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Motivation

To build convergent numerical schemes for nonlinear PDE of dispersive
type: SCHRÖDINGER EQUATION.
Similar problems for other dispersive equations: Korteweg-de-Vries, wave
equation, ...

Goal: To cover the classes of NONLINEAR equations that can be solved
nowadays with fine tools from PDE theory and Harmonic analysis.

Key point: To handle nonlinearities one needs to decode the intrinsic
hidden properties of the underlying linear differential operators (Strichartz,
Kato, Ginibre, Velo, Cazenave, Weissler, Saut, Bourgain, Kenig, Ponce,
Saut, Vega, Koch, Tataru, Burq, Gérard, Tzvetkov, ...)

This has been done succesfully for the PDE models.
What about Numerical schemes?

FROM FINITE TO INFINITE DIMENSIONS IN PURELY
CONSERVATIVE SYSTEMS.....
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Motivation

UNDERLYING MAJOR PROBLEM:

Reproduce in the computer the dynamics in Continuum and Quantum
Mechanics, avoiding spurious numerical solutions.

For this we need to adapt at the discrete numerical level the techniques
developed in the continuous context.

WARNING!

NUMERICS = CONTINUUM + (POSSIBLY) SPURIOUS
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Motivation

Note that the appropriate functional setting often depends on the PDE on
a subtle manner.
Consider for instance:

du

dt
(t) = Au(t), t ≥ 0; u(0) = u0.

A an unbounded operator in a Hilbert (or Banach) space H, with domain
D(A) ⊂ H. The solution is given by

u(t) = eAtu0.

Semigroup theory provides conditions under which eAt is well defined.
Roughly A needs to be maximal (A+ I is invertible) and dissipative
(A ≤ 0).
Most of the linear PDE from Mechanics enter in this general frame: wave,
heat, Schrödinger equations,...
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Motivation

Nonlinear problems are solved by using fixed point arguments on the
variation of constants formulation of the PDE:

ut(t) = Au(t) + f(u(t)), t ≥ 0; u(0) = u0.

u(t) = eAtu0 +
∫ t

0
eA(t−s)f(u(s))ds.

Assuming f : H → H is locally Lipschitz, allows proving local (in time)
existence and uniqueness in

u ∈ C([0, T ];H).

But, often in applications, the property that f : H → H is locally
Lipschitz FAILS.
For instance H = L2(Ω) and f(u) = |u|p−1u, with p > 1.
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Motivation

Then, one needs to discover other properties of the underlying linear
equation (smoothing, dispersion): IF eAtu0 ∈ X, then look for solutions of
the nonlinear problem in

C([0, T ];H) ∩X.

One then needs to investigate whether

f : C([0, T ];H) ∩X → C([0, T ];H) ∩X

is locally Lipschitz. This requires extra work: We need to check the
behavior of f in the space X. But the the class of functions to be tested
is restricted to those belonging to X.
Typically in applications X = Lr(0, T ;Lq(Ω)). This allows enlarging the
class of solvable nonlinear PDE in a significant way.
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Motivation

IF WORKING IN C([0, T ]; : H) ∩X IS NEEDED FOR SOLVING THE
PDE, FOR PROVING CONVERGENCE OF A NUMERICAL SCHEME
WE WILL NEED TO MAKE SURE THAT IT FULFILLS SIMILAR
STABILITY PROPERTIES IN X (OR Xh).

THIS OFTEN FAILS!
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Dispersion for the 1− d Schrödinger equation

Consider the Linear Schrödinger Equation (LSE):

iut + uxx = 0, x ∈ R, t > 0, u(0, x) = ϕ, x ∈ R.

It may be written in the abstract form:

ut = Au, A = i∆ = i∂2 · /∂x2.

Accordingly, the LSE generates a group of isometries ei∆t in L2(R), i. e.

||u(t)||L2(R) = ||ϕ||L2(R), ∀t ≥ 0.

The fundamental solution is explicit G(x, t) = (4iπt)−1/2exp(−|x|2/4iπt).
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Dispersion for the 1− d Schrödinger equation

Dispersive properties: Fourier components with different wave numbers
propagate with different velocities.

• L1 → L∞ decay.

||u(t)||L∞(R) ≤ (4πt)−
1
2 ||ϕ||L1(R).

||u(t)||Lp(R) ≤ (4πt)−( 1
2
− 1
p

)||ϕ||Lp′ (R), 2 ≤ p ≤ ∞.

• Local gain of 1/2-derivative: If the initial datum ϕ is in L2(R), then

u(t) belongs to H
1/2
loc (R) for a.e. t ∈ R.

These properties are not only relevant for a better understanding of the
dynamics of the linear system but also to derive well-posedness and
compactness results for nonlinear Schrödinger equations (NLS).
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Dispersion for the 1− d Schrödinger equation

The same convergence result holds for semilinear equations{
iut + uxx = f(u) x ∈ R, t > 0,
u(0, x) = ϕ x ∈ R,

(1)

provided the nonlinearity f : R→ R is globally Lipschitz.
The proof is completely standard and only requires the L2-conservation
property of the continuous and discrete equation.
BUT THIS ANALYSIS IS INSUFFICIENT TO DEAL WITH OTHER
NONLINEARITIES, FOR INSTANCE:

f(u) = |u|p−1u, p > 1.

IT IS JUST A MATTER OF WORKING HARDER, OR DO WE NEED
TO CHANGE THE NUMERICAL SCHEME?
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Dispersion for the 1− d Schrödinger equation

The following is well-known for the NSE:{
iut + uxx = |u|pu x ∈ R, t > 0,
u(0, x) = ϕ(x) x ∈ R.

(2)

Theorem

( Global existence in L2, Tsutsumi, 1987). For 0 ≤ p < 4 and ϕ ∈ L2(R),
there exists a unique solution u in C(R, L2(R)) ∩ Lqloc(L

p+2) with
q = 4(p+ 1)/p that satisfies the L2-norm conservation and depends
continuously on the initial condition in L2.

This result can not be proved by methods based purely on energy
arguments.
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Lack of numerical dispersion

The three-point finite-difference scheme

Consider the finite difference approximation

i
duh

dt
+ ∆hu

h = 0, t 6= 0, uh(0) = ϕh. (3)

Here uh ≡ {uhj }j∈Z, uj(t) being the approximation of the solution at the

node xj = jh, and ∆h ∼ ∂2
x:

∆hu =
1
h2

[uj+1 + uj−1 − 2uj ].

The scheme is consistent + stable in L2(R) and, accordingly, it is also
convergent, of order 2 (the error is of order O(h2)).
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Lack of numerical dispersion

In fact, ||uh(t)||`2 = ||ϕ||`2 , for all t ≥ 0.
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Lack of numerical dispersion

LACK OF DISPERSION OF THE NUMERICAL SCHEME
Consider the semi-discrete Fourier Transform

u = h
∑
j∈Z

uje
−ijhξ, ξ ∈ [−π

h
,
π

h
].

There are “slight” but important differences between the symbols of the
operators ∆ and ∆h:

p(ξ) = −ξ2, ξ ∈ R; ph(ξ) = − 4
h2

sin2(
ξh

2
), ξ ∈ [−π

h
,
π

h
].

For a fixed frequency ξ, obviously, ph(ξ)→ p(ξ), as h→ 0. This confirms
the convergence of the scheme. But this is far from being sufficient for oul
goals.
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Lack of numerical dispersion

The main differences are:

• p(ξ) is a convex function; ph(ξ) changes convexity at ± π
2h .

• p′(ξ) has a unique zero, ξ = 0; p′h(ξ) has the zeros at ξ = ±π
h as well.

These “slight” changes on the shape of the symbol are not an obstacle for
the convergence of the numerical scheme in the L2(R) sense. But produce
the lack of uniform (in h) dispersion of the numerical scheme and
consequently, make the scheme useless for nonlinear problems.
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Lack of numerical dispersion
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Lack of numerical dispersion

LACK OF CONVEXITY = LACK OF INTEGRABILITY GAIN.
The symbol ph(ξ) looses convexity near ±π/2h. Applying the stationary
phase lemma (G. Gigante, F. Soria, IMRN, 2002):

Theorem

Let 1 ≤ q1 < q2. Then, for all positive t,

sup
h>0,ϕh∈lq1h (Z)

|| exp(it∆h)ϕh||lq2h (Z)

||ϕh||lq1h (Z)

=∞. (4)

Initial datum with Fourier transform concentrated on π/2h.
LACK OF CONVEXITY = LACK OF LAPLACIAN.
Independent work on the Schrödinger equation in lattices:
A. Stefanov & P. G. Kevrekidis, Nonlinearity 18 (2005) 1841-1857.
L. Giannoulis, M. Herrmann & A. Mielke, Multiscale volume, 2006.
It is shown that the fundamental solution on the discrete lattice decays in
L∞ as t−1/3 and not as t−1/2 as in the continuous frame.
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Lack of numerical dispersion

Lemma

(Van der Corput)
Suppose φ is a real-valued and smooth function in (a, b) that

|φ(k)(ξ)| ≥ 1

for all x ∈ (a, b). Then ∣∣∣∣∫ b

a
eitφ(ξ)dξ

∣∣∣∣ ≤ ckt−1/k (5)
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Lack of numerical dispersion

LACK OF SLOPE= LACK OF LOCAL REGULARITY GAIN.

Theorem

Let q ∈ [1, 2] and s > 0. Then

sup
h>0,ϕh∈lqh(Z)

‖Sh(t)ϕh‖~sloc(Z)

‖ϕh‖lqh(Z)

=∞. (6)

Initial data whose Fourier transform is concentrated around π/h.
LACK OF SLOPE= VANISHING GROUP VELOCITY.
Trefethen, L. N. (1982). SIAM Rev., 24 (2), pp. 113–136.
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Lack of numerical dispersion

Figure: Localized waves travelling at velocity = 1 for the continuous equation
(left) and wave packet travelling at very low group velocity for the FD scheme
(right).
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Remedies Fourier filtering

A REMEDY: FOURIER FILTERING
Eliminate the pathologies that are concentrated on the points ±π/2h and
±π/h of the spectrum, i. e. replace the complete solution

uj(t) =
1

2π

∫ π/h

−π/h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.

by the filtered one

u∗j (t) =
1

2π

∫ (1−δ)π/2h

−(1−δ)π/2h
eijhξeiph(ξ)tϕ(ξ)dξ, j ∈ Z.
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Remedies Fourier filtering

This guarantees the same dispersion properties of the continuous
Schrödinger equation to be uniformly (on h) true together with the
convergence of the filtered numerical scheme.
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Remedies Fourier filtering

But Fourier filtering:

• Is computationally expensive: Compute the complete solution in the
numerical mesh, compute its Fourier transform, filter and the go back
to the physical space by applying the inverse Fourier transform;

• Is of little use in nonlinear problems.

Other more efficient methods?
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Remedies Numerical viscosity

A VISCOUS FINITE-DIFFERENCE SCHEME
Consider:  i

duh

dt
+ ∆hu

h = ia(h)∆hu
h, t > 0,

uh(0) = ϕh,
(7)

where the numerical viscosity parameter a(h) > 0 is such that

a(h)→ 0

as h→ 0.
This condition guarantess the consistency with the LSE.
This scheme generates a dissipative semigroup Sh+(t), for t > 0:

||u(t)||2`2 = ||ϕ||2`2 − 2a(h)
∫ t

0
||u(τ)||2~1dτ.

Two dynamical systems are mixed in this scheme:

• the purely conservative one, idu
h

dt + ∆hu
h = 0,

• the heat equation uht − a(h)∆hu
h = 0 with viscosity a(h).
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Remedies Numerical viscosity

Viscous regularization is a typical mechanism to improve convergence
of numerical schemes: (hyperbolic conservation laws and shocks).

It is natural also from a mechanical point of view: elasticity →
viscoelasticity.
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Remedies Numerical viscosity

The main dispersive properties of this scheme are as follows:

Theorem

(Lp-decay) Let us fix p ∈ [2,∞] and α ∈ (1/2, 1] . Then for

a(h) = h2−1/α,

Sh±(t) maps continuously lp
′

h (Z) to lph(Z) and there exists some positive
constants c(p) such that

||Sh±(t)ϕh||lph(Z) ≤ c(p)(|t|
−α(1− 2

p
) + |t|−

1
2

(1− 2
p

))||ϕh||
lp
′
h (Z)

(8)

holds for all |t| 6= 0, ϕ ∈ lp
′

h (Z) and h > 0.
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Remedies Numerical viscosity

Theorem

(Smoothing) Let q ∈ [2α, 2] and s ∈ [0, 1/2α− 1/q]. Then for any
bounded interval I and ψ ∈ C∞c (R) there exists a constant C(I, ψ, q, s)
such that

‖ψEhuh(t)‖L2(I;Hs(R)) ≤ C(I, ψ, q, s)‖ϕh‖lqh(Z). (9)

for all ϕh ∈ lqh(Z) and all h < 1.

For q = 2, s = (1/α− 1)/2. Adding numerical viscosity at a suitable scale
we can reach the Hs-regularization for all s < 1/2, but not for the optimal
case s = 1/2. This will be a limitation to deal with critical nonlinearities.
Indeed, when α = 1/2, a(h) = 1 and the scheme is no longer an
approximation of the Schrödinger equation itself.

Enrique Zuazua (BCAM) () Waves & DG 31 / 59



Remedies Numerical viscosity

Sketch of the proof:

Solutions are obtained as an iterated convolution of a discrete
Schrödinger Kernel and a parabolic one. The heat kernel kills the high
frequencies, while for the low ones the discrete Schrödinger kernel
behaves very much the same as the continuous one.

At a technical level, the proof combines the methods of Harmonic
Analysis for continuous dispersive and sharp estimates of Bessel
functions arising in the explicit form of the discrete heat kernel
(Kenig-Ponce-Vega, Barceló-Córdoba,...).
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Remedies Numerical viscosity

NUMERICAL APPROXIMATION OF THE NLSE

The lack of dispersive properties of the conservative linear scheme
indicates it is hard to use for solving nonlinear problems. But, in fact,
explicit travelling wave solutions for

i
duh

dt
+ ∆hu

h = |uhj |2(uhj+1 + uhj−1),

show that this nonlinear discrete model does not have any further
integrability property (uniformly on h) other than the trivial L2-estimate
(M. J. Ablowitz & J. F. Ladik, J. Math. Phys., 1975.)
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Remedies Numerical viscosity

Consider now the NSE:{
iut + uxx = |u|pu, x ∈ R, t > 0,
u(0, x) = ϕ(x), x ∈ R.

(10)

According to Tsutsumi’s result (1987) the equation is well-posed in
C(R, L2(R)) ∩ Lqloc(L

p+2) with q = 4(p+ 1)/p for 0 ≤ p < 4 and
ϕ ∈ L2(R).
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Remedies Numerical viscosity

Consider now the semi-discretization: i
duh

dt
+ ∆hu

h = ia(h)∆hu
h+|uh|puh, t > 0

uh(0) = ϕh
(11)

with a(h) = h
2− 1

α(h) such that α(h) ↓ 1/2, a(h)→ 0 ash ↓ 0. Then:

• The viscous semi-discrete nonlinear Schrödinger equation is globally
in time well-posed;

• The solutions of the semi-discrete system converge to those of the
continuous Schrödinger equation as h→ 0.
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Remedies Numerical viscosity

Drawbacks:

The viscoity has to be tunned depending on the exponent in the
nonlinearity

Solutions could decay too fast as t→∞ due to the viscous effect.
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Remedies A bigrid algorithm

TWO-GRID ALGORITHM: DO NOT MODIFY THE SCHEME BUT
SIMPLY PRECONDITION THE INITIAL DATA!

Let V h
4 be the space of slowly oscillating sequences (SOS) on the fine grid

V h
4 = {Eψ : ψ ∈ ChZ4 },

and the projection operator Π : ChZ → ChZ
4 :

(Πφ)((4j + r)h) = φ((4j + r)h)δ4r,∀j ∈ Z, r = 0,3, φ ∈ ChZ.
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Remedies A bigrid algorithm

We now define the smoothing operator

Π̃ = EΠ : ChZ → V h
4 ,

which acts as a a filtering, associating to each sequence on the fine grid a
slowly oscillating sequence. The discrete Fourier transform of a slowly
oscillating sequence SOS is as follows:̂̃Πφ(ξ) = 4 cos2(ξh) cos2(ξh/2)Π̂φ(ξ).
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Remedies A bigrid algorithm

The semi-discrete Schrödinger semigroup when acting on SOS has the
same properties as the continuous Schrödinger equation:

Theorem

i) For p ≥ 2,

‖eit∆hΠ̃ϕ‖lp(hZ) . |t|−1/2(1/p′−1/p)‖Π̃ϕ‖lp′ (hZ).

ii) Furthermore, for every admissible pair (q, r),

‖eit∆hΠ̃ϕ‖Lq(,lr(hZ)) . ‖Π̃ϕ‖l2(hZ).
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Remedies A bigrid algorithm
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Remedies A bigrid algorithm

A TWO-GRID CONSERVATIVE APPROXIMATION OF
THE NLSE

Consider the semi-discretization

i
duh

dt
+ ∆hu

h = |Π̃∗(uh)|p Π̃∗(uh), t ∈ R;uh(0) = ϕh,

with 0 < p < 4.
By using the two-grid filtering operator Π̃ both in the nonlinearity and on
the initial data we guarantee that the corresponding trajectories enjoy the
properties above of gain of local regularity and integrability.
But to prove the stability of the scheme we need to guarantee the
conservation of the l2(hZ) norm of solutions, a property that the solutions
of NLSE satisfy. For that the nonlinear term f(uh) has to be chosen such
that

(Π̃f(uh), uh)l2(hZ) ∈ R.

This property is guaranteed with the choice

f(uh) = |Π̃∗(uh)|p Π̃∗(uh)

i.e.

(f(uh))4j = g
(

(uh4j +
∑3

r=1
4−r

4 (uh4j+r + uh4j−r))
/

4
)

; g(s) = |s|ps.

The same arguments as in the viscosity method allow showing that the
solutions of the two-grid numerical scheme converge as h→ 0 to the
solutions of the continuous NLSE.
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Remedies A bigrid algorithm
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Remedies A bigrid algorithm

Enrique Zuazua (BCAM) () Waves & DG 43 / 59



Orders of convergence

1 Motivation

2 Dispersion for the 1− d Schrödinger equation

3 Lack of numerical dispersion

4 Remedies
Fourier filtering
Numerical viscosity
A bigrid algorithm

5 Orders of convergence

6 DG methods

7 Networks

8 Conclusions & References

Enrique Zuazua (BCAM) () Waves & DG 44 / 59



Orders of convergence

Is all this analysis needed?
In practice, we could:

1.- Approximate the initial data ϕ by smooth ones

2.- Use standard tools of numerical analysis for smooth data that
allow handeling stronger nonlinearities because the corresponding
solutions are bounded.

3.- By this double approximation derive a family of numerical
solutions converging to te continuous one.

Warning! When doing that we pay a lot (!!!) at the level of the orders of
convergence...
An example: The two-grid method yields:

||uh − Thu||L∞(0,T ;`2(hZ)) ≤ C(T, ||ϕ||Hs)hs/2.
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Orders of convergence

When using the standard 5-point scheme, without dispersive estimates, we
can regularize the Hs data by a H1 approximation and then use that the
solutions of the Schrödinger equation are in L∞ to handle the nonlinearity.
When this is done we get an order of convergence of | log h|−s/(1−s)
instead of hs/2.
This is due to the following threshold for the aproximation process:

Lemma

Let 0 < s < 1 and h ∈ (0, 1). Then for any ϕ ∈ Hs(R) the functional
Jh,ϕ defined by

Jh,ϕ(g) =
1
2
‖ϕ− g‖2L2(R) +

h

2
exp(‖g‖2H1(R)) (12)

satisfies:

min
g∈H1(R)

Jh,ϕ(g) ≤ C(‖ϕ‖Hs(R), s)| log h|−s/(1−s). (13)

Moreover, the above estimate is optimal.
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Orders of convergence

Drawbacks:

We need a fine choice of the grid ratio to make sure the pathological
frequencies are damped out.
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DG methods

Extensive literature: Reed, W.H. & Hill, 1973; Arnold, D.N., 1979;
Cockburn B., Shu C-W, 90’s ; Arnold D.N., Brezzi F., Cockburn B.,
Marini D. 2000 - 2002, M. Ainsworth 2004,...
We consider the simplest version for the 1D Schrödinger equation in a
uniform grid of size h > 0: xi = hi.
Deformations are now piecewise linear but not necessarily continuous on
the mesh points:

Figure: Basis funtions: φi (left) and φ̃i (right)

Enrique Zuazua (BCAM) () Waves & DG 48 / 59



DG methods

Figure: Decomposition of a DG defomration into its continuous and jump
components.
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DG methods

Variational formulation

Relevant notation:

Average: {f}(xi) = f(xi+)+f(xi−)
2

Jump: [f ](xi) = f(xi−)− f(xi+)
Vh = {v ∈ L2(R)

∣∣v|(xj ,xj+1) ∈ P1, ‖v‖h <∞},

‖v‖2h =
∑
j∈Z

xj+1∫
xj

|vx|2 dx+ 1
h

∑
j∈Z

[v]2(xj)

The bilinear form and the DG Cauchy problem:

ash(u, v) =
∑
j∈Z

xj+1∫
xj

uxvx dx−
∑
j∈Z

([u](xj){vx}(xj) + [v](xj){ux}(xj))

+ s
h

∑
j∈Z

[u](xj)[v](xj), s > 0 is a penalty parameter.


ush(x, t) ∈ Vh, t > 0

i ddt
∫
R

ush(x, t)v(x) dx+ ash(ush(·, t), v) = 0,∀v ∈ Vh,

ush(x, 0) = u0
h(x).

(14)
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DG methods

DG as a system of ODE’s

Decompose solutions into the FE+jump components:

ush(x, t) =
∑
j∈Z

uj(t)φj(x) +
∑
j∈Z

ũj(t)φ̃j(x).

Then U sh(t) = (uj(t), ũj(t))′j∈Z solves the system of ODE’s:

iMhU̇
s
h(t) = RshU

s
h.

Mh: mass matrix, Rsh -rigidity matrix (symmetric, bloc tri-diagonal)

Applying the Fourier transform

i

(
ûht (ξ, t)̂̃uht (ξ, t)

)
= −Ash(ξ)

(
ûh(ξ, t)̂̃uh(ξ, t)

)
. (15)
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DG methods

The eigenvalues of Ash(ξ) constitute two branches{
Λsp,h(ξ) =

(
λsp,h(ξ)

)2
(physical dispersion)

Λss,h(ξ) =
(
λss,h(ξ)

)2
(spurious dispersion)

The corresponding eigenvectors have the energy polarized either in the FE
subspace (physical solutions) or in the jump subspace (spurious solutions).
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DG methods

Branches of eigenvalues for different values of s

The viscous approach will work while the two-grid one will hardly do it
because of the uncertain location of the pathological points in dispersion
curves.
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DG methods

Gaussian races
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Conclusions

• Fourier filtering and some other variants (numerical viscosity, two-grid
filtering,...) allow building efficient numerical schemes for linear and
nonlinear Schrödinger equation: widder classes of nonlinearities,
better convergence rates for rough data,...

• A systematic analysis of their computational efficiency is to be done.

• Both numerical viscosity and two-grids have drawbacks related to the
tunning of parameters.

• Discontinuous Galerkin methods present added technical difficulties
related to the spurious branch of waves.

• Much remains to be done to be develop a complete theory (multi-d,
variable coefficients,...) and it should combine fine tools from
harmonic analysis, PDE and Numerics.

• Extensions to networks is widely open both in the continuous and
discrete setting.
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Conclusions & References

¡Thank you!
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