and max(DP) = min(KP).

⇒ IT is optimal ⇒ sptlit) is a c- CM set

41×1+41×1 ≤ ccx,y)

@ it) ⇐ KontorOrick potential



Theorem

Let µ and ⌫ be two probability measures on a compact domain ⌦ ⇢ Rd
and the cost

c(x , y) = h(x � y) with h strictly convex.

Then there exists a unique transportation plan ⇡ of the form (id,T )#µ if µ is absolutely

continuous and @⌦ negligible. The corresponding Kantorovich potential ' is linked via

T (x) = x � (rh)�1(r'(x))).

Duality : Assume there exist 70T plow it & Kontor rich

plan 4
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Theorem (Brenier’s Theorem)

Let µ 2 P(X ), ⌫ 2 P(Y ) with X ,Y ⇢ Rd
, assume that both have finite second moments

and that µ does not give mass to small sets, and let c(x , y) = |x � y |2.

Then there exists a unique solution ⇡ to the Kantorovich problem (KP). This plan is

uniquely supported on the graph (x ,T (x)), that is ⇡ = (Id,T )#µ. Furthermore there exists

an L1(µ), convex, lower-semicontinuous function '̄ such that ⇡ = (Id⇥r'̄)#µ.

Quadratic cost . Tix) = × - Rya) =D ( É - 4) U convex

-
LSC.

I = U

⇒ Transportation mop is the gradient of a

Couvee&l→
function

MONGE T → KANTORovictf

T
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