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Preliminaries

Definition (Colour distribution sequence)
An edge colouring of Kn using k colours has colour distribution sequence
(e1, · · · , ek) if there are exactly ei edges of colour i for every 1 ≤ i ≤ k .

Definition (Rainbow H-free colouring)
An edge colouring of Kn is rainbow H-free if any subgraph of Kn

isomorphic to H contains at least two edges of the same colour.

a rainbow K3-free colouring of K4

colour distribution sequence (3, 2, 1)

3 / 31



Preliminaries

Question
If an edge colouring of Kn is rainbow H-free, what could its colour
distribution sequence be?

Definition (g(H , k))
For any connected graph H and integer k , let g(H, k) be the smallest
integer N such that for all n ≥ N and any (e1, · · · , ek) ∈ Nk satisfying
e1 + · · ·+ ek =

(n
2

)
can be realised as the colour distribution sequence of a

rainbow H-free colouring of Kn.

Question
Is g(H, k) finite?
If so, what is its order of magnitude?
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Gallai Colourings

Definition
An edge-colouring of Kn using k colours is a Gallai k-colouring if it does
not contain a rainbow triangle, or equivalently if it is rainbow K3-free.

a Gallai 3-colouring of K4 a Gallai 4-colouring of K7
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g(K3, k)

Theorem (Gyárfás, Pálvölgyi, Patkós, Wales, 2020)
For every integer k ≥ 2, there exists an integer N such that for all n ≥ N
and any (e1, · · · , ek) ∈ Nk satisfying

∑k
i=1 ei =

(n
2

)
, there exists a Gallai

k-colouring of Kn with colour distribution sequence (e1, · · · , ek).
In other words, g(K3, k) < ∞.

Bounds on g(K3, k):
(Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

2k − 2 ≤ g(K3, k) ≤ 8k2 + 1.

(Feffer, Fu, Y., 2020)

Ω(k1.5/ log k) = g(K3, k) = O(k1.5).
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g(K3, k)

Bounds on g(K3, k):
(Gyárfás, Pálvölgyi, Patkós, Wales, 2020)

2k − 2 ≤ g(K3, k) ≤ 8k2 + 1.

(Feffer, Fu, Y., 2020)

Ω(k1.5/ log k) = g(K3, k) = O(k1.5).

Theorem (Y., 2023+)

g(K3, k) = Θ(k1.5/(log k)0.5).
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Decomposition of Gallai Colourings

Theorem (Gyárfás, Simonyi, 2004)
Given a Gallai k-colouring of Kn, we can find at most 2 colours, which we
call base colours, and a decomposition of Kn into m ≥ 2 vertex disjoint
complete graphs Kn1 , · · · ,Knm , such that

For each i ̸= j , there exists a base colour such that all edges between
Kni and Knj have this colour.

Conversely, any such decomposition, along with Gallai k-colourings on each
Kni gives a Gallai k-colouring on Kn.

a decomposition of

a Gallai 4-colouring of K14
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Strengthened Version of the Decomposition Theorem

Theorem (Feffer, Fu, Y., 2020)
Given a Gallai k-colouring of Kn, we can find at most 2 colours, which we
call base colours, and a decomposition of Kn into m ≥ 2 vertex disjoint
complete graphs Kn1 , · · · ,Knm , such that

For each i ̸= j , there exists a base colour such that all edges between
Kni and Knj have this colour.
Each base colour is used to colour at ≥ n− 1 edges between the Kni ’s.

Corollary
Suppose we have a Gallai k-colouring of Kn with colour distribution
sequence (e1, · · · , ek), where e1 ≥ · · · ≥ eℓ ≥ b + 1 > eℓ+1 ≥ · · · ≥ ek .
Then colours ℓ+ 1, · · · , k will not be used as base colours until we are
decomposing a complete graph of size at most b + 1.
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Lower Bound

Example
There is no Gallai 4-colouring of K6 with colour sequence (4, 4, 4, 3).

Example
There is no Gallai 4-colouring of K7 with colour sequence (9, 4, 4, 4).

Proof.
The only possible decomposition is K7 → K6 ∪ K1, and we have to colour
all 6 edges between with colour 1. But then we need to find a Gallai
4-colouring of K6 with colour sequence (3, 4, 4, 4).
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Lower Bound

Proposition (Y., 2023+)

Let n = k1.5/10(log k)0.5 and let a = Θ(k2/ log k), b = Θ(k). Then there
is no Gallai k-colouring of Kn with colour distribution sequence
(a, a, · · · , a, b, b, · · · , b). This shows g(K3, k) ≥ k1.5/10(log k)0.5.

Proof (Sketch).

(a, a, · · · , a, b, b, · · · , b)

Not used
until size b + 1

decomposition
steps

(≤ b,≤ b, · · · ,≤ b, b, b, · · · , b)

Before reaching

size b + 1
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Upper Bound

Proposition (Y., 2023+)

Let n ≥ 5000000k1.5/(log k)0.5. Then for any e1 + · · ·+ ek =
(n
2

)
, there is

a Gallai k-colouring with colour sequence (e1, · · · , ek). This shows
g(K3, k) ≤ 5000000k1.5/(log k)0.5.

Proof (Sketch).
We show that a colouring of the following form is always possible.

Kn · · · ... K1’s
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Upper Bound

Lemma
Suppose there exists some ei ≥ t(n − t), then we can decompose Kn into
Kt and Kn−t , and colour all t(n − t) edges between them with colour i .
In particular, if n ≥ 2k , then we can decompose Kn into Kn−1 and K1.

Kn−1 K1 =⇒ K2k

K1

K1

...

K1

K1

Problem: How to colour K2k?
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Cushions

Observation
Suppose at some stage of this process, the complete graphs remaining have
sizes x ≥ y1 ≥ · · · ≥ ym, and we still need to colour ei edges with colour i .
Then we must have

∑k
i=1 ei =

(x
2

)
+
∑m

j=1
(yj

2

)
.

We view the quantity
∑m

j=1
(yj

2

)
as the cushion we have available to colour

the complete graph Kx .

Kx

Ky1 Ky2 · · · Kym
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Creating Cushions

Lemma (Y., 2023+)

If e1 + · · ·+ ek ≥
(2k

2

)
+1

2k
2, then there exists a Gallai k-colouring of K2k

with at most ei edges of colour i .

K2k

Kc1 Kc2 · · · Kcm

c1, · · · , cm ≪ k , but
(c1

2

)
+ · · ·+

(cm
2

)
≥ 1

2k
2.

Problem: How to colour these Kci ?
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Reservoirs

Use an absorption type argument.

K2k

Kr1 · · · Krk

Reservoirs

Kc1 · · · Kck

Cushions

r1, · · · , rk ≪ c1, · · · , cm ≪ k , but
(c1

2

)
+ · · ·+

(cm
2

)
≥ 1

2k
2.

Use the cushions created by Kc1 , · · · ,Kcm to colour K2k .
Use the cushions created by Kr1 , · · · ,Krk to colour both Kc1 , · · · ,Kcm

and Kr1 , · · · ,Krk .
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Degeneracy

Definition (Degeneracy)
A graph H is k-degenerate if every subgraph of H has a vertex of
degree at most k .
The degeneracy of H is the smallest integer k such that H is
k-degenerate.

Example
A connected graphs has degeneracy 1 if and only if it is a tree.
If a graph has degeneracy at least k , then it has a subgraph with
minimum degree at least k .
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H = K1,m / Star

Proposition (Wu, Y., 2023++)

If n ≥ 10
√
k and k ≥ 10m2, then there is no rainbow K1,m-free k-colouring

of Kn with the balanced colour distribution sequence.
In particular, this shows that g(K1,m, k) = ∞ for large k .

Proof.
Double count N = the number of pairs (v , c), where v is a vertex of Kn

and c is the colour of some edge adjacent to v .
If the colouring is rainbow K1,m-free, then N ≤ n(m − 1).
If the colouring has colour distribution sequence (e1, · · · , ek), then
N ≥

∑k
i=1

√
2ei as edges with colour i is incident with least

√
2ei vertices.

We have a contradiction if conditions in the proposition are satisfied.
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Trees

Theorem (Wu, Y., 2023++)

Let H be a tree on m vertices. If n ≥ 10
√
k and k ≥ (10m)10m, then any

k-colouring of Kn with "almost balanced" colour distribution sequence
contains a rainbow H.
In particular, this shows that g(H, k) = ∞ for large k .

Proof (Sketch).
Induction on m. Let v be a leaf of H.

The set A of vertices in Kn adjacent to edges of at least 2m + 1
colours has size at least n/2.
Colour distribution inside A is still "almost balanced".
Induction gives a rainbow H − v in A.
Can attach leaf v by the defining property of A.
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Degeneracy ≥ 3

Theorem (Wu, Y., 2023++)
Let H be a graph on m vertices with degeneracy at least 3, then

g(H, k) = Θm(k).
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Degeneracy ≥ 3 Lower Bound

Proposition (Wu, Y., 2023++)

Let H be a graph on m vertices and let n ≤ k/m3. Then any k-colouring of
Kn with the balanced colour sequence (e1, · · · , ek) contains a rainbow H.
In particular, this shows g(H, k) ≥ k/m3.

Proof (Sketch).
Fix any balanced k-colouring of G = Kn.
Let S be a size m subset of V (G ) chosen uniformly at random.
Show that the expected number of edge pairs in G [S ] with the same
colour is < 1.
Thus, there is a realisation of S such that G [S ] is rainbow, and so
contains a rainbow copy of H.
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Degeneracy ≥ 3 Upper Bound

Proposition (Wu, Y., 2023++)
Let H be a graph with minimum degree at least 3. Let n ≥ 2k , and let
e1 ≥ · · · ≥ ek be such that e1 + · · ·+ ek =

(n
2

)
. Then there exists a rainbow

H-free colouring of Kn with colour distribution sequence (e1, · · · , ek).

Proof (Sketch).

Induction on k . Let t be the smallest integer satisfying
(t
2

)
+ t(n− t) ≥ ek .

t ≤ n
k

ek edges colour k

others colour 1

n − t ≥ 2(k − 1)

rainbow H-free
colouring

from induction

no rainbow H

can contain
these t vertices

So this colouring is rainbow H-free.
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Degeneracy ≥ 3 Upper Bound

Proposition (Wu, Y., 2023++)
Let H be a graph with minimum degree at least 3. Let n ≥ 2k , and let
e1 ≥ · · · ≥ ek be such that e1 + · · ·+ ek =

(n
2

)
. Then there exists a rainbow

H-free colouring of Kn with colour distribution sequence (e1, · · · , ek).
Therefore, g(H, k) ≤ 2k .

Corollary
Let H be a graph with degeneracy at least 3. Then g(H, k) ≤ 2k .

Proof.
From definition of degeneracy, H contains a subgraph H ′ with minimum
degree at least 3. Since rainbow H ′-free implies rainbow H-free, we have
g(H, k) ≤ g(H ′, k) ≤ 2k .
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Degeneracy 2

Let H be a graph on m vertices with degeneracy 2. From the definition of
degeneracy, H contains a cycle.

The random lower bound argument works for any graph, so
g(H, k) = Ωm(k).
Can show that the upper bound construction for K3 is not only
rainbow K3-free, but in fact contains no rainbow cycle. So
g(H, k) = O(k1.5/(log k)0.5).
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Open Questions

Determine the order of magnitude of g(C4, k).
Determine the order of magnitude of g(H, k) for all H with
degeneracy 2.
Better constants in the known Θ results for g(H, k).
More necessary and sufficient conditions for possible colour distribution
sequence of rainbow H-free colourings of Kn when n ≤ g(H, k).
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